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Abstract   The vibration pattern of a rotor system reflects the mechanical parameter changes in the 
system. Hence, the use of vibration monitoring is considered as a possible means of detecting the 
presence and growth of the cracks. In this paper, a pattern search based method for shaft crack 
detection is proposed and described which formulates the shaft crack detection as an optimization 
problem by means of  the finite element method and utilizes the pattern search algorithm to search the 
solution. Using a direct search method avoids some of the weaknesses of the traditional gradient 
based analytical search method, including the difficulty in constructing well-defined mathematical 
models directly from practical inverse problems. First, a finite element code was developed for 
analyzing a rotor system with open cracks. To extract the flexibility matrix of an element containing 
cracks an exact integration scheme was adopted which is more accurate than the conventional 
methods. Then, the crack detection method was formulated as an inverse problem which can be 
solved by optimization algorithms. The numerical simulations suggest that good predictions of shaft 
crack location and depth are possible and the proposed method is feasible. 
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کند،  يان ميستم را نماي سيکي مکانيرات پارامترهايي دوار تغيها ستمي سيعلت آنکه خواص ارتعاش بهچكيده       

 دوار به يها ستميص وجود و رشد ترک در سي تشخيها  از روشيکي صورت به يت ارتعاشين وضعييروش تع
شنهاد شده يص وجود ترک پي تشخي براي روش، الگوياز روش جستجو استفاده ن مقاله، بايدر ا. رود يکار م

 يه بر روش اجزايدر ابتدا با تک. کند ي ميبند  فرموليساز نهي بهةک مسئليصورت  ص ترک را بهياست که تشخ
ن کد يدر ا.  کنديساز  ترک باز را مدلي دوار حاويها ستميتواند س ي که مشد آماده يا انهيک کد رايمحدود، 

سپس .  شده استي قبليبين حدود تقريگزيق جاين اصلاح شده و حدود دقير محققي سايريگ حدود انتگرال
حل   قابليساز ه ني بهيها تمياز الگور استفاده ان شد که باي معکوس بةک مسئليص ترک به صورت ي تشخةمسئل
 .دنايي تشخيص محل و عمق ترک را دار توايخوب  بهيشنهاديانگر آن است که روش پيج حاصل بينتا. است

 
 

1. INTRODUCTION 
 
Current trends toward high speed, high power and 
lightweight in rotating machinery design and 
operation often impose severe stresses and 
environmental conditions upon rotors. High 
torsional and radial loads, together with a complex 
pattern of rotor motion, can create sever mechanical 
stress conditions that may eventually lead to  the 
development of a crack in the shaft. The rotor 
crack is one of the most serious faults in high-
speed rotating machinery. Obviously, a cracked rotor 
must be replaced or repaired to prevent equipment 

from possible damage. If a crack is detected at an 
early stage, the rotor may be economically repaired 
at a relatively low cost and within a short period of 
time. Therefore, the detection of rotor cracks at  an 
early stage is critical for the safe and efficient 
operation of rotors [1]. 
     Shaft crack is the frequent and dangerous fault 
in a rotating machine. According to Wauer, in the 
past years, considerable amount of failures can be 
attributed to the shaft cracks [2]. Since the vibration 
pattern of a rotor system reflects the mechanical 
parameter changes in the system, the use of 
vibration monitoring is considered as a possible 
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means of detecting the presence and growth of the 
cracks. Numerous works have been carried out in 
this field [3,4], however, detecting the location and 
size of the cracks is still a challenging problem. 
     In all papers which deal with cracked rotors, 
modeling the cracked segment and detecting the 
fault are the most important aspects. The dynamic 
analysis of a cracked rotor has been investigated 
since the early 1970s. There is, by now, extensive 
literature on the vibrations of the cracked rotors 
[2,5]. 
     Gasch [6] proposed a simple hinge crack model 
for the representation of the variable cyclic stiffness 
and the stability limits of rotors. With fracture 
mechanics methods, Dimarogonas, et al [7,8] 
modeled the crack as a local flexibility related to the 
crack depth. Using a known expression for the stress 
intensity factor of a shaft with a circumferential 
crack, Dimarogonas, et al [9] computed the local 
flexibility of the shaft due to the presence of the 
crack and verified the validity of the theoretical 
analysis with experimental results. Papadopoulos 
[10] modeled the crack by way of a local flexibility 
matrix. He, then, investigated the torsional 
vibrations of a rotor with a transverse crack using 
finite element method. 
     As for crack detection methods in the rotors, the 
late 1970s was the starting point of comprehensive 
investigation on vibration monitoring of rotors. 
Most of these researches were concentrated on 
experiments. For example, Henry [11] used the 
monitoring of rotating machinery to detect the 
crack growth. Kujath, et al [12] and Kujath [13,14] 
investigated the steady state response of a rotor 
with and without cracks and used these data to 
show the presence of cracks in a rotating machine. 
There are a few studies on using numerical 
analysis to detect the cracks. He, et al [15] used 
genetic algorithms and finite element methods to 
detect shaft cracks. They used the shaft vibration 
amplitudes at some points on the shaft to create the 
fitness function. In recent years, Suresh, et al [16] 
used the modal frequencies of a cracked beam to 
train a modular neural networks algorithm which 
can predict the presence of cracks in beams. Yukio, 
et al [17] proposed a method to detect cracks by 
applying a periodical external excitation force on 
the cracked rotor system. They clarified that 
various kinds of resonances, which do not occur in 
a symmetric or an asymmetric rotor, occur due 

to the unique characteristics of rotor cracks. By 
applying a periodic excitation force, they investigated 
the vibration characteristics of the cracked rotor by 
using finite element methods. 
     According to Silani, et al [18], determining the 
dynamic changes in a rotor due to the presence 
of a known crack is straightforward. But, 
detecting the size and location of a crack from 
dynamic characteristics of the rotor is still a 
difficult problem. It seems that it is easier to 
formulate crack configuration detection as an 
inverse problem. 
     There are several algorithms which can be used 
for solving inverse problems. Genetic algorithms, 
neural networks, and direct search methods are the 
most popular ones. Generally, the solution 
technique for inverse problems consists of two 
parts: defining the objective function and finding 
the best result that minimizes this function. 
     This paper is concerned with a crack detection 
procedure for rotating systems containing open 
cracks. First, the theoretical aspect of crack 
modeling in rotating systems is discussed in 
details. An exact integration scheme to extract the 
flexibility matrix of an element containing cracks 
was adopted which is more accurate than the 
conventional methods. Then, crack detection is 
defined as an optimization problem and finally, 
the solution stage was discussed. The form of 
fitness function used in this paper helps to 
evaluate the results. This evaluation is very 
important in using pattern search and genetic 
algorithms. 
 
 
 

2. EQUATION OF MOTION 
 
Figure 1 shows the components of a rotating 
system including the rotor shaft, the rigid disc and 
the bearings. In general the rotor can be discretized 
by finite elements. The equation of motion of the 
complete rotor system in a fixed coordinate system 
can be written as: 
 

})t(F{}{]K[
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The rotary and translational mass matrices of the 
shaft, the rigid disc mass, and the moment of 
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inertia are included in the mass matrix [M]. Matrix 
[C] consists of the gyroscopic moments and the 
bearing damping. Stiffness matrix [K] considers 
the stiffness of the shaft elements including 
cracked shaft element and the bearing stiffness. For 
the analysis of cracked rotor system, the cracked 
element will be replaced with the element, which is 
initially uncracked. The excitation force {F} in 
Equation 1 consists of the weight of the disc and 
the unbalance forces due to the disc mass m and 
eccentricity e. 
 
 
 

3. MODELING OF OPEN CRACKS 
 
It has been shown that due to fatigue, lateral cracks 
will be initiated at high speed in heavy duty rotors 
in the long run. Combinations of permanent and 
dynamic stresses, as well, are responsible for the 
cracks that are initiated by fatigue. Generally, 
shafts that are under bending or reciprocating 
stresses are more susceptible to initiate cracks. 
     Consider a rotor-bearing system with a crack as 
shown in Figure 2. The rotor is discretized into 
finite beam elements. Each element has two nodes 
with four degrees of freedom at each node; 
displacement and rotation in both x and z 
directions (see Figure 3). The shaft element is 
loaded at one node with two shear forces and two 
bending moments. The details of crack cross-
section with crack of depth a are shown in 
Figure 2b. 
     The presence of crack in the shaft element 
increases its flexibility. With the shearing action 
neglected and by using the strain energy, the 
flexibility coefficients for a section of an element 
without crack can be derived as [9], 
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Where, l, E and I are lengths, Young's modulus and 

moment of inertia for a shaft section, respectively. 
     Equation 2 is the inverse of the stiffness matrix 
of a section of an uncracked element of Figure 2a. 
 
 
 

 
 

Figure 1. The rotor components. 
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Figure 2. (a) Rotor-bearing system with cracked and uncracked
elements, (b) cross-section of cracked element. 
 
 
 

 
 
Figure 3. The beam finite element. 



198 - Vol. 22, No. 2, June 2009 IJE Transactions A: Basics 

     The brief discussion on flexibility matrix of 
cracked section as given in [9] is repeated here for 
the beam element with 4 d.o.f. per node. A crack 
on a beam element introduces considerable local 
flexibility due to strain energy concentration in the 
vicinity of the crack tip under load. According to 
the principle of Saint-Venant, the stress field is 
affected only in the region adjacent to the crack. 
The element stiffness matrix may be regarded as 
unchanged under certain limitation of element size, 
except for the cracked element. Because of 
discontinuity of deformation in the cracked 
element, it is difficult to find out an appropriate 
shape function to express the kinetic and elastic 
potential energies. However, the additional stress 
energy of a crack has been studied thoroughly in 
fracture mechanics and the flexibility coefficient, 
expressed by a stress intensity factor, can be easily 
derived by means of Castigliano's theorem in the 
linear-elastic range. 
     Paris equation gives the additional displacement 

iu due to the crack depth of α in the ith direction as: 
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Where J(α) is the strain energy density function 
and Pi is the corresponding load. The strain energy 
density function is: 
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Where )1(m ν+= , EE =′  for plane stress and 

)1/(EE 2ν−=′  for plane strain. Also, ijK  is the 
stress intensity factor for mode i, i = I, II and III, 
and index j represents the load direction. The 
details of the derivations of Equations 3 and 4 are 
presented in [9]. The local flexibility due to the 
crack per unit width by definition is given as: 
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After integration along the width 2b of the crack 
one obtains: 
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The values of stress intensity factors (SIF) in 
Equation 6, for a strip of unit thickness are: 
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)h2/(πα=λ  
 

2/1)/tan()h/(IIIF λλ=α  (8) 
 
Where )67/()1(6k ν+ν+=  is the shape factor for a 

circular cross-section and 2x2R2h −= . By 
combining Equations 4, 6, 7 and 8, one can obtain 
the dimensionless compliance coefficients as: 
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Where 
 

R/xx = , R/zz = , h/zh = , R/)2aaR2(b −=  
 
and 
 

)R/a1(2x1 −−−=α . 
 
In order to calculate the integrals in a simple 
manner, almost all the researchers assumed that the 
integration boundary of Equations 9 is constant in 
crack depth and is equal to R/a≈α . However, the 
integration boundary of Equations 9 varies with 

crack depth (i.e. )R/a1(2x1 −−−=α ). Although 
such an assumption makes the calculation of 
integrals more difficult, this will improve accuracy 
of the results in calculating the natural frequencies 

and mode shapes of the rotating systems. It can be 
shown that the elements of stiffness matrix 
calculated by the proposed integration scheme differ 
about 15 % from those calculated by conventional 
methods. The changes in the stiffness matrix cause a 
change of about 10 % on the fundamental frequency 
of systems [18]. 
     The flexibility matrix due to the crack presence 
is then calculated as: 
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Where )21/(2ER0F ν−π= , R  is the shaft radius 
and ν  is the Poisson’s' ratio. The total flexibility 
matrix for the cracked section is the sum of the 
flexibility matrix of the cracked and uncracked 
elements and can be expressed as: 
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Finally, the stiffness matrix of the cracked element 
can be calculated as: 
 
[ ] [ ] [ ] [ ]TT1CTcK −=  (12) 
 
Where [T] is the transformation matrix defined as: 
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The crack is assumed to only affect the stiffness. 
While assembling Equation 1, the stiffness matrix 
of a cracked element [ cK ] will replace the stiffness 
matrix of the same element prior to cracking to 
result in the global stiffness matrix [K]. 
     A finite element code for rotating systems 
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containing shafts, disks, bearings and cracks was 
developed and used in this study. The finite 
element code was validated by means of several 
standard examples and by comparing its results 
with those obtained from MECOS software. 
 
 
 

4. A REVIEW ON DIRECT SEARCH 
METHODS 

 
Direct search is a method for solving optimization 
problems that does not require any information 
about the gradient of the objective function. As 
opposed to the traditional optimization methods 
that use information about the gradient or higher 
derivatives, in the direct search algorithm, a set of 
points around the current point is searched for 
objective function with a lower value. The direct 
search may be used to solve problems for which 
the objective function is not differentiable, 
stochastic, or even non-continuous [19]. 
     There are two direct search algorithms called 
the generalized pattern search (GPS) and the mesh 
adaptive search algorithm (MADS). In both 
algorithms, a sequence of points gradually gets 
closer to the optimal point. At each step, the 
algorithm searches a set of points, called a mesh, 
around the current point. The mesh is formed by 
adding the current point to a scalar multiple of a set 
of vectors called a pattern. If the pattern search 
algorithm finds a point in the mesh that improves 
the objective function at the current point, the new 
point becomes the current point at the next step of 
the algorithm [20]. 
     The MADS algorithm is a modification of the 
GPS algorithm. The algorithms differ in how the 
set of points forming the mesh is computed. The 
GPS algorithm uses fixed direction vectors 
whereas, the MADS algorithm uses a random 
selection of vectors to define the mesh. 
 
 
 

5. USING PATTERN SEARCH AND FEM  
TO DETECT SHAFT CRACK 

 
Shaft crack is a very dangerous and frequent fault 
in rotating machines. Direct detection methods 
such as ultrasonic and infrared radiation, have 

some weakness due to existence of highly noised 
signals. Therefore, it seems that detecting crack 
location and depth is an inverse problem and not 
easy to tackle. Conceptually, computational 
techniques for the solution of inverse problems 
usually consist of two parts: numerical discretization 
methods for ill-posed objects (e.g. the shaft with 
cracks) and iterative procedures that are used to 
search for the actual geometrical configuration 
(e.g. the cracks location and size) [15]. 
     In this study, the discretization stage was made 
with the finite element method. A finite element 
code was developed for analyzing a rotor system 
with open cracks. 
 
5.1. Objective Function   Definition of objective 
function is the first step in solving an inverse 
problem. As mentioned in Section 3, the presence 
of cracks in the shaft element increases the flexibility 
and hence reduces the natural frequencies. The 
resulting changes in the natural frequencies can be 
used to detect shaft cracks. In this research, the 
first four natural frequencies of the shaft were 
used. Interested readers can find techniques of 
measurement of the natural frequencies in [21]. 
     To detect crack, the natural frequencies of the 
cracked shaft must be measured and imported to 
the code. This code has the ability of finding 
natural frequencies of the cracked shaft for different 
arrangement of the crack location and size. The 
objective function which must be minimized is 
defined as: 
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Where if  is the measured natural frequencies and 

if ′  is the calculated natural frequencies by the 
code. 
     The design vector consists of two variables; 
crack location and crack depth. The element 
number which contains crack indicates the crack 
location. For example, if element 11 of the shaft 
contains crack and the length of each element is 
0.1 m, the crack location varies between 1m and 
1.1m. Fine mesh can produce more accurate result 
and hence, shorter range. 
     To investigate the feasibility and accuracy of 
the proposed method, two distinct cases were 
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examined. The first case is a simply supported 
cracked rotor as shown in Figure 4. Length of the 
rotor is 2.1 m which is divided into 21 elements. 
Therefore, the accuracy of crack location is 0.1 m. 
The rotor is made of steel and has a 6 cm diameter. 
To check the proposed algorithm, a 4 cm crack was 
held on the tenth element of the rotor. Table 1 
tabulates the first four natural frequencies of the 
cracked and uncracked rotor. 
     For the uncracked rotor, the symmetric 
condition in x and z directions causes the same 
frequencies in these directions. The natural 
frequencies of the cracked rotor were imported to 
the code. Two sets of constraints exist: the number 
of elements which varies from 1 to 21 and the 
crack depth that varies from 0 to the shaft 
diameter. The pattern search algorithm needs one 
point as a starting point. Here, the obtained starting 
point is [18   0.056] which means a 0.056 m depth 
crack in element 18. The solution [10   0.03999] 
agrees well with the desired result.  
     To test the efficiency of the proposed method, 
the effects of different starting points on the results 
were checked. In this way, two other starting 
points were selected and imported to the code. The 
results of these runs are presented in Table 2. 
     From the results of the table, it can be concluded 
that the crack detection algorithm is powerful and 
robust. 
     According to Equation 14, it is obvious that the 
global minimum of the function G is zero. 
Therefore, accuracy of the resulting point can be 
evaluated by the criteria that if the value of the 
objective function is very close to zero, the results 
are acceptable; otherwise, the starting point must 
be changed. Figure 5 shows the value of the 
objective function for the first starting point in 
different iterations. 
     Next, the crack location has been changed and 
put in element 16. Table 3 shows the results for 
different starting points. 
     Although the algorithm detected the crack depth 
correctly, the resulted crack location for the 2nd and 
3rd starting point is not correct. To find the source 
of the error, the natural frequencies of rotor with 
cracks in elements 16 and 7 were obtained as: 
 
x = 16 → f = [20.38 26.84 83.83 106.65] 
 
x = 7 → f = [20.38 26.84 83.85 106.66] 

 
Figure 4. A simple rotor system. 
 
 
 
TABLE 1. The First Four Natural Frequencies. 
 

Uncracked RotorCracked 
Rotor 

Natural 
Frequency (Hz)

27.3 18.47 1 

27.3 26.74 2 

107.8 102.18 3 

107.8 107.59 4 
 
 
 
TABLE 2. Crack Location and Depth for Different 
Starting Points. 
 

Crack Depth Crack Location Starting Point 

0.03999 10 [18   0.056] 

0.04 10 [5     0.034] 

0.03999 10 [11   0.001] 

 
 
 

 
Figure 5. The variation of objective function value in each 
iteration. 



202 - Vol. 22, No. 2, June 2009 IJE Transactions A: Basics 

It can be seen that the corresponding natural 
frequencies in these two cases are very close and this 
closeness is the motive of error. The reason of this 
closeness is the symmetry of rotor in this example. 
     The second example is depicted in Figure 6. 
This rotor is not symmetric. The rotor was divided 
into 13 elements with equal length of 0.1m. The 
angular velocity of rotor is 25000 rpm. The 
mechanical and geometrical properties of the rotor 
are tabulated in Tables 4 and 5 [22]. 
     In this case, a 5 cm crack is located on element 
6. The first four natural frequencies of the cracked 
rotor are 47.63, 65.18, 156.04, and 181.84 Hz. The 
natural frequencies of the rotor without crack are 
56.3, 66.63, 160.26 and 192.78 Hz. 
     The results of the code for different starting 
points are shown in Table 6. 
     As can be seen, the proposed algorithm predicted 
the crack location and depth successfully. The 
objective function value is zero for all starting 
points. Figure 7 shows the objective function value 
for the first starting point in different iterations. 
     It is noted that a crack deep enough, about 1/4 
of radius, will change the vibration characteristics 
of the rotor [23]. 
 
 
 

6. CONCLUSIONS 
 
In this paper, a methodology based on the pattern 
search method was introduced and used for solving 
crack detection problems. First, based on the finite 
element method, a computer code was developed 
which can calculate the natural frequencies of 
cracked rotors. A more accurate integration 
scheme was used to calculate the stiffness matrix 
of elements with the crack. It can be shown that the 
elements of stiffness matrix calculated by the 
proposed integration method differ about 15 % 
from those calculated by the conventional method. 
The changes in the stiffness matrix cause a change 
of about 10 % on the fundamental frequency of the 
system. 
     Next, using the measured natural frequencies of 
the cracked rotor and the outputs of the FE code, a 
fitness function was constructed. The main advantage 
of this function is that the global minimum of this 
function is zero. So, the accuracy of the resulting 
point can be evaluated easily. 

TABLE 3. Results for Various Starting Points. 
 

Crack Depth Crack Location Starting Point 

0.04 16 [10   0.01] 

0.04001 7 [8     0.02] 

0.04001 7 [6     0.04] 

 
 
 

 
Figure 6. The schematic illustration of rotor. 
 
 
 
TABLE 4. Geometrical and Physical Properties of the 
Rotor. 
 

13 Number of Elements 

14 Number of Nodes 

10 Shaft Diameter (cm) 

200 × 109 
Modulus of Elasticity 

of Shaft and Discs 
)

m
N( 2  

7800 
Density of Shaft and 

Discs )
m

Kg( 3  

0.2, 0.3, 0.5, 0.3  L1, L2, L3, L4 (m) 

7
xx 10x5k =  7

zz 10x7k =
Bearing Stiffness 

)m
N(  

2
xx 10x5c =  2

zz 10x7c =  
Bearing Damping 

)m
Ns(  
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     To check the efficiency and robustness of the 
proposed method, a simple cracked rotor system 
and a model of an industrial turbine were 
considered. The results of the crack configuration 
showed that this algorithm is feasible and this 
method has the potential ability to detect cracks. 
The effect of the starting point on the performance 
of the algorithm was also investigated. It was shown 

that only in the symmetric rotors, the starting point 
may lead to false results and in real industrial 
rotors, which are asymmetric, and the starting point 
has no effect on the results. 
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