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Abstract   The present investigation studies the behavior of steady flow of visco-elastic liquid 
between two porous coaxial circular cylinders, where both the cylinders are rotating with different 
uniform angular velocities about the common axis. In addition, the inner cylinder has uniform 
velocity along the axis and the visco-elastic fluid, which is a Walters liquid B′, is allowed to flow in 
the annulus. The investigation deals with high order suction parameter. The problem is to be used in 
the chemical industry. Higher Reynolds numbers, visco-elastic parameters and suction parameter 
have also been considered in the study. A numerical approach has been used to demonstrate out the 
results and present them graphically. 
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 ي متخلخل بررسيا رهيلندر داين دو سيک بيسکوالاستيال ويک سيدار يان پاين مقاله رفتار جريدر ا   کيدهچ
لندر يعلاوه س به. چرخند ي مي ثابت حول محور مشترکيا هيمحور با سرعت زاو لندر هميهر دو س. شود يم

 است، ′Bتر لال واياز نوع سک که يسکوالاستيال وين محور دارد و سي در امتداد ايکنواختي سرعت يداخل
نظر  ز درين پژوهش پارامتر مکش از مرتبه بالا را نيا. ان داشته باشديلندر جرين دو سين ايب  مايتواند در فضا يم
ز يته و پارامتر مکش نيسيسکوالاستي وينولدز بالا، پارامترهاياعداد ر.  کاربرد داردييايميع شيرد که در صنايگ يم

صورت  ج و عرضه آنها بهيدادن نتا  نشاني براي عدديافتين از رهيهمچن. توجه استن مسئله مورد يدر ا
 . استفاده شده استيميترس

 
 

1. INTRODUCTION 
 
The flow through porous boundaries is of great 
importance both in technological as well as 
biophysical fields, example of which is soil 
mechanics, transpiration cooling, food preservation, 
cosmetic industry, blood flow and artificial dialysis. 
In recent years the problems of fluid flow past 
porous media or in channels with heat transfer, 

heat transfers have gained more importance because 
of various applications, e.g. I.V. fluid containers 
made of PVC are commonly used these days. 
Sinha, et al [1] have discussed the steady state 
laminar flow of a viscous incompressible fluid 
between two coaxial porous cylinders rotating 
with constant angular velocities. Gupta, et al [2] 
considered the unsteady flow of a fluid through the 
annular space between two porous coaxial cylinders. 
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Singh, et al [3] have considered the steady problems 
of porous cylinder where both cylinders are 
rotating with different velocities about a common 
axis and the cylinders are in relative motion along 
the axis. The visco-elastic fluid which is a second 
order fluid is allowed to flow in the annulus under 
constant axial pressure gradient. Choudhury, et al 
[4] considered the steady flow of visco-elastic fluid 
in an annulus of two porous coaxial cylinders 
rotating with different uniform angular velocities, 
together with translatory motion of an inner 
cylinder along the axis of rotation. The analytical 
expression for toroidal and axial component has 
been obtained using a series solution for small 
values of suction parameter. 
     In most of the earlier problems, in general series 
solution have been taken to find the velocity 
function where one is restricted to take only a 
finite number of terms which puts a limitations on 
the values of the parameters involved. In this 
particular paper, the Gauss Elimination method has 
been used to find the velocity functions. The 
beauty of technique lies in that (i) solution is valid 
for a large range of value of the parameter (ii) The 
original basic equation can be used without much 
elaboration. The striking feature of the solutions to 
follow is that they are valid for all values of K 
(positive, negative, small and large) and few more 
new results have also been obtained. 
     The present paper is concerned with a visco-
elastic fluid characterized by Walters liquid [5] 
(Model B′) in the annulus of two porous coaxial 
circular cylinders when both boundaries are 
rotating with different angular velocities at a high 
injection in inner cylinder and high suction in the 
outer cylinder. The constitutive equation of 
Walters liquid (Model B′) is: 
 

,ike0k2ike02ik

ikikpgik

′−η=σ

′σ+−=σ
 (1) 

 
Where ikσ  s the stress tensor, p is the isotropic 
pressure, ikg  the metric tensor of fixed coordinate 
system ii v,x  the velocity vector and 

ike′  in the 
contravariant form is: 
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The convected derivative of the deformation rate 
tensor ike  is defined by: 
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Here, 0η  is the limiting viscosity at a small rate of 
shear given by, 
 

τ∫∞ ττ=∫∞ ττ=η d0 )(N0Kand0 d)(N0  (4) 
 

)(N τ  being the relaxation spectrum as introduced 
by Walters. This idealized model is a valid 
approximation of Walters’s liquid (Model B′) 
taking very short memories into account so that 
terms involving, 
 

2n,d)(N0
n ≥ττ∫∞τ  (5) 

 
Have been neglected. 
 
 
 

2. GOVERNING EQUATIONS 
 
Let us assume that the fluid is flowing in an 
annulus of coaxial circular cylinders whose radii 
are ( )1111 ba,b,a < . Both inner and outer cylinders 
are rotating about a common axis with angular 
velocities w1 and w2 respectively while the inner 
cylinder is also rotating with uniform velocity W* 
along its axis. There is suction in one of the 
cylinders and injection in the other one. The 
formulation of the problem has been done using 
the cylindrical coordinates ( )z,,r θ , where z-axis is 
considered as the common axis. The velocity 
components depend only on the radial distance r 
due to the symmetry about the axis. Hence, 
 

),r(uu = )r(vv = , ),r(ww =  (6) 
 
Where v and w are angular and axial velocities, 
respectively. The boundary conditions are, 
 

1arat*Ww,1w1av,
1aUu ====  
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1b rat   0w,1w1bv,
1bUu ====  (7) 

 
Where 21 w,w  are the angular velocities 

1aU  and 

1bU  are the uniform injection and suction 

velocities. 
     Now introduce the non-dimensional quantities: 
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Where L  and 0U  are the characteristic length and 
characteristic velocity respectively, α  is a non-
dimensional visco-elastic parameter. 
     Under these considerations, the governing 
equations in dimensionless form are: 
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3. SOLUTION OF THE PROBLEM 
 
Equation 9 on integration yields, 
 

,
r
Ku =  

 
Where K  is the non-dimensional constant related 
to injection and suction velocities as, 
 

,b.bUa.aUK ==  (13) 
 
Where K  is positive for injection on the inner 
cylinder and suction on the outer cylinder and 
negative for the reverse order. 
     From Equations 10 and 11 we infer that the 
pressure should be a function of r and z only which 
is the form, 
 

)r(gzP +λ=−  (14) 
 
Where λ  is constant and )r(g , an arbitrary 
function of r. 
     Equations 10 and 11 are linear homogeneous in 
v and w respectively. The finite difference 
approximations scheme for the first, second and 
third order derivatives have been used to discretize 
these differential equations. 
     Using these approximations in Equation 10 and 
11, we obtain: 
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All s'wands'v ii are functions of r. We divide r 
[1,6] into hundred equal parts each one of length 
0.001.The boundary conditions can be written as: 
 

,1ratH1w,1a1v,aUu ==Ω==  
 

2rat0101w,2b100v,bUu ==Ω== . (17) 
 
Equation 15 and 16 have been represented in the 
matrix form independently to solve them numerically 
using Gauss-eliminating technique. 
 
 
 

4. DISCUSSION 
 
We have taken into consideration the boundary 
layer near the inner cylinder as well as the outer 
cylinder. We will discuss the effect of various 
parameters α , visco-elastic parameter, K, the 
suction parameter and R, Reynolds number. The 
following conclusions are arrived at as a result of 
the present investigations: 
     The Figure 1 and 2 represent the graph between 
angular velocity v against radial distance r for fixed 
value of suction parameter K  and Reynolds number 
R but different values of α . It is evident that when 
K  > 0, the angular velocity v increases with the 
increase in visco-elastic parameter α, throughout the 
gap length and the maxima shifts towards the outer 
boundary. For a large value of Reynolds number, 
angular velocity increases with the increase in 
visco-elastic parameter but it becomes negative 
after increment in Reynolds number ≥ 10. The 
corresponding results for Newtonian fluid can be 
deduced from the above results by setting α = 0 
and it is worth mentioning here that these results 
coincide with that of Choudhury, et al [4]. 
     It is further evident that if α  = 2, the angular 
velocity increases in comparison to Newtonian 
fluid and the maxima shift towards midway of the 
gap length (Figure 3). 
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Figure 1. variation between angular velocity and radial distance. 
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Figure 2. Variation between angular velocity and radial distance. 
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Figure 3. Velocity increases in comparison to Newtonian fluid 
and the maxima shift towards midway. 
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Figure 4. Reynolds number and fixed visco-elastic-parameter.
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Figure 5. Axial velocity w increases with the increasing value 
of R. 
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Figure 6. Axial velocity profile. 

     The study for Reynolds number and fixed 
visco-elastic-parameter α has also been made and it 
is shown through Figure 4. It has been noticed that 
the velocity increases with the decrease in suction 
parameter. 
     From Figure 5, fixing α = 0.2 and k = 0.1 axial 
velocity w increases with the increasing value of 
R. In Figure 6 axial velocity profile have been 
plotted for K = 0.9, α = 0.2 and different values of 
Reynolds number. It is seen that the increase in 
Reynolds number changes the flow pattern 
considerably. It is observed that for large values of 
K, the flow becomes dramatically distorted on 
increasing R i.e. the axial velocity becomes very 
much negative at R = 13 but becomes less negative 
on further increase in the value of R. Hence, one 
can’t take the fluids whose Reynolds number as 
well as suction parameter is very large. 
     It has been observed and concluded from 
Figures 7 and 8 that for a fixed K, for a particular 
value of R, the axial velocity of the fluid increases 
with the increase in α. If K becomes very large 
(very small) and R is also very large, the axial 
velocity has a negative sign, i.e. the liquid comes 
out of the cylinder. The professional from the 
chemical industry may be interested to find this 
limit of K and R for the fluid they are using these 
values depends on the characteristics of the fluid. 
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