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Abstract   An optimal strategy based on minimum effort control and also with terminal position 
constraint is developed for an exoatmospheric interceptor with a fixed- interval guidance time. It is 
then integrated with sliding-mode control theory to drive an optimal sliding-mode guidance law for 
fixed-interval guidance time. In addition, this guidance law is generalized for intercepting an 
arbitrarily time-varying target maneuver. Robustness of the new guidance method against 
disturbances and good miss distance performance are achieved by the second method of Lyapunov 
and simulation results. The presented guidance law is simple to implement in practical applications. 
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ای براي رهگيری با قيد بردار موقعيت نهائی و محدودبت زمانی مانور  در اين مقاله قانون هدايت بهينهچكيده       

لغزشی تلفيق شده و  قانون هدايتی فوق با تئوری کنترل مدسپس  .گردد میمبتنی برحداقل تلاش کنترلی ارائه 
 عميم دادهاهداف دارای مانور متغير با زمان ت برای رهگيری وگردد  قانون هدايت بهينه مقاوم ايجاد می

و چگونگی عملکرد آن با استفاده از مقاومت قانون هدايتی ارائه شده در مقابل اغتشاشات در ادامه . شود می
ای اجرا در بهينه و مقاوم ارائه شده برقانون هدايت . شود ميروش دوم لياپانوف و نتايج شبيه سازی نشان داده 

 .باشد میساده نيز عمل 
 

 
1. INTRODUCTION 

 
The optimal control and estimation theory have 
been used to derive modern guidance laws with 
improved performance. Most optimal guidance 
laws (OGL) have been derived from linear-
quadratic optimal control theory to obtain feedback 
solutions. Optimal guidance law and nonlinear 
estimation for interception of decelerating target 
[2] and accelerating target [3] have been extended 
for highly maneuvering target scenarios. Closed-
form optimal guidance law has been applied for 
missile system considering time-varying velocity 
[5] and internal dynamics with uncertain time lag 
[6]. Optimal guidance time-to-go [7] and OGL 

subject to various constraints have been studied in 
[4,8]. Optimal midcourse fixed-interval guidance 
has been developed for intercepting a target with 
constant acceleration vector in [9]. An extensive 
literature review on guidance laws, in general, and 
optimal guidance laws, in particular has been 
performed in [10,16]. 
     Although the optimal guidance is accurate and 
economical in energy consumption, it is difficult to 
implement due to its dependence on the information 
of relative range, relative velocity, and even target 
acceleration. Optimal control theory assumes that 
the future maneuver strategy of the target is 
completely defined, so any small change in 
assumptions produces undesired results. Integrating 
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Figure 1. Interceptor geometry. 

optimal control with sliding-mode allows the 
interceptor to correct itself for inaccurate predictions 
of target maneuvers and unmodeled dynamics. 
     The sliding-mode control method provides a 
systematic approach to the problem of consistent 
performance in the face of modeling imprecision. 
The main advantage of sliding-mode control is that 
the system response remains insensitive to model 
uncertainties and disturbances [11,12]. Although 
the technique has good robustness properties, pure 
sliding-mode control presents drawbacks that 
include large control authority requirements. The 
performance of pure sliding-mode can be improved 
by making the states to reach the sliding surface in 
a manner as optimal as possible. Sliding-mode 
control law has been developed for a nonlinear 
system considering air-to-air missile-target 
interception scenario [13]. It has been proved that 
the performance of the feedback controller is 
robust to certain parameter variations in the model 
by assuming that the information for the maximum 
target acceleration is available. Systematic 
approach to the design of guidance law using 
variable structure control has been studied in [14]. 
In this paper decreasing boundary-layer scheme 
has been introduced for high-gain sliding mode 
control. Integration of optimal control and sliding-
mode control based on guidance law has been 
proposed for a homing-missile against target 
maneuvers [15]. 
     This work deals with integrating three-
dimensional optimal guidance with sliding-mode 
theory to obtain a new guidance law with 
robustness against disturbances, good dynamic 
performance, energy saving properties, and 
terminal accuracy for fixed-interval propulsive 
maneuvers. 
 
 
 

2. PROBLEM FORMULATION 
 
2.1. Equations of Motion   The governing 
equations of motion for particle P (interceptor or 
target) with a given acceleration vector, ap(t), are 
given by 
 

⎪⎩

⎪
⎨
⎧

=

=

(t)papv
pvpr

&

&
 (1) 

in which r, v and a denote position, velocity, and 
acceleration vectors, respectively. The subscript 
“p” represents particle P. Integrating the preceding 
equations with respect to time, the final 
displacement and velocity at final time tf are 
obtained as follows: 
 

ξd)ξ(ftt pa(t)pv)f(tpv ∫+=  (2a) 

 
ξd)ξ(ft

t pa)ξft(gtpv(t)pr)ft(pr ∫ −++=  (2b) 

 
Where tg is time-to-go until intercept (i.e. tg = tf - t). 
     The three-dimensional intercept geometry with 
respect to an inertial reference (Oxyz) is shown in 
Figure 1, in which interceptor M is moving toward 
its desired final position F. 
     The relative displacement r and velocity v for 
the intercept problem are defined as 
 
r = rt – rm (3a) 
 
v = vt – vm (3b) 
 
Where subscripts “m” and “t” denote the missile 
(interceptor) and target, respectively. 
 
2.2. Zero-Effort Errors   The zero-effort miss 
at time t, zem(t), is the distance that the interceptor 
will miss its target if the interceptor makes no 
corrective maneuvers after time t; therefore, 
 

ftξtfor0)(ξu,)f(tmrfmr(t)zem <<=−=  (4) 
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Where 
fmr  is the desired final position of 

interceptor and u is the acceleration command. 
     Assume the interceptor acceleration as am = c(t) 
+ u in which c(t) is the acceleration exerting on the 
interceptor excluding acceleration command, like 
gravitational acceleration. We assume that c(t) is 
given as a function of time. 
     Using Equations 2, the final position vector of 
the interceptor, in the absence of corrective 
maneuvers can be calculated as 
 

ξd)ξ(ftt c(t)mv)f(tmv ∫+=  (5) 
 

ξd)ξ(ftt c)ξft(gtmv(t)mr)f(tmr ∫ −+⋅+=  (6) 

 
Hence, 
 

ξd)ξ(ft
t c)ξf(tgtmv(t)mrfmr(t)zem ∫ −−⋅−−=  

 (7) 
 
Consider the case in which we are to intercept a 
maneuvering target with a given acceleration at(t). 
By using Equations 2-3, the expression for the zem 
in terms of relative position and velocity can be 
expressed as 
 

[ ] ξdftt )ξ(c)ξ(ta)ξft(gt).t(v(t)r(t)zem ∫ −−++=

 (8) 
 
 
 

3. OPTIMAL FIXED-INTERVAL 
GUIDANCE LAW 

 
Our objective is to obtain the optimal guidance law 
in the time period 0 < t < tb (i.e. until burnout) and 
making the interceptor to reach the final position 

fmr  satisfying following state equations. 

 

⎪⎩
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+==
=

u(t)cmamv
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&

&
 (9) 

 
For t > tb we have no corrective maneuvers. Thus, 
u should be such that it guides the interceptor to 
the final position over the whole period of motion. 

The desired performance index for guidance law in 
the exoatmospheric interception is the amount of 
fuel consumption required for corrective 
maneuvers to have a successful intercept. The 
lateral divert, dtft

0 uΔV ∫= , imparted to an 

interceptor during intercept, is directly related to 
the amount of fuel required by the interceptor [1]. 
Since there is no analytical solution for this 
objective function, we must minimize the 
following performance index instead as follows: 
 

dτbt0 )τ(u)(τTu
2
1missTmiss

2
ωPI ∫+=  (10) 

 
With )f(tmrfmrmiss −=  and weighting factor ω. 

By choosing very large values for ω, we can 
guarantee that miss distance takes on small values 
and interception takes place undoubtedly. Since, 
we have no corrective maneuver for t > tb, final 
position of interceptor can be written as 
 

ξd)ξ(ft
bt

c)ξft()btft(bmv)b(t
bmr

)f(tmr

∫ −+−⋅+

=
 

 (11) 
 
Substituting the preceding relation into Equation 
10, the objective function can be rewritten as 
 

τdbt
t )τ(u)τ(Tu

2
1)bt,bmv,

bmr(φPI ∫+=  (12) 

 
The optimal control can then be found as 
 
u = At – B (13) 
 
In which A and B are found to be 
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From )bt(
mr
φ)bt(T
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where λr and λv are Lagrange multipliers and 
)btft(ω1c −= , ω2c = , and 2)btft(ω3c −= . 

Substituting Equations 14 into Equation 13, we 
obtain 
 

bm)vbgt1c3(c

ft
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ξd)ξ(c)ξft(
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bmr)bgt2c1(cu
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⎥
⎦

⎤
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 (15) 
 
By replacing Equation 13 into state Equation 9 and 
solving it for )bt(mr  and )bt(mv , we will have 
 

ξdbtt )ξc()tbt(B)2t2
bt(

2
A

mv)bt(mv ∫+−−−+=  

 (16) 
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 (17) 
 
Now if we replace A and B from Equations 14 in 
the above equations and solve the set of equations 
for )bt(mr  and )bt(mv  we can find them in terms 
of mr  and mv . By substituting the resulted 
relations into Equation 15, it can be rewritten as 
 

⎥
⎦

⎤
⎢
⎣

⎡
∫ −−−⋅= ft

bt dξ ) (ξc)ξf(tgtmvmr-
fmrΛu  (18) 

 
In which 
 

3)bgtg(t3
gtω

3
g3t

Λ
−−+

=  (19) 

 
For the sake of small miss distance for 
interception, the value for ω is assumed to be very 
large and its effect on Equation 19 is discarded. If 
we were to intercept a maneuvering target with a 
given )t(ta , we should use Equation 2b for the 
target. Hence, the optimal command in terms of 

relative position and velocity are obtained as 
 

[ ] }ξdftt )ξ(cξ)(taξ)f(tgvtr{Λu ∫ −−++⋅=  (20) 

 
If the only acceleration acting on interceptor, 
excluding acceleration command considered 
gravitational acceleration, i.e. mg)t(c =  and target 
moves under gravitational acceleration )tg)t(ta( = , 
then Equation 20 will be conducted as 
 

[ ] }ξdftt )ξ(mg)ξ(tg)ξft(gtvr{Λu ∫ −−++⋅=  

 (21) 
 
If we assume that the difference between target and 
interceptor positions is small enough so that the 
gravitational acceleration can be taken approximately 
equal for the interceptor and target, then the 
resulted expression for u will be reduced to [9] 
 

)gtvr(u +⋅Λ=  (22) 

 
For the case in which the positional difference is 
considerable, the integrand of Equation 21 must be 
estimated. 
 
 
 

4. OPTIMAL SLIDING-MODE GUIDANCE 
FOR FIXED-INTERVAL PROPULSIVE 

MANEUVERS 
 
Optimal guidance law by itself can not be robust 
against disturbance and modeling inaccuracies and 
they can have strong adverse effects on the 
performance of the guidance law. To overcome 
this drawback, it is proposed that the optimal 
guidance integrated with the sliding-mode control 
theory to produce a new guidance method. 
     The optimal guidance law for fixed-interval 
propulsive maneuvers can be expressed in the 
following form: 
 

zemu ⋅Λ=  (23) 
 
Where zem is calculated using Equation 8. Now 
we define a new state zem. To zero out the zero 
effort miss, the switching surface is chosen as 
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0zems ==  (24) 
 
To ensure that the new state zem approaches the 
sliding-mode s = 0, the result in section three is 
used to constitute an optimal reaching law of 
sliding-mode. Differentiating zem with respect to 
time produces 
 

zemgtΛ
gtu.

gc(t).tmvgc(t)].t[umr
gc(t).tmvg.tmvmrmez

⋅⋅−=

−=

+++−−=

++−−=
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&&&

 (25) 

 
Due to Equation 25, the optimal reaching law is 
constructed as  
 

)s(sign)t(Es)t(Ks −−=&  (26) 
 
Where gt.)t(K Λ= , gtε)t(E ⋅= , and 0.constε >= . 
     Substituting Equation 23 into Equation 25 and 
Equation 24 into Equation 26 yields the optimal 
sliding-mode guidance law as 
 

)zem(signεzemu +⋅Λ=  (27) 
 
During the motion outside the sliding-mode, the 
switching term in the guidance law is liable to 
cancel the influence of disturbance, and try to 
make the motion as optimal as possible. 
     Now, robustness of this guidance law against 
disturbance should be verified to ensure 0zem → . 
We consider a bounded disturbance )t(d is exerted 
on the system as follows 
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Where we assume that its upper limit is known as 

maxd . By using the second method of Lyapunov, 

let the Lyapunov function be 2zem2
1V = . 

Substituting Equation 23 into Equation 25 gives  
 

)t(Dugtmez +⋅−=&  (29) 
 
Where )t(d.gt)t(D =  and defined as disturbance in 

the zem coordinates. Differentiating V with respect 
to time and considering Equation 29 results in  
 

[ ])t(duzemgtV +−⋅=&  (30) 

 
Substituting Equation 27 into Equation 30 gives 
 

[ ]

[ ]max d(zem)signε.  .zemgt
2zemgtΛ

 d(t)(zem)signε  .zemgt
2zemgtΛV

−−⋅⋅−

≤−−⋅⋅−=&
 (31) 

 
Substituting Equation 19 into Equation 31 and 
noting that 0gt >  and 03)bgtgt(3

gt ≥−− , it is 
apparent that the first term in Equation 31 is 
negative. Obviously, if maxdε >  is satisfied, then 
the second term in Equation 31 is also negative. 
Thus 0V <&  is sufficiently ensured. 
     In practical guidance, the sign function sign 
(zem) in Equation 27 can be replaced by a 
continuous function zem/(|zem|+γ) to alleviate 
chattering, where γ is a vector with positive real 
components. The guidance law then becomes 
 

γzem
zemεzemΛu

+
+⋅=  (32) 

 
 
 

5. SIMULATION STUDY 
 
Suppose an interceptor at the origin with initial 
velocity of 1000 m/s in the vertical direction. The 
desired final position is (35, 35, 30 km). The 
interceptor must reach the final position at tf = 30s, 
while its guidance period is tb = 30s. We consider a 
disturbance exerted on the system as D(t) = D 
sin(Ωt) where Di = 10, i = 1,2,3 and Ω = π/5. It is 
noted that for moving and maneuvering target with 
estimated acceleration at(t), zem must be calculated 
by Equation 8. 
     We use Equation 32 to implement the optimal 
sliding-mode guidance law for fixed-interval 
propulsive maneuvers, where ε = 10, γi = 10-4 and 
i = 1, 2, 3. The fourth-order Rung-Kutta algorithm 
is used to obtain the numerical solution of the 
target and missile motion equation. The guidance 
command is given out by a microcomputer 
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onboard the interceptor and the sampling period as 
assumed to be 10 ms. 
     Simulation results show that the final miss 
distance is less than 0.17 m. For comparison 
purpose, applying pure optimal guidance law for 
fixed-interval propulsive maneuvers will induce 
miss distance of 4.93 m. This indicates that the 
switching term in the proposed guidance law is 
able to cancel out the influence of disturbances 
such that the motion outside of the sliding mode 
approaches the optimal motion. Figure 2 shows 
interceptor trajectory. Commanded accelerations of 
optimal sliding-mode guidance and pure optimal 
guidance for fixed-interval propulsive maneuvers 
are shown in Figure 3. Magnitude of zem for both 
guidance laws is demonstrated in Figure 4. 
 
 
 

6. CONCLUSION 
 
A new guidance law is proposed for fixed-interval 
propulsive maneuvers by integrating optimal and 
sliding-mode theories to achieve robustness 
against disturbances and terminal accuracy. The 
guidance command is derived based on three-
dimensional engagement kinematics. The 
proposed guidance law requires a disturbance 
limit, and therefore exact information of 
disturbance is not necessary. The effectiveness of 
the presented method is established by the second 
method of Lyapanuv and the robustness of the 
guidance law against disturbances was 
demonstrated by simulation results. It was shown 
that the guidance law over whole period of 
guidance can be extracted from the proposed 
guidance law by canceling the coasting phase. 
Furthermore, the presented guidance law is 
simple to implement in practical applications. 
 
 
 

7. NOMENCLATURE 
 
a Acceleration vector, a = |a| 
g Gravitational acceleration, g = |g| 
PI Performance Index, ∫ ft

t )τ(d)(τuT)(τu  
miss Miss distance vector, miss = |miss| 
r Displacement vector, r = |r| 

t Current time 
tg Time-to-go until intercept (tf -t) 
tbg Time-to-go until burnout (tb -t) 
v Velocity vector, v = |v| 
zem Zero-effort miss, zem = |zem| 
Λ Guidance gain 
 
Subscript 
 
o Initial Value 
f Final Value 
m Interceptor 
t Target 
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Figure 2. Interceptor trajectory. 
 
 
 

 
 

Figure 3. Acceleration commands; OSMGL and OGL for fixed-interval propulsive maneuvers. 
 
 
 

 
 

Figure 4. |ZEM| for fixed-interval propulsive maneuvers. 
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