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Abstract   In this paper we examine the effect of mild stenosis on blood flow, in an irregular 
axisymmetric artery with oscillating pressure gradient. The Herschel-Bulkley fluid model has been 
utilized for this study. The combined influence of an asymmetric shape and surface irregularities of 
constriction has been explored in this computational study. An extensive quantitative analysis has 
been performed for narrowing of vessels through numerical computations on the flow velocity, plug 
flow rate and the apparent fluidity. The graphical representations have been made to validate the 
analytical findings with a view of its applicability to stenotic diseases. Velocity profiles, plug flow 
rate, and apparent fluidity along the radius of the obstructed tube are determined to give the flow 
characteristics, for diagnostic point of view. The effects of viscosity on the flow field are examined 
numerically and are shown graphically. 

 
Keywords   Mathematical Model, Mild-Stenosis, Micropolar Fluid, Shearing Stress, Apparent 
Fluidity 

 
در اين مقاله تاثير تنگ شدن جزيي در يك سرخرگ متقارن غيرعادي بـا تغييـر فـشار نوسـاني بـر                       چکيده

تـاثير تركيبـي   . شـود   بالكلي اسـتفاده مـي    -همين منظور از مدل سيال هرشل        به. شود  گردش خون بررسي مي   
اي براي بررسي    آناليز عددي گسترده  . گيرد  هاي سطحي تنگي مورد بررسي قرار مي        و بي نظمي   شكل نامتقارن 
ها و سياليت ظاهري  ها از طريق انجام محاسبات عددي روي سرعت جريان، نرخ جريان پلاگ تنگ شدن رگ

هـاي   د در بيمـاري    از ديـدگاه كـاربر     ها يافتهبرای اعتبار بخشی    هاي گرافيكي     نمودارها و شكل  . گيرد  انجام مي 
ها، سياليت ظاهري و همچنين شعاع رگ        سرعت جريان، نرخ جريان پلاگ    . ندشو به کارگرفته می  تنگي عروق   

در خاتمه، . هاي جريان را از نقطه نظر تشخيص بيماري ارائه نمود گردد تا بتوان ويژگي مسدود شده تعيين مي
صورت گرافيكـي نـشان داده        بررسي قرار گرفته و به    صورت عددي مورد      تاثير ويسكوزيته بر ميدان جريان به     

 .شود مي
 
 

1. INTRODUCTION 
 
It is known that a severe constriction of a coronary 
artery significantly alters the mean resting coronary 
flow. Cardiac ischemia is caused due to the 
constriction, which is responsible for insufficient 
flow of blood through the coronary arteries into the 
heart. This insufficiency is usually caused by 
atherosclerotic plaque, which builds up in the 
coronary arteries, gradually diminishing the flow 
of blood through the said arteries. Such occlusion 
of the arteries increases the risk of heart attack. 

Therefore the study of blood flow in artery is quite 
important. However, there have been limited 
studies of the effects of fluid dynamics on a 
stenosis in artery using proper modeling techniques 
(Cavalcanti, et al [1]). At low flow rates stenotic 
resistance (ratio of pressure drop to flow) is 
essentially constant, and this suggests fully 
developed laminar flow (Misra, et al [2]). In the 
case of high flow, resistance increases with the 
flow, indicating the importance of turbulence flow 
effects. It was further observed by researchers, that 
the resistance of the stenosis was primarily 
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dependent on its minimum cross-sectional area 
rather than its length (Chakravarty, et al [3]). These 
types of studies have been confounded to a 
description of the overall behavior of blood flow in 
the presence of a stenosis through experimental 
investigation. 
     Analytical models also have been developed in 
an effort to predict the pressure drop, caused by a 
given stenotic area. The minimum lumen areas 
created in stenosed tube were about 65 % and 90 %, 
including a model without stenosis, respectively 
(Zohdi, et al [4]). Ischemic heart disease, which 
results from high grade stenosis, is the single most 
common cause of death all over the world. 
Approximately 35 percent of all deaths are resulted 
by this cause. High grade stenosis increases flow 
resistance in arteries, which forces the body to 
raise the blood pressure in order to maintain the 
necessary blood supply. Both high pressure and 
narrowing vessels cause high flow velocity, high 
shear stress and low or even negative pressure, 
at the throat of the stenosis (Wille, et al [5]). 
These may be related to thrombus formation, 
atherosclerosis growth and plaque cap rupture, 
leads directly to stroke and heart attack. The exact 
mechanism of this complicated process is still not 
well understood. A more comprehensive study in 
this physiological process is of great importance 
for diagnosis, prevention and treatment of stenosis 
related diseases. A considerable number of 
experimental and numerical researches have been 
conducted to study the flow dynamics and stresses 
in collapsible elastic tube (Tang, et al [6]). 
     There are a number of studies, which suggest 
the existence of link between arteriosclerosis and 
micro polar fluid flow. In some studies, Young, et 
al [7,8] found that resistance is greater for 
asymmetric than for axisymmetric stenosis. They 
also performed some experiments on some unsteady 
flow with similar results. Wille, et al [9] 
investigated pressure and flow in arterial stenosis. 
Wille, et al [10] extended the problem of pulsatile 
pressure and flow in an arterial stenosis in their 
mathematical model. Krishan, et al [11] developed 
a mathematical model for unsteady flow of a 
micropolar fluid, through a constricted channel by 
using perturbation method for solution of slope 
parameters. Siouffi, et al [12] obtained the effect of 
unsteadiness of the flow through stenosis and 
bifurcations. Kapoor, et al [13] illustrated some 

mathematical models in medical sciences. Misra, et 
al [2] examined the problem of the blood flow in 
arteries in presence of stenosis. Numerical study on 
the flow of a non-Newtonian fluid through an 
axisymmetric stenosis was made by Nakamura, et 
al [14]. However Chakravarty, et al [3] examined 
the effects of stenosis on arterial rheology through 
a mathematical model. Johnston, et al [15] 
investigated a mathematical model of blood flow 
through an irregular arterial stenosis. Finite 
element simulation of pulsatile flow through 
arterial stenosis can be found in the work of Tu, et 
al [16]. A model for blood flow through a stenotic 
tube has been developed by Tandon, et al [17]. 
Chakravarty, et al [18] did the mathematical 
modeling of blood flow through an overlapping 
arterial stenosis. In recent past, Sharma, et al [19] 
gave the finite element technique for two 
dimensional arterial flows in the presence of a 
transverse magnetic field. Cavalcanti, et al [1] did 
numerical simulation to examine the hemodynamics 
in a mild stenosis with consideration of pulsatile 
wall motion. Tang, et al [6] used axisymmetric 
models to investigate steady/unsteady viscous flow 
in elastic stenotic tubes with various stenosis 
stiffness and pressure conditions. Tu, et al [20] 
studied pulsatile flow of non-Newtonian fluids 
through arterial stenoses. Ang, et al [21] made the 
mathematical modeling of three dimensional flows 
through an asymmetric stenosis. Bathe, et al [22] 
suggested a fluid-structure interaction by using 
finite element analysis of pulsatile blood flow 
through a compliant stenotic artery. Dash, et al 
[23] analyzed flow in a catheterized curved artery 
with stenosis. 
     It has been observed from experiments by 
previous researchers that blood behaves as a non-
Newtonian fluid at low shear rates in arteries. Liu, 
et al [24] described a numerical simulation of 
viscous flow in collapsible tubes with stenoses. 
Steinman, et al [25] described flow patterns at the 
stenosed carotid bifurcation, and has also shown 
the effect of concentric versus eccentric stenosis. 
Yao, et al [5] developed a computational model for 
blood flow through curved stenosed arteries. 
Banks, et al [26] studied modeling and computation 
of propagating waves from coronary stenosis. 
Numerical analysis of flow through a severely 
stenotic carotid artery bifurcation was established 
by Stroud, et al [27]. Lee, et al [28] gave a model 
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Figure 1. Schematic diagram of a mild-stenotic tube equation 
of continuity. 

for the behavior of the flow and the wall in a 
mildly stenosed tube. Tang, et al [29] showed the 
effect of stenosis asymmetry on blood flow and 
artery compression. In their study they considered 
a three-dimensional fluid-structure interaction 
model. A simple model for shear stress mediated 
lumen reduction in blood vessels was given by 
Zohdi, et al [4]. Johnston, et al [30] described the 
non-Newtonian blood flow in human right 
coronary arteries, which showed the transient 
simulations. Lorenzini, et al [31] calculated blood 
velocity field with numerical assessment using a 
GPL code in case of intravascular doppler catheter 
effects. This study was a comparative analysis of 
different rheological models. 
     Recently, Christofidis, et al [32] have shown 
the influence of a convergent nozzle on the flow 
field of a mild stenosis located in a T-junction. 
Cuniberti, et al [33] gave the development of 
mild aortic valve stenosis in a rabbit model 
with hypertension. Jung, et al [34] suggested a 
hemodynamic computation using multiphase 
flow dynamics in a right coronary artery. Banks, 
et al [35] described the turbulence modeling in 
three-dimensional stenosed arterial bifurcations. 
Liu, et al [36] has examined the effect of the 
Reynolds number on the flow pattern in a 
stenotic right coronary artery. Matar, et al [37] 
studied the dynamics and stability of flow down 
a flexible incline. 
     While much work has been reported, the 
mathematical models for flow in stenotic 
collapsible tubes were primarily limited. But, 
most researches were focused on elastic tubes, 
in which stress, produces its characteristic strain 
instantaneously, and strain vanishes immediately 
upon the removal of the stress. In fact for realistic 
modeling channels have been considered porous as 
in human physiological tissues in the arteries suck 
the nutrients flowing within the blood. All the 
above studies are devoted in the wake of the new 
models for blood flow over the stenosis. Modeling 
of blood flow over the mild stenosis with medium 
degree of constriction through Herschel-Bulkley 
fluid model for blood flow with oscillating 
pressure gradient is considered in the present 
study. Further more we consider blood as non-
Newtonian fluid. The rest of the paper is organized 
in various sections as follows. In Section 2, we 
describe the basic model with assumed notations, 

which are used for mathematical formulation 
purpose. In Section 3, we explore the design 
parameters for numerical illustration. The variation 
of viscosity, shearing stress and velocity over the 
stenosis are also explained, descriptively as well as 
graphically. Finally, the conclusions are drawn in 
the Section 4. 
 
 
 

2. MODEL DESCRIPTION 
 
We consider axisymmetric steady flow in a mild 
stenotic tube. The flow is assumed to be laminar, 
non-Newtonian, viscous and incompressible. The 
shape of the tube is under zero pressure and the 
tube wall is assumed to have no axial motion, that 
is, no slipping takes place between the fluid and 
the wall. The pressure gradient is oscillatory in 
nature, which is compatible with a pumping heart 
motion. The complex nature of blood with various 
parameters is approximated here. The blood is in a 
uniform circular tube with an axisymmetric mild 
stenosis takes place whose boundary is specified 
by Krogh model, (Kapoor, et al [13]); 
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Where R0 is the radius of unobstructed tube and R 
is the radius of obstructed tube. L0 is the length of 
the stenosis and d is the location of the stenosis. 
The maximum height of stenotic growth is taken as 
δ. The schematic diagram is shown in Figure 1. 
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The momentum equation of motion is 
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Where ρ is the density, p is the pressure, and τ is 
the shearing stress tensor. 
     Herschel-Bulkley law to model the fluid 
behavior of blood flow, taking into account two 
characteristic features, which has emerged from 
the experimental data namely: 
 
• The presence of a yield stress, 
• The dependence of the viscosity with respect 

to the shear rate. (see. ref. Kapoor, et al [13]) 
Let τ0 be the yield stress, the coefficient of 
viscosity is μ and γ′ be the strain rate. 

 
Then constitutive equation in one dimensional 
form for Herschel-Bulkley pulsatile fluid with the 
shearing stress τ, is given by 
 

⎪⎭

⎪
⎬
⎫

<=

≥+=

[31]) alet  Tu, ref. (see.0ττ,0γ'
0ττ,0τ

n)μ(γ'τ
 

 (4) 
 
The governing equation of motion for steady 
incompressible blood flow with pressure gradient 
through the mild stenosis in an artery reduces to 
the following form: 
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P being a constant. Integrating Equation 5 with 
respect to r which is the radial co-ordinate, we 
have 
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From Equations 4 and 7, we have 
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For the Herschel-Bulkley fluid in circular tube, we 
have γ′ = 0 when τ ≤ τ0 and there is a core region 
which flows as a plug. 
     Let the radius of this plug region be rp. At the 
surface of this plug, the stress is τ0, so that 
considering the force on the plug, we get 
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The relevant conditions are 
 
v = 0, at r = R and R0 (13) 
 
Integrating (10) and using conditions (13), we get 
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The real part on right hand side contributes to the 
fluid velocity. 



IJE Transactions B: Applications Vol. 22, No. 1, April 2009 - 103 

Plug flow exists whenever the shear stress does not 
exceed yield stress. The velocity of the plug flow 
can be obtained by putting 
 
r = βR (16) 
 
Then we get 
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Flow rate Q is obtained as follows: 
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Apparent fluidity φα at maximum height of stenosis 
i.e. at Z = L0/2 is obtained as follows: 
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From Equation 16, we get the shear stress τω as 
follows: 
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3. NUMERICAL ILLUSTRATION 
 
In this section, we present the numerical results for 
velocity profiles, volume flow rate, apparent 
fluidity and walls' shear stress. All these profiles 
provide detailed description of flow field. In the 
presence of mild-stenosis the flow exhibits a 
resistance and increases the shear stress. These are 
the quantities of physiological relevance. The 

computation was programmed by MATLAB 6.5 
software and run on P-IV for default parameter 
values β = 1.29; r0 = 0.01; τω = 0.02; n = 2; r = 
0.15; rp = 0.003; P = 0.5; and δ = 0.2. These values 
have been chosen in consultation with medical 
practitioner having long clinical experience. 
     Figure 2 depicts the velocity profiles of fluid 
flow with respect to the radius of the obstructed 
tube for different value of μ. It is observed that the 
velocity of fluid decreases with increasing r in the 
presence of mild-stenosis. Also as we increase the 
values of μ, the velocity decreases. In Figure 3, we 
see the trend of flow rate in the plug region for 
different values of μ. It is observed that the 
velocity in plug region increases gradually at first 
and then it becomes rapid with the increase in r; by 
increasing the values of μ the flow rate decreases. 
For different values of μ, the pattern of the 
apparent fluidity in the direction of radius is shown 
in Figure 4. It is seen that the apparent fluidity 
slightly increases first with r and then attains 
almost constant value. The findings are quite close 
to the experimental results (Cuniberti, et al [33]) 
done on rabbit. 
 
 
 

4. CONCLUSION 
 
A mathematical model of blood flow through an 
irregular arterial mild-stenosis is developed. The 
numerical simulation shows that the shape of the 
velocity is strongly perturbed by the stenosis and 
disturbances are clearly evident. The flow of blood 
is sharper for narrowing constricted channel. It is 
realized that if the viscosity of fluid increases, the 
velocity of fluid decreases in the presence of 
stenosis, which is desirable in the physical 
situation. If we put n = 0 our results tally with 
those of Zohdi, et al [4]. The reported results 
provide a coherent explanation of the critical role 
of hemodynamic factors, which are in agreement 
with the previous mathematical studies and 
physical situation. Our investigation may be 
helpful to medical practitioners to understand the 
blood flow in human cardiovascular system when 
one or more blood vessels are affected by stenosis. 
Computational results show how blood flow 
through various parts of the cardiovascular system 
may be affected by stenosis in different blood 



104 - Vol. 22, No. 1, April 2009 IJE Transactions B: Applications 

0

0.001

0.002

0.003

0.004

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
Radius of obstructed tube (r)

ve
lo

ci
ty

 (v
)

μ=0.2 μ=0.4

μ=0.6 μ=0.8

 
 

Figure 2. Profile of velocity vs. radius of obstructed 
tube (r) for different values of μ. 
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Figure 3. Velocity profile of plug region vs. radius of obstructed 
tube (r) for different values of μ. 
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Figure 4. Variation of apparent fluidity αφ  vs. radius of obstructed 

tube (r) for different values of μ. 

vessels. The long-term application of our 
mathematical model is to provide the quantitative 
tool for gaining insights into the pathology of 
arterial diseases. 
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