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Abstract   In this paper a new macroscopic k-ε model is developed and validated for turbulent flow 
through porous media for a wide range of porosities. The morphology of porous media is simulated 

by a periodic array of square cylinders. In the first step, calculations based on microscopic f2v −  
model are conducted using a Galerkin/Least-Squares finite element formulation, employing equal 
order bilinear velocity-pressure elements. Calculations are validated by comparing the results to 
available data in the literature. In the second step, the volume averaged properties are extracted from 

the microscopic solution of f2v −  model. Then, employing the volume average technique, the 
macroscopic transport equations of continuity, momentum and k-ε model are derived and modeled. In 
the third step and during the volume averaging process, additional terms appeared in the k-ε model 
are interpreted and compared with the volume averaged properties that are extracted from the solution 

of microscopic f2v −  model. Finally a “ f2v −  based” macroscopic k-ε model is developed and 
validated successfully for a wide range of porosities by comparing the macroscopic data to those 

predicted by microscopic f2v −  model. Moreover, the results of the calculations are compared with 
the result of an experimental work in the literature in order to validate the accuracy of the model. 
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ي متخلخل  براي شبيه سازي جريان در محيط هاk-εدر اين مقاله، يك مدل جديد ماكروسكوپيك چكيده       
هندسه و آرايش ذرات .  محدودة وسيعي از ضرايب تخلخل توسعه داده شده و معتبر سازي شده استبراي

يابد، مدل گرديده  محيط متخلخل توسط يك رديف استوانه با مقطع مربعي كه بصورت تناوبي گسترش مي
f2vدر گام اول، محاسبات با استفاده از مدل . است ) گالركين حداقل مربعات(وش عددي اجزاء محدود  و ر−

هاي هم مرتبه براي فشار و سرعت از ديدگاه ميكروسكوپي انجام شد و نتايج با جواب هاي  با بكارگيري المان
درگام دوم مقادير متوسط حجمي از نتايج حل ميكروسكوپيك . ساير مطالعات مقايسه و معتبر سازي گرديد

 در k-ε از تكنيك متوسط گيري حجمي معادلات پيوستگي، ممنتوم و معادلات مدلو با استفاده  محاسبه شد
درگام سوم، جملات اضافي ناشي از متوسط گيري . سازي شدند حالت ماكروسكوپيك استخراج و سپس مدل

f2v حجمي توسط نتايج حاصل از مدل عتبر  مدل سازي و سپس در محدودة وسيعي از ضرايب تخلخل م−
هاي تجربي موجود انجام شد و اعتبار قابل قبول مدل  همچنين شبيه سازي يك مسئله با جواب. سازي شدند

 .حاضر تائيد گرديد
 
 

1. INTRODUCTION 
 
Existence of turbulent flow or turbulence, in 
general, in porous media with considerable 
permeability are reported by many experimentalists. 
Based on the flow visualization techniques, 

turbulent flow through porous media occurs at 
Rep > 300 [1]. Simulating flow through 
compact heat exchangers, composite break-
waters or seawalls, casting of binary alloys with 
electromagnetic stirring and flow through the core 
of nuclear power plant, designing fluidized bed 
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combustors, and petroleum extraction are a few 
recent applications of turbulent flow through 
porous media [2-7]. 
     A zero equation macroscopic turbulence model 
was derived by Masuoka, et al [8] and a one 
equation macroscopic turbulence model was 
proposed by Alvarez, et al [9] for flow through 
porous media. Antohe, et al [10] applied the time 
averaging operator to the generalized model (known 
as the Brinkman-Forchheimer-Extended Darcy 
model) and derived a two equation for macroscopic 
turbulence model. This work was extended by 
Getachew, et al [11] in order to take into account the 
Forchheimer term into a higher order. 
     Following another approach, Kuwahara, et al 
[12], Nakayama, et al [13], and Pedras, et al [14] 
conducted numerical experiments for turbulent 
flows through porous media by mimicking the 
porous media with using a periodic array 
of cylinders. They used the conventional 
‘microscopic’ two-equation turbulence model 
based on RANS equations and derived a two 
equation macroscopic turbulence model by 
volume averaging technique in different ways. 
For more information on ‘macroscopic’ 
turbulence modeling see the recent book of de 
Lemos [15]. Kuwahara, et al [16] performed 
Large-eddy Simulation (LES) as a ‘microscopic’ 
point of view and compared k-ε models' data of 
[13] with the results of LES. Chandesris, et al [7] 
derived a macroscopic k-ε model adapted to 
longitudinal flows in channels, pipes and rod 
bundles which is suited for flow through the core 
of nuclear power. 
     Deriving the macroscopic transport equations for 
incompressible flow in porous media is based 
mathematically upon the volume-average 
methodology. Applying the volume average 
operator over the standard fluid transport equations 
in a representative elementary volume, REV, (see 
Section 3) will produce additional terms. Proposing 
a closure model for these additional terms in the 
volume averaged governing equations is the main 
difficulty of macroscopic turbulence modeling. In 
order to conserve as much information of the 
microscopic flow field, the size of REV should be 
sufficiently small as possible in the volume-
averaged flow field. Macroscopic variables are 
defined as a suitable mean over an adequately large 
representative elementary volume. 

During the last few years, the f2v −  (DNS based) 
turbulence model, originally introduced by Durbin, 
et al [17-19], has become increasingly popular due 
to its ability to correctly account for near-wall 
damping without the use of ad-hoc damping 
functions. Wall effects through porous media and 
strong blockage of the flow in stagnation and 
impingement region of pores are very crucial; 

therefore it seems that f2v −  model is a good 
candidate. 
     In this work, by applying the volume averaging 
technique, a macroscopic k-ε turbulence model has 
been derived. The additional terms that appear in 
the volume averaged process of k-ε model are 
interpreted and compared with the volume 
averaged properties that is extracted from the 

solution of microscopic f2v −  model. Finally 

a “ f2v −  based” macroscopic k-ε model is 
developed. The governing equations are discretized 
using GLS (Galerkin/Least-Squares) finite element 
method employing equal order bilinear 
interpolation for velocity and pressure and other 
variables in conjunction with a pressure stabilizing 
method. This technique circumvents the stability 
condition and equal order velocity pressure 
elements can be employed. 
 
 
 
2. MICRSCOPIC GOVERNING EQUATIONS 

AND f2v −  MODEL 
 
For incompressible flow, the mean flow variables 
satisfy the following Reynolds Averaged Navier-
Stokes equations (RANS): 
 

0U =⋅∇  (1) 
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The turbulent viscosity tν  is obtained by the 

f2v −  model. This model is valid up to the wall 
and circumvents the use of wall functions (see 
below). The eddy viscosity tν  is given by: 
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T2vμCtν =  (3) 

 

The f2v −  model of Durbin [17-19] and Behnia, 
et al [20] comprises of solving two extra equations, 

the wall-normal stress 2v  transport equation and 
an elliptic relaxation function f equation with 
respect to the standard k and ε model. The stress-
strain relationship is Boussinesq approximation 
and given as: 
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Lien, et al [21] generated a new variable for elliptic 
relaxation function (compensated f

~ ). This 
modification allows a simple explicit boundary 
condition at walls for elliptic relaxation and can be 
summarized by the following transport equations 
[21]: 
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kP  is the production of turbulent kinetic energy 
and is defined as: 
 

jxiUjuiukP ∂∂=  (9) 

 
In Equations 6-8, T and L are time and length scale 
respectively and are given as [21]: 
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The coefficients of the modified model are as 
follows [21]: 
 

0.22μC = , 0.23LC = , 85ηC = , .6TC = , 4.01C = , 

3.02C = , 9.12εC = , .1kσ = , 3.1εσ = , 
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Mean strain rate tensor ijS  is given as: 
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In Equations 10 and 11, S is the strain-rate 
magnitude and is defined as: 
 

ijSijSS =  (14) 

 
The no-slip boundary conditions for turbulent 
variables ( 0y → ) are approximated as: 
 

0wk = , 2y

kν2
0y

limwε →
= , 02

wv = , 0wf =   (15) 

 
Variable y denotes the normal distance to the wall. 

     It is known that the f2v −  model has a poor 
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Figure 1. R. E. V, the representative elementary ume. 

numerical stability. Sveningsson, et al [22] and 
Davidson, et al [23] proposed a simple restriction 
for improving the numerical stability. In this work, 
these restrictions are imposed. 
 
 
 

3. THE VOLUME AVERAGE TECHNIQUE 
 
The volumetric volume average of any scalar, 
spatially vector or second order tensor associated 
with the fluid-phase (B) over V is defined as 
follows: 
 

∫=
V

BdV
V
1vB  (16) 

 
Where the elementary volume is shown in Figure 1, 
and the intrinsic volume average is defined as: 
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V
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The porosity of the porous medium is defined as: 
 

V
fV

φ =  (18) 

 
fV  is the volume occupied with fluid and V is the 

total volume. 
     The volumetric and intrinsic averaged are 
related to porosity φ as follows: 
 

vBφfB =  (19) 
 
Relationships between the volume averaged of 
derivatives and the derivatives of the volume 
averaged properties are needed in the averaging 
process of transport governing equations. These 
relationships are derived in a number of works, 
(for more detail see Whitaker [24], Gray, et al 
[25]) and the total process is known as the theorem 
of local volumetric average [10]. The relationships 
are written as [10]: 
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where wA  and u are the interfacial area and 
velocity of fluid-phase, n is the unit vector normal 
to wA . The area wA  is not the area surrounding 
the volume ∆V in Figure 1. 
     Double prime is defined as deviation of the 
quantity B from the intrinsic volume average in 
this work: 
 

BfBB ′′+=  (23) 
 
The macroscopic continuity and momentum 
equations through porous media can be obtained 
by volume averaging the corresponding 
microscopic equations over a REV, such as fVΔ  
(Figure 1). Following [13] the macroscopic 
continuity and macroscopic momentum equation 
are written as follows: 
 

0fU =⋅∇  (24) 
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These equations are derived by applying the 
volume averaging technique to Equations 1 and 2 
(see [13] for details). The additional integrals 
which appear in the process of averaging the 
momentum equation are modeled with well known 
Darcy and Forchheimer terms (see [13,14] for 
details), where permeability K and Forchheimer 
constant F are approximated by Equations 26 and 
27, respectively, (see [26] for details). 
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For deriving the macroscopic k-ε model we have to 
apply the volume average operator over k and ε 
transport equations of “clear flow” (microscopic or 
non-averaged) which is illustrated in the sequel. 
 
 
 

4. TRANSPORT EQUATIONS FOR 
fk  AND fε  

 
Standard k and ε transport equations are employed 
to derive the macroscopic k-ε model: 
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The turbulent viscosity and model constants are 
given as [27]: 
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 (31) 
 
Macroscopic turbulent viscosity is defined by 
macroscopic values fk , fε , therefore it is 
assumed constant in the REV ( fV ). Applying the 
volume average operator over Equation 4 leads to 
macroscopic eddy viscosity relationship: 
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Using (21), 
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ijS  can be expanded as follows: 
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Noting that at the interface area wA , 0iU = , 
therefore the integral term in (33) is neglected: 
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Hence the macroscopic Reynolds stress is derived 
as: 
 

ijδfk
3
2f

jU
ix

f
iU

jxtν

f
juiu

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=−

 (35) 

 
Implementing the intrinsic volume average 
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operator over the Equation 28 for each term and 
using relations (20) to (22) leads to: 
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At interface wA  we have 0kuU === , thus the 
integral terms in Equations 36 and 37 are vanished. 
On the right-hand side of Equation 37 the first term 
can be expanded as:  
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Following the arguments of [14], the first term on 
the right-hand side of Equation 38 is the 
convection of fk  related to the macroscopic 
velocity. Convective transport caused by spatial 
deviation of both k and iU  is presented by the 
second term. 
     Applying the volume average operator over the 
diffusion term of Equation 28 leads to: 
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Following [14], we can expand k∇⋅∇  as bellow: 
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By using Equation 40, Equation 39 can be 
rewritten as: 
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Therefore the integral terms in the right-hand side 
of Equation 41 are disappeared because at interface 

wA , k and iu  are vanished. 
     Production term of transport equation of k can 
be averaged as below: 
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f
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All of remainders of averaging process of 
production term is denoted as k

ProductR . Volume 

averaged of last term is fε  obviously. 
     After the averaging process, transport equation 
of fk  becomes: 
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Note that, all spatial and time derivatives in steady 
state fully developed flow through homogenous 
porous media become negligible, therefore fε  
becomes equal to sum of the last three terms. 
Hence following [13], additional appeared terms in 
Equation 43 can be modeled as follows: 
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The asymptotic value of macroscopic dissipation 
rate of turbulent kinetic energy in homogenous 
porous media under steady state fully developed 
flow is ε∞ and should disappear on the limiting 
case of clear fluid flow (φ→1). Also, note that the 
integral term of (44) due to the no-slip boundary 
condition on fluctuating velocities is always 
negative, therefore the transport equation of fk  
becomes: 
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In a similar manner, transport equation for fε  is 
achieved by applying the volume average operator 
over the Equation 29, therefore by neglecting the 
zero remainder integrals we get: 
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 (46) 
 
Following [13] the additional terms of Equation 46 
are modeled as: 
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k∞ is the asymptotic value of macroscopic 
turbulent kinetic energy in homogenous porous 
media under steady state fully developed flow and 
should vanish on the limiting case of a clear fluid 
flow (φ→1), therefore transport equation of 
macroscopic dissipation rate of turbulent kinetic 
energy fε  is derived as: 
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 (48) 
 
Functional form of k∞, ε∞ will be evaluated by 

solution of f2v −  model for the case of the flow 
through a simulated porous media and will be 
represented in the sequel. 
 
 
 

5. MICROSCOPIC fv2 −  MODEL 
CALCULATION AND  

VALIDATION 
 
Figure 2 depicts a periodic array of square 
cylinders as a simulated porous media. Only one 
structural unit shown in Figure 3 is considered for 
microscopic calculations, according to the 
periodicity of geometry. The results of these 
calculations evaluate the macroscopic k-ε model 
constants (k∞ and ε∞ see Section 4). 
     The Reynolds number is based on the particle 
diameter D ( νDDuDRe = ) and fUφDu =  is 
Darcian velocity. The porosity of the domain is 
obtained by ( )2HD1φ −= . Distance between two 
particles is denoted by H. 
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10H

 
Figure 2. Periodic array of square cylinders. 
 
 
 

 
Figure 3. Structural unit chosen for the computational 
domain. 

Boundary conditions for velocity associated to 
periodicity are as follows: 
 
( ) ( )y,H2xUy.,0xU ===  (49) 

 
( ) ( )Hy,xU.0y,xU ===  (50) 

 
Periodic boundary for pressure is considered 
according to Kelkar, et al [28]. 
     The periodic boundary conditions for turbulent 
kinetic energy and its dissipation are as follows: 
 
( ) ( ) ( ) ( )Hy,xk.0y,xk,y,H2xky.,0xk ======  

 (51) 
 
( ) ( ) ( ) ( )Hy,xε.0y,xε,y,H2xεy.,0xε ======  

 (52) 
 

Reynolds stress 2v  and compensated elliptic 

relaxation f
~  boundary conditions related to 

periodic geometry can be written as: 
 

( ) ( )

( ) ( )Hy,x2v.0y,x2v

,y,H2x2vy.,0x2v

===

===  (53) 

 
( ) ( )
( ) ( )Hy,xf

~
.0y,xf

~
,y,H2xf

~
y.,0xf

~

===

===
 (54) 

 
Employing Equation 15 no slip boundary 
conditions are imposed. 
     The governing equations are discretized using 
GLS (Galerkin/Least-Squares) finite element 
method employing equal order bilinear 
interpolation for velocity and pressure and other 
variables in conjunction with a pressure stabilizing 
method (see [29,30] for more details). 
     Equations 1, 2, 5, 6, 7, 8 are numerically solved 
inside the domain of Figure 3. The Reynolds 
number ReD is varied from 1000 to 84000. 
Porosities in present calculations are selected out 
as: φ = 0.3, 0.4, 0.5, 0.64, 0.75, 0.84 and 0.95, 
respectively, the value of D is varied as 0.83667, 
0.7746, 0.7072, 0.6, 0.5, 0.4 and 0.2236 and H is 
set equal to unity. 
     For validating the mesh-independency, the 
flow through the porosity of 0.84 has been solved 
at ReD = 3873, 7746, 38730 and 77460 employing 
7508, 11948 and 17928 elements. The microscopic 
turbulent kinetic energy normalized by the square 
of Darcian velocity 2

Duk  of three mesh systems 
for ReD = 77460 at x/H = 1 are shown in Figure 4. 
The near wall mesh stretching in these three 
solutions is similar. There is a good agreement 
between the solution data of 11948 and 17928 
elements, hence mesh systems of order of 12000 
seems to be sufficiently accurate and all 
calculations presented below are obtained for this 
mesh system. Figure 5 depicts the 11948 elements 
used for φ = 0.84. 
     Regarding the numerical convergence, the 
normalized residuals for all variables were brought 
down to 10-5. For the Reynolds numbers lower than 
5 × 104 the under relaxation coefficient of U and p 

are 0.8, k and ε are 0.6 and 2v  and f
~  are 0.5. For 

Reynolds numbers equal or greater than 5 × 104 the 
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Figure 4. Normalized microscopic turbulent kinetic energy at 

ReD = 40000, x/H = 1. 
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Figure 5. Mesh system of 11948 elements used for φ = 0.84. 
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Figure 6. Streamlines, Porosity = 0.84, ReD = 40000. 
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Figure 7. Pressure contours, Porosity = 0.84, ReD = 40000. 
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Figure 8. Normalized turbulent kinetic energy contours, 
Porosity = 0.84, ReD = 40000. 

under relaxation coefficient of U and P are 0.7, k 

and ε are 0.4 and 2v  and f
~  are 0.3, respectively. 

     Flow streamlines for ReD = 40000  and porosity 
of 0.84 and pressure contours of this solution are 
shown in Figures 6 and 7, respectively. Turbulent 
kinetic energy contours of ReD = 40000 and 
porosity of 0.84 are depicted in Figure 8. 
     In the macroscopic turbulence modeling 
(Equations 42,45), the dependency of intrinsic 
volume average turbulence characteristics related 
to porosity are needed. References [13,16] 
observed that the normalized macroscopic 

turbulent characteristics remain almost constant at 
large Reynolds numbers at steady state condition. 
In the present work this dependency is verified. 
For example the macroscopic turbulent kinetic 
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Figure 9. Normalized macroscopic turbulent kinetic energy 
versus reynolds number, Porosity = 0.64. 
 
 
 

 
Figure 10. Normalized macroscopic dissipation rate of 
turbulent kinetic energy versus reynolds number, Porosity =
0.64. 

energy and its dissipation rate versus Reynolds 
number for porosity of 0.64 are depicted in 
Figures 9 and 10. We can conclude from these 
figures that the remainders (modeled) terms 
depend only on porosity. 
     The turbulent kinetic energy field is converted 
into macroscopic turbulent kinetic energy using 
Equation 17 for all selected porosities. Figure 11 
depicts the normalized macroscopic turbulent 
kinetic energies of all selected porosities versus 

5.0φ)φ1( − . These data are extracted form the 

microscopic solution of f2v −  model. The results 
of present study are compared with the result of 
LES [16] and low Reynolds k-ε solution of [13]. 

The rate of f2v −  model data is smaller than the 
LES and low Reynolds k-ε model data. At lower 
porosities the normalized macroscopic turbulent 

kinetic energy of [16,13] is larger than the f2v −  
predictions. It is known, that the turbulent kinetic 
energy predicted by k-ε model is overestimated in 
the stagnation or impingement region. The 

difference between k-ε and f2v − model data at 
lower porosities may be attributed to this reason. 

The discrepancy between f2v −  and LES data can 
also be attributed to the use of renormalized group 
(RNG) subgrid scale model in LES [16] leading to 
overestimation turbulent kinetic energy near 
stagnation or impingement regions. 
     Macroscopic turbulent kinetic energies for all 

selected porosities calculated with f2v −  model 
represent the following correlation: 
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The normalized macroscopic dissipation rates of 
turbulent kinetic energy for selected porosities in 
present study are shown in the Figure 12. The 
present data are compared with the data of 
Nakayama and Kuwahara [13]. Good agreement is 
observed. The normalized macroscopic dissipation 
rates of turbulent kinetic energy data 3

DuHfε  

versus 5.0φ)φ1( −  of Figure 12 represent the 
following correlation: 
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 (56) 
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Figure 11. Normalized turbulent kinetic energy versus 5.0φ

φ1−
.

 
 
 

 

Figure 12. Dissipation of turbulent kinetic energy versus 

5.0φ

φ1−
. 

These correlations are employed in modeling the 
remainder terms of macroscopic k-ε model (see 
Equations 45,48). 
     The popular and well-known equation for 
estimating the pressure drop through porous media 
is Forchheimer equation. Ergun's empirical equation 

accounting for the Forchheimer drag in packed beds 
of particle diameter D is given as [16]: 
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The first term on the right hand side of Equation 57 
could be ignored at high Reynolds number, 
Following Kuwahara, et al [16], therefore Ergun's 
equation can be rewritten as follows: 
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Figure 13 depicts the dimensionless pressure 

gradient ⎥⎦
⎤

⎢⎣
⎡− 2

DuρDdxfpd  for selected 

porosities of this work. Pressure drags predicated 

by LES [16] are compared with results of f2v −  
in Figure 13. The line drawn in Figure 13 
represents the Ergun's equation. Pressure gradient 
results of present study are in good agreement with 
Ergun's equation. 
 
 
 

6. VALIDATING THE “ fv2 −  BASED” 
MACROSCOPIC k-ε TURBULENCE 

MODEL 
 

In order to evaluate the macroscopic “ f2v −  
based” k-ε model, we solve a steady unidirectional 
highly turbulent flow entering into a semi-finite 
periodic array of square rods, with macroscopic 
points of view. The case study of this section is 
five times longer than the case study in Section 5. 
The inlet conditions are uniform and developed 
outflow boundary conditions are considered. 
     From the microscopic point of view, we solve a 
steady unidirectional highly turbulent flow 
entering into a semi-finite periodic array of square 

rods (Figure 2), with employing f2v −  model. 
Microscopic governing Equations 1, 2, 5, 6, 7 and 
8 are solved over five cells solution (dotted area in 
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Figure 13. Dimensionless macroscopic pressure gradient 

versus 3φ

φ1−
. 
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Figure 14. Large scale microscopic solution streamlines, 
ReD = 7.07 × 104. 
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Figure 15. Large scale microscopic solution, turbulent kinetic 
energy contours, ReD = 7.07 × 104. 

Figure 2). Periodic boundary conditions are 
imposed only to upper and lower boundaries. The 
Reynolds number is ReD = 7.07 × 104 and porosity 
φ = 0.75. Inlet values for velocity profile are fixed 
equal to unity and inlet pressure is considered as a 
finite value. The inlet values for turbulent kinetic 
energy and its dissipation are assumed as: 
 

.10

0x
2
Du
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=

=

 (59) 

 

.30
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Du
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=

=

 (60) 

 
These boundary conditions are in accordance with 
the inlet boundary conditions of [13]. The normal 

Reynolds stress 2v  inlet boundary condition is as 
follow: 
 

667.6

0x
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Du
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3
2

0x

2
Du

f
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=

=

×=

=

 (61) 

 
Compensated elliptic relaxation inlet boundary 
condition is as follow: 
 

.10

0x
Du

H
f

f
~

=

=

 (62) 

 
The inlet boundary condition for compensated 
elliptic relaxation is computed from Equation 16 

using inlet values of fk , fε  and 
f

2v . At the 

outlet, fully developed conditions are imposed for 
all variables. 
     Figure 14 shows flow streamlines of large scale 

solution of microscopic f2v −  model at ReD = 
7.07 × 104 for porosity φ = 0.75. Turbulent kinetic 
energy contours of this solution are depicted in 
Figure 15. 

After obtaining the flow solution with employing 

the f2v −  model, microscopic results of 
turbulence quantities are integrated over the 
domain in order to study the developments of 
macroscopic turbulent kinetic energy and its 
dissipation rate. The agreement between the one-
cell solution data and fifth cell of large scale 
solution indicates that the flow is fully developed 
in the five cells long domain (see Figure 16). 
     In the modeling context, we solve the 
macroscopic continuity and momentum Equations 
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Figure 16. Development of turbulence kinetic energy through 
porous media for porosity = 0.75, ReD = 7.07 × 104. 
 
 
 

 
Figure 17. Development of dissipation rate of turbulence 
kinetic energy through porous media for porosity = 0.75, 
ReD = 7.07 × 104. 

24, 25 with employing the “ f2v −  based” 
macroscopic k-ε model Equations 45, 48 in 
conjunction with macroscopic correlations 
Equations 55 and 56, over the dotted area of Figure 
2, consistent with a macroscopic point of view. 

     For validating the accuracy of “ f2v −  based” 
macroscopic k-ε model, data of this macroscopic 
solution are compared with the averaged solution 

data of microscopic solution of f2v −  model. 
Figure 16 depicts macroscopic turbulent kinetic 

energy’s field predicted by microscopic f2v −  

model and “ f2v −  based” macroscopic k-ε model. 
Figure 16 indicates that macroscopic turbulent 
kinetic energies of all solutions of present work are 
in a good agreement which low Reynolds k-ε data 
of [13]. As we expected, the value of turbulent 

kinetic energy computed from “ f2v −  based” k-ε 

model and f2v −  model are lower than k-ε model 
of [13]. 
     Figure 17 shows the macroscopic field of 
dissipation rate of turbulent kinetic energy 

obtained from calculation of microscopic f2v −  

model and “ f2v −  based” macroscopic k-ε model. 
These results are also compared with the solution 
of low Reynolds number k-ε model of [13]. Good 
matching is observed between macroscopic data 

of “ f2v −  based” model, macroscopic values 

averaged from the microscopic f2v −  model and 
macroscopic data of [13]. 

     For a more rigorous validation of the “ f2v −  
based” macroscopic k-ε model, the macroscopic 
model is solved for porosities 0.3, 0.4, 0.5, 0.64, 
0.75, 0.84 and 0.95. Note that for the case of fully 
developed steady state flow, the values predicated 

by “ f2v −  based” macroscopic k-ε model have to 
be consistent with correlations given by Equations 
55 and 56 for the same porosity. The predicted 

values of “ f2v −  based” macroscopic k-ε and 
values of correlations extracted from microscopic 

f2v −  model solutions (see Section 5) are 
compared in Tables 1 and 2. The relative errors 
between two values are shown in these tables. The 
matching between two data reveals the good 
performance of the proposed correlations and 
model. 
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TABLE 1. Values of 2
Dufk  Predicted from Equation 57, from 

Microscopic Model, and from Macrscopic Model. 
 

Po
ro

si
ty

 2
Dufk  from “ f2v −  

Based” Macroscopic k-ε 
Model 

2
Dufk  from 

Microscopic f2v −  
Model 

2
Dufk  from 

Equation 57 

Relative Error of 1st Column 
with Respect to Microscopic 

Data % 

0.3 2.155 2.13 2.219 1.2 

0.4 1.922 1.97 1.932 2.4 

0.5 1.67 1.66 1.660 0.6 

0.64 1.26 1.246 1.243 1.1 

0.75 0.902 0.8847 0.886 2.0 

0.84 0.588 0.6783 0.577 13.3 

0.95 0.188 0.260 0.184 27.7 
 
 
 

TABLE 2. Values of 3
DuHfε  Predicted from Equation 58, from 

Microscopic Model, and from Macrscopic Model. 
 

Po
ro

si
ty

 3
DuHfε  from “ f2v −  

Based” Macroscopic k-ε 
Model 

3
DuHfε  form 

Microscopic f2v −  
Model 

3
DuHfε  from 

Equation 58 

Relative Error of 1st 
Column with Respect to 

Microscopic Data % 

0.3 59.54 58.92 61.76 1.1 

0.4 29.25 29.14 29.46 0.4 

0.5 15.36 14.54 15.21 5.6 

0.64 6.55 6.253 6.41 4.7 

0.75 3.327 3.183 3.24 4.5 

0.84 1.76 1.617 1.71 8.8 

0.95 0.472 0.4563 0.46 3.4 
 

6.1. Real Problem   In this section we solve a real 
problem defined in the experimental research of 
[31], regarding pressure drop in a packed bed. The 
cross sectional scheme of the main apparatus used 
in this experiment is depicted in Figure 18. The size 
of rectangular container is 0.304 m by 0.760 m by 

0.760 m and it is connected with a blower by a tube 
equipped with a gate valve and an orifice plate in 
order to fix air flow rate. 3200 table tennis balls 
glued together in a simple cubic array of size 8 by 
20 by 20 spheres are filled the container. The 
uniform packing core was formed by cells [31]. 
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Figure 18. Schematic view of experimental equipment [31]. 
 
 
 

TABLE 3. Values of Friction Factor Predicted from Macroscopic “ f2v −  Based “k-ε Model, Experimental Data [28], 
Ergun Correlation [16] and Macroscopic k-ε Model of Nakayama, et al [13]. 

 

Mac. “ f2v −  Based” 
k-ε Model 

Mac. k-ε Model [13] k-ε Model [31] Experiment [31] Ergun [16] 

6.03 6.66 5.8 6(±15%) 8.4(±50%) 

The Reynolds number is ReD = 1800 and porosity 
is φ = 0.476. The friction factor ff  of porous 
media is defined as: 
 

⎥
⎥
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⎢
⎢
⎢

⎣

⎡
−= 2

Duρ

D
dx

fpd
ff  (63) 

 

In this problem, macroscopic “ f2v −  based” k-ε 
model of present study and macroscopic k-ε model 
of Nakayama, et al [13] are solved for the same 

porosity and Reynolds number. Ergun’s friction 
factor was computed from Equation 63. Tobis [31] 
numerically solved flow through this packed bed 
with employing k-ε model, using a microscopic 
point of view and friction factor was computed from 
the result of numerical solution. All the computed 
results in the present work are compared with the 
numerical and experimental results of [31] in 
Table 3. There is a good agreement between 

macroscopic f2v −  model and Experimental data 
of [31]. The over-prediction of k-ε result is 
consistent with inherent shortcomings of this model. 
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7. CONCLUSION 
 

A reliable model is needed to simulate turbulent 
flow in porous media for engineers and researchers 
involved in industry and research oriented projects. 
The only plausible engineering method for the 
foreseen future is turbulence modeling, in 
conjunction with volume averaging technique to 
circumvent the necessity to resolve all flow 
features and to simulate the turbulence structures 
in the pores. Among different models introduced in 

the context of RANS, the f2v −  model which is a 
more refined, and have been successful for solving 
recirculating non-isotropic clear flows seems to be 
a good candidate, and a tentative analysis of its 
performance for porous media could render useful 
results. However, it has to be mentioned that LES 
also may lead to realistic results in near future and 
this work is not attempting to compare the relative 
pros and cons of LES and RANS models. We 

believe that the prediction of f2v −  model in 
porous media is superior to k-ε model and its 
performance may be interesting for engineering 
communities and commercial code developers in 
the field of porous media. 
     In this work, the continuity and momentum 
equations for incompressible flow are solved in 

conjunction with f2v −  model. Macroscopic k-ε 
transport equations derived for porous media 
employing a volume averaging technique. The 
additional terms appear in the macroscopic k-ε 
model due to averaging process were modeled by 

solutions of microscopic f2v −  model. The 
numerical computations conducted for a wide 
range of porosities are encouraging for the 
geometry/morphology examined in this paper. The 
modeling results seem reliable when compared to 
respected microscopic fields calculated using 
conventional microscopic point of view. Friction 
factor of flow through packed beds predicted from 

present “ f2v −  based” macroscopic k-ε model 
which was compared with the available 
experimental data and good agreement was 
observed. We believe that the proposed model in 
the present study reconciles the relative robustness 

of k-ε model with the superior accuracy of f2v −  

model. However, further work should be 
conducted for more complicated and complex 
situations to rigorously criticize the model 
proposed in this work. 
 
 
 

8. NOMENCLATURE 
 
Aw Interface area between solid and 

fluid phase in porous media 
2εC,1εC,2C,1C,ηC,C,TC,LC μ : 

 Turbulence model constants 
D Particle diameter 
f Elliptic relaxation function 
f
~  Compensated elliptic relaxation 

function 
ff Friction Factor 
H Distance between two particles 
k Turbulent kinetic energy 

fk  Intrinsic volume average of 
turbulent kinetic energy 

L Turbulent length scale 
P Pressure 
Pk Production of turbulent kinetic 

energy 
k
ProductR  Remainder term of production of 

turbulent kinetic energy 
ε
ProductR  Remainder term of production of 

dissipation of turbulent kinetic 
energy 

ReD Reynolds number based on D  
ReP Reynolds number based on particle 

dimension 
ijS  Strain rate tensor 

t Time 
T Turbulent time scale 
U Time averaged velocity vector 
u Time fluctuation velocity vector 
uD Darcian velocity 
V  Total volume of porous media 

fV  Volume of fluid in porous media 

2v  Normal to the wall component of 
Reynolds stress 

ix  Coordinate components 
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8.1. Greek Letters 
 

ijδ  Kronecker delta 

ε  Dissipation rate of turbulent 
kinetic energy 

fε  Intrinsic volume average of 
dissipation rate of turbulent kinetic 
energy 

φ  Porosity 
ν  Kinematics viscosity 

tν  Turbulent kinematics viscosity 
ρ  Density 

εσ,kσ  Turbulence model constants 
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