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Abstract   A theoretical relation is presented between the seismological Fourier amplitude spectrum 
and the mean squared value of the elastic response, which is defined by Gaussian distribution. By 
shifting a general process to its mean value, spectrum of the mean squared value of the displacement 
is computed from the Fourier amplitude spectrum and the real part of the relative displacement 
transfer function of the single-degree-of-freedom elastic oscillator. It is shown that the relation 
presented in this work opens the door for a better understanding of the relationship between time-
invariant mean squared value of linear response of a single degree freedom system and seismological 
variables, such as magnitude, focal distance, and path and soil conditions.  For illustrating the 
proposed theoretical relation, the mean squared values of a drift have been calculated for earthquake 
ground motions with different magnitude, focal distance and soil. 
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 مربع متوسط مقدار و ن لرزهيزم ديتول يروش ها از حاصل هيفور دامنه فيط نيب ياضير رابطه كيده   يچك    

 نيگوس عيتوز يدارا سازه پاسخ ريمقاد است دهيگرد فرض رابطه نيا در كه است شده ارائه كيپاسخ الاست
 و هيفور دامنه فيط اساس بر سخ هاپا انسيوار آنها، متوسط مقدار به حاصل يپاسخ ها رير متغييتغ با. است
 رابطه كمك به .گردد يم محاسبه يآزاد درجه كي كيالاست ستميس كي ينسب ييل جابجايتبد تابع يقيحق بخش
 به نسبت کير متوسط مربع پاسخ الاستيف مقاديط راتييتغ از يبهتر درك توان يم مطالعه، نيا در شده ارائه

  مختلفين لرزه هايزم يازا به .داشت تيسا و ريمس اثرات و يكانون لهفاص زلزله، يبزرگا رينظ يپارامترها
ف يط مطالعه، نيا در شده ارائه رابطه اساس بر خاك مختلف ي هايطبقه بند و يكانون فواصل بزرگاها، رينظ

 .است شده محاسبه كيالاست پاسخ مربع متوسط ريمقاد
 
 

1. INTRODUCTION 
 
It is well recognized that earthquake ground motions 
involves various uncertain factors and does not 
appear easy to predict forthcoming events precisely 
at a specific site both in time and frequency [1,2]. 
Some of the uncertainties result from the lack of 
information due to the low occurrence rate of large 
earthquakes and this problem can not be resolved 
in a practical time span. It is, therefore, strongly 
desirable to develop a structural design method 
taking into account these uncertainties with limited 
information, enabling the design of a safer structure 
for a broader class of design earthquake. 
     The need for a stochastic dynamic of engineering 
systems, which stems from the fact that earthquake 

exhibits strong variability in both intensity and 
frequency content [3]. Earthquakes which result in 
loading processes are not only mathematically 
complex, but also exhibit a strong element of 
randomness. 
     The method of critical excitation was proposed 
by Drenick, et al [4] for linear elastic single-degree-
of-freedom (SDOF) system in order to take into 
account inherent uncertainties in ground motions. 
This method is aimed at finding the excitation, 
producing the maximum response from a class of 
allowable inputs. Shinozuka, et al [5] discussed the 
same problem in the frequency domain and proved 
that, if an envelope function of Fourier amplitude 
spectra can be specified, a narrower upper bound 
of the maximum response can be derived. 
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     In this study, a procedure for assessing the 
mean squared value of a drift at the specified 
region is presented. The procedure can be used 
at regions which lacks information about 
strong/moderate earthquake ground motions, and 
Fourier amplitude spectra of earthquake ground 
motions are calculated based on seismological 
method. This procedure is formulated based on the 
stochastic method of simulating ground motion and 
the random vibration theory for linear elastic 
systems subjected to stationary excitation. This 
expression reveals how the time-invariant mean 
squared value of linear system can be analytically 
related to the earthquake ground motion parameters.  
 
 
 

2. MEAN SQUARED VALUE OF THE 
RESPONSE IN FREQUENCY 

DOMAIN 
 
Spectral analysis deals with response under a 
continuous random fluctuating stochastic load 
process of linear systems. As long as the input is 
broad-banded (wide-banded) and the system is 
linear, the output (displacement, force, stress…) of 
many structural systems are narrow banded 
according to Gaussian processes [6]. 
     Within the context of structural dynamics, the 
external excitation vector is balanced through the 
combined action of the inertial, damping and 
restoring forces. Consider the equation of motion 
of the single-degree-of-freedom elastic oscillator 
subjected to ground acceleration )t(gu)t(a &&= : 
 

)t(ay2
nyn2y −=ω+ξω+ &&&  (1) 

 
Where y(t) is the relative displacement (output) 
under an excitation (input) a(t), ζ is the damping 
ratio and ωn is the natural frequency of the 
oscillator. Since the input a(t) is a random process, 
the output y(t) will also be a random process. A 
direct solution of Equation 1 to output y(t) in time 
domain is not feasible in this study and, therefore, 
it is more appreciated to concentrate on the 
alternative method of representing the relationship 
between a(t) and y(t). The frequency response 
method is applied for this purpose, in which 
both input and output process a(t) and y(t) are 
represented by harmonic functions. In the frequency 

domain, the displacement can be expressed as: 
 

)(A.),n;(DH)(Y ωξωω=ω  (2) 
 
Where Y(ω) is the Fourier transform of y(t), A(ω) 
is Fourier transform of ground acceleration and 

),n;(DH ξωω  is the transfer function of base 

acceleration to relative displacement and it is 
called the complex frequency response, given by: 
 

ωωξ+ω−ω
−=ξωω

.n.i.n222
n

1),n;(DH  (3) 

 
Implementation of the above deterministic 
technique is feasible in a routine fashion, provided 
that both structural properties and excitation 
vectors can be precisely described. There are 
certain cases, however, for which the excitation 
process and/or certain structural characteristics are 
either not known accurately or are random in 
nature [7]. In fact, the theory behind stochastic 
dynamics essentially integrates conventional 
deterministic dynamic analyses within the 
theoretical framework of stochastic processes [8,9]. 
     The power spectral of the output process, 
SYY(ω), can readily be obtained in terms of the 
power spectral of input process, SAA(ω). The scalar 
statement of the spectral result can be written as 
[6]: 
 

)(AAS
2

),n;(DH

)(AAS),n;(DH),n;(*
DH)(YYS

ωξωω=

ωξωωξωω=ω
 (4) 

 

In which ),n;(*
DH ξωω  is complex frequency 

response evaluated at  frequency-ω  and 
),n;(DH ξωω  is a complex but even function. 

Schematic diagram of the critical excitation for 
finding the power spectral density (PSD) function 
has been shown in Figure 1. 
     In engineering application, It is assumed that 
response Y(t) has a normal (or Gaussian) 
distribution [10,11]. For computation of this 
distribution, two quantities of response process 
are interesting in the structural analysis, e.g. mean 
values and variances of the response. By shifting a 
general process to its mean value a zero mean 
value process can be obtained, in which the mean 
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of the second moment equals to the variance of the 
process. In stationary process, the second moment 
is equal to the value of the correlation function at 
τ = 0, e.g. the variance of the process Y(t) with 
zero-mean is stated as: 
 

]2Y[E)0(YYR2
Y ==σ  (5) 

 
The correlation RYY(0) can be calculated from the 
frequency integration of the corresponding power 
spectrum as: 
 

∫∞∞− ωω=σ d)(YYS2
Y  (6) 

 
Variance 2

Yσ , which equals to the time-invariant 
mean squared value of the response of the SDOF 
system (relative displacement), based on Equation 
4 can be described by: 
 

∫∞∞− ωωξωω=σ d)(AAS
2

),n;(DH2
Y  (7) 

 
Where SAA(ω), power spectral density (PSD) 
function of input ground motion, is defined as: 
 

T2)(F)(AAS ω=ω  (8) 
 
Where F(ω) is Fourier spectrum of a ground 
motion acceleration and T is earthquake ground 
motion duration. 

3. FOURIER AMPLITUDE SPECTRA IN 
VIEW OF SEISMOLOGY 

 
There is a vast amount of research aimed to predict 
amplitude Fourier spectra, coming especially from 
the engineering seismology field. In fact, the 
amplitude Fourier spectrum has been, so far, the 
most widely used form of specifying ground-
motion characteristics in engineering seismology. 
Take, for instance, the ground-motion descriptions, 
always given in terms of Fourier amplitude spectra, 
which comes from the use of theoretical models of 
the radiated spectrum plus attenuation, diminution 
and amplification functions. This approach has 
been used in the past to predict peak motion values 
and response spectra [12]. One of the essential 
characteristics of this method is that, it distills what 
is known about the various factors affecting 
ground motions (source, path, and site) into simple 
functional forms. 
     Brune, et al [13] assumes that the far-field 
accelerations on an elastic half space, are band-
limited, finite-duration, white Gaussian noise, and 
that the source spectra are described by single 
corner-frequency model whose corner frequency 
depend on earthquake size. The Fourier amplitude 
spectrum, F(ω), used in a seismological model 
[12,13] can be broken into contributions from 
earthquake Brune’s source model, typical geometric, 
anelastic whole path and upper crust attenuation, 
and site functions, so that: 
 

)(A)(P)(An)(E
R
1

34

PSFPR
)(F ωωωω

βρπ
=ω  (9) 

 
Where R is the focal distance, RP is the wave 
radiation factor (taken here as 0.55), FS is the free 
surface amplification factor (taken equal to 2), P is 
the factor partitioning energy into the orthogonal 
directions (taken equal to 22 ). ρ is the density of 
rock within the top 10 km of the earth crust, is 
typically 2.8 ton/m3  and β is the shear-wave 
velocity in the vicinity of the source. E(ω) is 
Brune’s source spectrum, given by: 
 

2)c(1

2
0M

)(E
ωω+

ω
=ω  (10) 

 
Figure 1. Schematic diagram of critical excitation for finding 
the power spectral density (PSD) function. 
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Where M0 is the seismic moment and ωc is the 
corner frequency, taken as: 
 

3/1)0M(s
6109.4)2(c σΔβ××π=ω  (11) 

 
Where Δσ, in bar, is the stress drop and in this 
equation ωc is in Hz., βs in km/s, and M0 in dyne-
cm. The seismic moment, M0 is often expressed in 
terms of the moment magnitude (Mw) which is 
defined as follows [14]: 
 

7.100Mlog
3
2

wM −=  (12) 

 
The loss of energy along the wave travel path is 
very complex. The An(ω) factor, by definition, 
includes all the losses which have not been 
accounted for by the geometrical attenuation 
factor, and is defined by the exponent expression, 
given by [12]: 
 

)
n)

2
1(0Q.

R5.0exp()(An
ω

π
β

ω−=ω  (13) 

 
Q0 and n are the regional dependent factors of the 
wave transmission quality factor, Q, which is 
defined by the exponent expression. 
     The attenuation, or diminution, operator P(ω) in 
Equation 9 accounts for the path independent loss 
of high-frequency in the ground motions. 
 

)
2

exp()(P ωκ
−=ω  (14) 

 
This loss may be due to a source effect or a site 
effect or by a combination of these effects and κ is 
the attenuation parameter to account for high-
frequency cutoff [15]. 
     In Equation 9, A(ω) is the upper crust 
amplification factor and it is a function of shear-
wave velocity vs. depth. The corresponding 
frequency dependent upper crust amplification 
factor, A(ω), has also been estimated by “quarter 
wavelength approximation” method. The geometrical 
attenuation factor which represents geometrical 
damping is given by piecewise continuous series of 
straight lines [12]. For the sake of simplicity, in 
this study, R-1 has been accepted. 

4. DESCRIPTION OF MEAN SQUARED 
VALUE OF THE RESPONSE IN 

A NEW MEASURE 
 
In order to show a proposed measure for 
describing the time-invariant mean squared value 
of the relative displacement (drift) of the SDOF 
system, the following set of parameters have been 
used; Δσ = 100 bar, ρ = 2.8 gr/cm3, and β = 3.5 
km/s. The kappa operator (κ) that is a function of 
distance below the site and the site condition of 
the station, is assumed to be 0.05 and site 
amplification factor is chosen according to Boore 
and Joyner results for two groups of rock and 
very hard rock sites [16]. We also have a set focal 
distances equal to 20, 40 and 80 km, and moment 
magnitude (Mw) equal to 6 and 7 Richter. The 
regional dependent factors of quality factor are 
chosen based on Atkinson and Silva study [17]. In 
this study, it is accepted that the duration of 
generated records, T, is equal 20 s. 
     Based on these parameters and Equations 8 and 
9, the PSD functions Sxx(ω) can be calculated. 
These functions have been substituted into 
Equation 7 to evaluate the time-averaged standard 
deviation σy of the relative displacement of the 
SDOF model. These values for the damping ratio ζ 
= 0.05 are plotted in Figure 2a-d for different 
classes of ground motions with respect to the 
model natural period T0 = 2π/ωn. It may be 
possible to evaluate the power of the ground 
motions by comparing the results in different focal 
distance (bold solid, solid and dotted lines). It can 
be observed that, for both Mw7.0 and Mw6.0, the 
response in rock site .)s/m62030V( =  is twice the 

response in hard rock site .)s/m290030V( = . 
     The response spectral value is expressed as 
multiple of time-invariant mean squared value of 
the relative displacement of the SDOF system.  
Mean squared value of drift is multiplied by a 
coefficient which depends on an exceeding 
probability and earthquake ground motion 
duration [18,19]. It is worth mentioning that in 
seismological simulation techniques, the ground 
motion duration is the summation of source 
rupture duration which is proportional to the 
inverse corner frequency, and the propagating 
time of the radiated waves from source to the 
station [20]. 
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5. CONCLUSIONS 
 
A theoretical relation has been presented between 
the seismological Fourier amplitude spectrum and 
the mean squared value of the elastic response. As 
shown, its assumed response has a Gaussian 
distribution and by shifting a general process to its 
mean value, spectrum of the mean squared value of 
the displacement is computed from the Fourier 
amplitude spectrum, and the real part of the relative 
displacement transfer function of the single-degree-
of-freedom elastic oscillator. The presented relation 
shows understanding of the relationship between 
mean squared value of linear response and 
seismological variables, such as magnitude, focal 
distance, path and site effects are easier. The 
response spectra, which can be calculated based on 
spectrum of the mean squared value of the 

displacement and the input energy, is an indication 
of the potential structural damage. The presented 
procedure in this study can be used at regions with 
lack of information about strong/moderate 
earthquake ground motion, which Fourier amplitude 
spectra of earthquake ground motions are calculated 
based on seismological method. It is possible to 
evaluate the power of the ground motions by 
comparing the results in different focal distance, 
magnitude, and different soil category. 
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Figure 2. Time-averaged standard deviation of drift in a SDOF model subjected to different ground 

motions in 20, 40 and 80 km, (a) Rock site and Mw = 7.0, (b) Rock site and Mw = 6.0, 
(c) Hard rock site and Mw = 7.0 and (d) Hard rock site and Mw = 6.0. 
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