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Abstract Because of the substantial difference in stiffness between matrix and nanotube in CNT
composite, the stress transfer between them controls their mechanical properties. This paper
investigates the said issue, analytically and numerically, in axial load using representative volume
element (RVE). The analytical model was established based on the modified Cox’s shear lag model
with the use of some simplified assumptions. Some, in the developed shear lag model, the CNT
assumes hollow fiber. Solving the governing differential equation, led the high shear stress in
interface especially in the CNT cap. In addition, some finite element models were performed with
different aspect ratios and the shear stress pattern especially in interface was calculated numerically.
Despite some simplified assumptions that were performed with these two models such as elastic
behavior and full connectivity, and the comparison of their results with other numerical models show
adequate agreement.
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1. INTRODUCTION “nanocomposite materials”. It has been theoretically

Carbon nanotubes have special mechanical
properties and they have been used as
reinforcements in matrices to form a so-called
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and experimentally confirmed that, carbon
nanotubes possess exceptional high stiffness and
strength. Their exceptional mechanical properties
as well as their high stiffness, low density and
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highly ductile deformation suggest that carbon
nanotubes may hold a promising characteristic as
reinforcement for nanocomposites [1]. The
improvements in stiffness and strength due to the
addition of carbon nanotubes in brittle and ductile
matrixes have been demonstrated by some
experimental and analytical results [2]. There has
been tremendous interest in the modeling and
simulations of the CNT composites in order
to characterize their mechanical properties for
potential engineering applications. There are many
researches dealing with the elastic properties of the
carbon nanotube through various means, in elastic
and inelastic behavior [3]. To understand the
properties of nanotube reinforced composites,
a fundamental challenge exists in the
characterization and modeling of these materials at
the nanoscale. Both molecular dynamics and
continuum mechanics and their combinations have
been attempted for this purpose. Among the
available literature, Lordi, et al [4] used force-
field-based molecular mechanics to model the
interactions between nanotubes and several
different kinds of polymers. Wise, et al [5] used
molecular dynamics simulation to address the local
changes in the interface of a single-walled
nanotube surrounded by polyethylene molecules.
These approaches typically involve extensive
computations and tend to be configuration specific.

The MD approach is necessary in the study of
nanocomposites, especially for investigating local
interactions of CNTs with matrix materials.
However, MD simulations at present are limited to
small length and time scales due to the limitations
of the current computing power [6]. Continuum
mechanic approaches can fill this gap and results
from such approaches have been shown to be close
to those of the atomistic based simulations.
Although efficient in computing and able to handle
models at larger length scales, simulation results
are obtained, using the continuum mechanics
approach which should be interpreted correctly.
Attention should be given to the overall
deformations or load transfer mechanisms rather
than local properties. There are some recent efforts
to develop the continuum theories to modeling
nanoscale composites [9-14]. Pipes, et al [9]
characterized the mechanical properties of
CNT composites using a continuum mechanics
approach. Applying the traditional textile-
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mechanics approach and anisotropic elasticity
theory, they studied the behavior of CNT
composite stress distributions and effective elastic
properties were evaluated using continuum
mechanics approach.

Liu, et al [12-14] applied the finite element and
boundary element methods (FEM/BEM) for
the study of CNT composite models, where
representative volume element (RVE) were
modeled as thin elastic layer in the shape of
a capsule (for short CNT). Effective elastic
properties of the CNT composites are evaluated
and compared with the rules of mixtures. The
detailed FEM models in [13,14] reveal that the
“‘stress’’ gradient cross the interface of the CNT
and matrix is very high. All the above mentioned
investigations have focused on RVE (representative
volume element) as a typical representative of CNT
composite.

The analysis of the RVE model is the first step
in analyzing the macro scale short fiber composites
including CNT composite [12-14]. In Figure 1, the
real situation of CNT in matrix is schematically
shown.

The aim of this paper is to develop such a
shear-lag model using a representative volume
element (RVE) of a concentric composite cylinder
embedded with a capped carbon nanotube.
Therefore, in order to find the stress transfer
between matrices in this paper, the modified Cox's
shear lag model is developed upon the assumption
of hollow cylinder instead of the solid fiber
assumption in previous works and stress transfer
between matrix and nanotube is evaluated.
Then a Finite Element Method (FEM) model
was performed to analyze the stress transfer in
the RVE model in axial loads. Results of these
computational models were compared with other
experimental and computational results.

2. ANALYTICAL MODEL

Regarding the complex geometry of RVE model of
CNT composites, it is difficult to establish and
solve the governing differential equations of
continuum mechanics in a closed form. This is
why shear lag models have been extensively used
to analyze the stress transfer problem in short
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fiber composites, like CNT composites. The
computational efficiency of the shear lag models
stems in part from simplifying the assumption of
one-dimensional displacement and stress fields.
The Cox model is the most used shear lag model
for a solid fiber embedded in matrix, subjected to
uniform load/displacement in the fiber direction
[15-17]. Based on Cox's model, we have
established an RVE model which is used in the
following analytical part as shown in Figure 2.

Some simplified assumptions performed in this
model are as follows:

o Both SWCNT and matrix are considered
linear-elastic.

o The nanotube is assumed as a hollow thin
cylinder with specified thickness

. The load acts only axially at the side of the
RVE model.

. The nanotube-matrix bonds are perfect with
full connectivity. A cylindrical coordinate (r,
0 and z) is defined, with the z axis
representing the SWCNT axial direction.

The governing equations for the axisymmetric
problem, in a displacement formulation and in
terms of the polar coordinates, include the
equilibrium equations (in the absence of body
forces) [18]:

acsrr n arrz n St~ %00 -0
6r 62 r (1)
o T
1z "7z 1z _
or 0z r

Which o, 6¢, 6,, and 1., are respectively the axial
and shear stress components. Upon integration of
the equilibrium equation with respect to r from r; to
ro, (Which r; is internal radius and r, is external
radius of nanotube) the equilibrium of forces for
nanotube in Z direction could be written as
Equation 2:
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Using these equations and considering the
definition of average axial stress in matrix, the
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CNT Matrix RVE Model

Figure 1. The schematic random dispersion of CNT (Left) and
virtual RVE (Right) in CNT composites.
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Figure 2. The parameter used in RVE analysis.

interfacial shear stress r?z(z) will be found as:

—n
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The integration of Equation 1 with respect to r
from r, to R using boundary condition yields:

do 2r
672(2) _ 0 5 Ti(Z) (4)

=T
0

dz R2

In Equation 4, 52}(2) is the average axial stress in

the matrix. Substitution of Equation 4 with
Equation 1 and integration concludes as:

t R?2
m (6]
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Vol. 21, No. 3, October 2008 - 229



In this equation, t; is the interfacial stress. If w is
assumed as the displacement in z direction and u
assumed as the displacement in r direction; upon

assumption of

0z

<<

=1 the shear strain (and
T

displacement) can be related to shear stress simply as:

m_ dw E dw

UM g (1) dr

a
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(6)
n dw | E dw

G =
Iz o dr 2(I+v,) dr

Using Equation 5 and the integration of Equation 6
with respect to r from r, to R, and using the RVE
boundary condition, it can be concluded that:
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1 m 2 2 2 R r
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Using t; as interfacial shear stress 1, as the shear
stress in matrix and using Equation 7 and upon
integration with respect to r from r, to r, the
displacement of matrix can be found as:

2. R 1 2
R“In(—)—-— -
n(ro) S 1)
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For simplicity, it is assumed that the “c,, + cgg <<
o,, . Therefore, the stress can easily be concluded as:
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7z n gy ©)
m aWm
c_=E

77 m oz

With differential, this equation and number 8 with
regards 'z' and multiplying it to elastic modulus
will conclude in:
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Using the equilibrium between applied stress and
the stress in the nanotube and matrix, it can be
concluded that:

(SOR2 :(rg —riz)csn +csm(R2 —rg) (11)

With substitution, the stress of matrix from

Equations 2, 10 and 11
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Using this equation and considering the boundary
condition, after some calculation the governing
differential equation was found. When solving the
governing equation in two different areas (the area
with nanotube and area without nanotube in two
caps) the shear stress in interface is calculated as:

E t
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Results of this model are compared with other
results in the following parts.

3. FINITE ELEMENT MODEL RESULTS
AND DISCUSSION

The Finite element method (FEM) is a numerical
approach which can be used to analyze the
complex geometry of continuum mechanic
problems, when the exact solution of a complicated
differential equation is difficult, if at all possible
[12-14]. This method could solve these problems
within acceptable precision and it is used in this
paper to compare with the results of the analytical
model as well as other results. It is clear that the
results of FEM should be interpreted precisely,
considering the overall results rather than the
locals. Therefore, some finite element models were
established using “Ansys” FEM software. These
3D models were built with a couple of geometries
and aspect ratios.

In FEM models, two different types of elements
were used; the matrix is modeled using 20-nodded
3D solid element and the nanotube is modeled
using 8 nodded shell elements. Both these element

types have mid-nodes for more efficient modeling
of curvature volumes and surfaces which is our
case. Like the analytical model, full connectivity
between the nanotube and matrix is assumed. The
mechanical properties for these materials are listed
in Table 1.

The schematic loading, elements and boundary
condition of these models are shown in Figure 3.

The results of Fem models including the stresses
and displacements are shown in Figure 4 to 6. The
axial stress in the nanotube because of unit load on
the RVE model is presented in Figure 4. According
to this figure, the stress in the middle of the nanotube
is more than 10 times the applied stress because of its
high relative stiffness. In this figure, the axial stress
variation in the two edges of the nanotube is more
than that of the middle and the stress intensity is
quite high around the nanotube's cap.

The axial stress in the matrix is shown in
Figure 5 and presents high stress intensity around
the nanotube cap for which variation seems
considerable.

The shear stress in the interface is presented in
Figure 6 which shows significant variation in
interface in the CNT caps. This shear stress
intensity could be more than 2 times the applied
stress on the RVE model.

TABLE 1. Mechanical Properties of FEM Model.

E (Gpa) Poison Ratio Thickness (nm) Radius (nm) Length (nm)
Matrix 3.75 0.30 - 5 100
SWCNT 5000 0.30 0.006 2 60

Figure 3. Schematic loading, elements and boundary condition of 3D FEM model.
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2.961

28.997

Figure 4. The axial stress in the nanotube due to axial unit tension pressure on RVE.
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Figure 5. The normalized axial load in matrix due to the unit tension load on RVE.

4. COMPARISON OF RESULTS

In this part, the results of the finite element and
analytical model are compared with other FEM
models which are presented in reference [11]. For
better comparison, the normalized lengths of
nanotube and normalized stress level are used.
Where the normalized stress is the interfacial stress
divided by the maximum interfacial stress. This
comparison is depicted in Figure 7, for two aspect
ratios. The aspect ratio is defined as the result of
CNT’s length to its assumed diameter and in this
calculation, the diameter is assumed constant
(radius of nanotube is assumed 2 nm) and its
length is assumed variable.

According to this figure, the general variation
of stress is almost similar and some small
differences between the analytical model, FEM
model and the reference can be distinguished. Also
according to this figure, it can be concluded that in
the smaller aspect ratio, the length of nanotube is
not enough to achieve the anchorage length in the
matrix. For a better comparison, the interface shear
stress for aspect ratios 50 and 100 are compared in
Figure 8. This figure shows high interface shear
stress intensity at both ends. Likewise, it is shown
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that increasing the aspect ratio and length of the
nanotube (or increasing the length of nanotube)
will cause more stress intensity in the nanotube.
But when more anchorage length is achieved, the
efficiency of the nanotube increases.

5. CONCLUSION

In this paper, the stress transfer between SWCNT
and matrix in CNT composites were considered
analytically and numerically using representative
element models (RVE). At first, the essentiality of
using continuum mechanics was discussed and
then one analytical shear lag model was developed
using the modified Cox’s shear lag model. The
result of the analytical model parametrically shows
the high stress intensity at both ends of the
nanotube in axial loads, which increases when the
aspect ratio increases. Moreover, the most axial
force in the CNT was found to be in the middle
because of the accumulation of the shear interface
stress. Because of the limitation of the analytical
model which comes from its basic simplified
assumptions, one 3D FEM model was performed
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Figure 6.
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Figure 7. The normalized stress in nanotube with two different aspect ratios
in results of FEM, analytical model and reference [19].
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Figure 8. Compression of the shear interface in interface with two aspect ratios
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in results of FEM, analytical model and reference [19].
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in order to better understand the stress transfer
phenomena especially in boundaries. The results of
the FEM models confirmed the results of the
analytical models. These results were compared
with other theoretical results and almost
confirmed. Based on the mentioned results, the
axial force in the nanotube which is a result of the
summation of shear stress in the interface makes a
relatively high axial stress. High stress in the
nanotube, weak confinement and its curvature are
the main reasons for their buckling.
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