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Abstract   Predicting future behavior of chaotic time series system is a challenging area in the 
literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely 
dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one 
of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. 
Several methods have been introduced for prediction of solar activity indices especially the sunspot 
number, which is a common measure of solar activity. In this paper, the problem of embedding 
dimension estimation for solar activity chaotic time series based on polynomial models is considered. 
The optimality of embedding dimension has an important role in computational efforts, Lyapunov 
exponents' analysis and efficiency of prediction. The method of this paper is based on the fact that the 
reconstructed dynamics of an attractor should be a smooth map, i.e. with no self intersection in the 
reconstructed attractor. To check this property, a local general polynomial autoregressive model is 
fitted to the given data and a canonical state space realization is considered. Then, the normalized 
one-step forward prediction error for different orders and various degrees of nonlinearity in 
polynomials is evaluated. Besides the estimation of the embedding dimension, a predictive model is 
obtained which can be used for prediction and estimation of the Lyapunov exponents. This algorithm 
is applied to indicate the minimum embedding dimension of sunspot numbers (SSN), Disturbance 
Storm Time or Dst. and Proton Flux indices are some of the most important among solar activity 
indices and results depict the power of the proposed method in embedding dimension estimation. 
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هاي غيرخطي   در ادبيات سيستمطرحگونه از مباحث م هاي زماني آشوب ها و سري سيستمبيني  پيشچكيده       

. شده و الگوريتم يادگيري دارد به مدل انتخابشديدی  گونه بستگي آشوب هاي زماني  سريبيني پيشدقت . است
اي بر زمين، آب و   آثار قابل ملاحظههاي خورشيدي است که امروزه گونه، فعاليت هاي آشوب يکي از ديناميک

هاي مختلف خورشيدي  بيني شاخص هاي متعددي براي پيش روش. هاي فضايي دارد و مأموريت هوا، ماهواره
هاي زماني  ساز سري در اين مقاله تخمين بعد محاط. اند شده معرفي )SSN( هاي خورشيدي همچون تعداد لکه

سزايي بر آناليز  ساز تأثير به تخمين بهينه بعد محاط.  مدنظراستاي هاي چندجمله خورشيدي مبتني بر مدل
روش ارائه شده در اين مقاله مبتني . بيني دارد پذيري، بار محاسباتي و بهينگي پيش بيني  پيشبراینماي لياپانف 
ن در اي. بايست نگاشتي هموار باشد شده يک جاذب عجيب مي هاي بازسازي است که ديناميک بر اين واقعيت

 همهبيني يک مرحله به جلو براي  اي با درجات مختلف، خطاي پيش هاي چندجمله راستا، پس از ارائه مدل
تواند تخميني از بعد  اش مي است که درجه آمده متناظر با مدلي کمترين خطاي بدست. شود درجات محاسبه مي

هاي  ساز شاخص ين بعد محاطاين الگوريتم براي تخمين کمتر. ساز ديناميک آشوبي خورشيدي باشد محاط
 شده کار گرفته هاي خورشيدي، شاخص زمان طوفان و شارش پوروتوني به متعارف خورشيدي تعداد لکه

 .آشوبي است ساز ديناميک نتايج حاصل، گواه بر توانايي اين روش در تخمين کمترين بعد محاط. است
 
 

1. INTRODUCTION 
 
Predicting the future, which has been the goal of 

many research activities in the last century, is an 
important problem for human that arises from the 
fear of unknown phenomena and calamities in all 
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around the infinitely large world with its many 
variables which depicts highly nonlinear and 
chaotic behavior [1]. Deterministic chaos appears 
in different fields of science like physics, 
biomedical and engineering. Therefore, analysis of 
the chaotic behavior of dynamical systems when 
only a single or vector output data are available, is 
very important. The main idea of chaotic time 
series analysis is that a complex system can be 
described by a strange attractor in the phase space. 
The first step of chaotic time series analysis is the 
reconstruction of the equivalent attractor’s state 
space. State space reconstruction can be described 
by embedding the time series in a vector space. 
Some techniques for reconstructing the phase 
space from the observations of a single coordinate 
are outlined in [2]. The embedding theorem is 
presented by Takens [3] which is extended in [4]. 
However, Takens’ theorem is valid for indefinite 
noise free data only and does not address the 
calculation of embedding dimension and lag time. 
Further, it is of little practical relevance since it 
suggests a sufficient condition based on the 
dimension of the attractor’s manifold, which is not 
known a priori. On the other hand, the optimality 
of embedding dimension has an important role in 
computational efforts by Lyapunov exponents' 
analysis and efficiency of prediction. There are 
many publications concerning the estimation of 
suitable embedding dimension from chaotic time 
series. They can be summarized in three main 
categories as follow. 
     The first approach is based on the fact that the 
original attractor lies on a smooth manifold. This 
condition is checked by different methods by many 
researchers. The most famous work seems to be 
the method of False Nearest Neighbors (FNN) 
developed in [5]. This method considers the 
condition of no self-intersection of the reconstructed 
attractor, since the self intersections indicate that 
the reconstructed attractor does not lie on a smooth 
manifold. The property of no self-intersection is 
interpreted in the way that if m is the minimum 
dimension for successful reconstruction, then all 
the neighbors in the space Rm should also be 
neighbors in Rm+1. The FNN method checks the 
neighbors in successive embedding dimensions 
until a negligible percentage of false neighbors is 
found. However, the criterion for measuring the 
false neighbors in [5] may lead to different results 

by considering various threshold values. 
Suggestions to overcome the above mentioned 
shortcomings are provided in [6,7]. In addition, in 
these papers the multivariate time series extensions 
is considered. 
     The second approach for estimating the 
embedding dimension is based on Singular Value 
Decomposition (SVD) which is proposed in [8,9]. 
The main idea of this approach is to obtain a base 
for the embedding space in such a way that the 
attractor can be modeled by an invariant geometry 
in a subspace with fixed dimension. The selection 
of an appropriate embedding dimension is also 
resolved in these papers. The SVD essentially is a 
linear approach with firm theoretic base. Therefore 
using SVD as a nonlinear tool may cause some 
difficulties because there are some critical issues 
on the selection of the significant singular values 
[10]. Many researchers doubt in the quality of this 
method in eliciting the characteristics of nonlinear 
time series [11-14]. 
     The third approach is based on considering an 
invariant on the attractor such as correlation 
dimension [15], successive values of embedding 
dimension and convergent values. The typical 
problems of this method are its computation time, 
its poor performance for short time series and its 
sensitivity to noise [14]. 
     The method which is presented in this paper for 
estimating the embedding dimension is some how 
the first category of the above mentioned 
approaches. However, in contrast with the previous 
methods, it provides a model for the reconstructed 
dynamics. This method has been used in many 
applications by several researchers for example in 
[13,14,16,17] and the performance of this method 
in estimating the optimal embedding dimension 
even for noisy chaotic dynamics is great [14]. In 
addition, this method is applicable to short time 
series as well and its performance for estimating 
embedding dimension of noisy chaotic dynamic is 
good [13,14]. In this method a general polynomial 
autoregressive model [18-21], is considered to 
locally fit the given data. The order of this model is 
the same as the dimension of the reconstructed 
state space. The reconstructed dynamics should be 
a smooth map, i.e. with no self-intersection in the 
reconstructed attractor. This property is checked by 
the evaluation of the one-step forward prediction 
error of the fitted model for different orders and 
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various degrees of nonlinearity in the polynomials. 
The minimum embedding dimension is determined 
as the order with which the level of the prediction 
error decreases abruptly. By this method, an 
estimation of the embedding dimension and a 
predictive model is obtained which can be used for 
prediction and also for calculation of Lyapunov 
exponents. This idea is also used as the inverse 
approach to detect chaos in a time series in [22]. 
To show the advantage of the proposed method for 
estimating the minimum embedding dimension, 
this method is applied to some well-known chaotic 
systems such as “Logistic Map”, “Triangular 
Map”, “Mackey-Glass time series”. Then, the 
performance of the proposed method for estimating 
the optimal embedding dimension of solar activity 
as a complex and chaotic natural dynamic [23-25] 
is evaluated by estimating the minimum 
embedding dimension of some well-known solar 
activity indices such as “Sunspot Number (SSN)”, 
“Dst.” and “Proton Flux” indices. Results depict 
the great performance of this method in estimation 
of minimum embedding dimension for these 
chaotic systems. 
     The remaining sections of this paper are 
structured as follows: the main idea of the method 
for estimating the minimum embedding dimension 
is presented in Section 2. Model based procedure 
for estimation of the embedding dimension is 
presented in Section 3. Section 4 is devoted to 
describe the performance of the proposed method 
in estimating the minimum embedding dimension 
which includes two types of case studies. In the 
first one, some well-known chaotic systems are 
considered and it is tried to estimate the minimum 
embedding dimension for such chaotic systems. 
The second case study is devoted to estimate the 
minimum embedding dimension of some well-
known solar activity indices as a natural noisy 
chaotic time series. The last section contains the 
concluding remarks. 
 
 
 

2. MODEL BASED ESTIMATION OF THE 
EMBEDDING DIMENSION 

 
In this section, the basic idea and the procedure of 
the model based method for estimating the 
embedding dimension is presented. Let the 

original attractor of the system exists in an m-
dimensional smooth manifold, M. The dynamical 
behavior of the system is not known a priori and 
only a sequence of measurements is available as 
follows, 
 

Ny,,2y,1y)sNtt(y,,)st2t(y,)stt(y KK ≡+++  (1) 
 
Where ts is the sampling time and N is the total 
number of measurement. 
     An embedding is a smooth map from the 
manifold M to space U in such a way that its image 
is a smooth sub-manifold of U. It has to be said 
that this map is a diffeomorphism between M and 
its image. By using Method of Delays, which is 
based on Takens’ theorem, the embedding space is 
reconstructed by d (greater than 2m) sequential 
values of measurements as: 
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Where n.ts is the lag time and the dimension of the 
reconstructed space, d is called the embedding 
dimension (its optimal value is looked for). 
     The attractor of the well reconstructed phase 
space is equivalent to the original attractor and 
should be expressed as a smooth map. The state 
equations of the reconstructed dynamics are 
considered as: 
 
( ) ( )( )kxf1kx =+  (3) 

 
Where ( ).f  is a continuously differentiable 
function to the state vector ( )kx . In many practical 
situations, the structure of the underlying 
dynamical system is unknown. Depending on the 
objectives, there are different theories which are 
suitable for special analysis of nonlinear systems. 
In this paper, in order to model the reconstructed 
state space, the vector (2) after normalization, is 
considered as the state vectors. 
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Figure 1. Strange Attractor of a two dimensional chaotic 
system, if order is under-estimated to d = 1 all the points 1, …, 
7 on x(k-1) axis are projected on point 1 in x(k) axis and have 
the same one-step ahead value. 

To derive the state equations, a function g(.) is 
estimated by polynomial modeling as follows: 
 
( ) ( ) ⎟

⎠
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kxg1ky  (5) 

 
A canonical state space representation of the 
system is obtained as follows: 
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Thus, the order of polynomial model g(.) will also 
be d. Therefore, the optimal embedding dimension 
and the suitable order of the polynomial model 
have the same value. 
     Now, let us have an example to show the main 
idea of finding the optimal embedding dimension 
for a chaotic dynamic. Consider for example, a two 
dimensional nonlinear chaotic system with its 
strange attractor as shown in Figure 1. The phase 
diagram or state trajectory which is shown in 
Figure 1 depicts the chaotic trends of this dynamic. 
The objective is to find a model as (5) by using the 
autoregressive polynomial structure. If the order of 
the model is under-estimated to d = 1, it is obvious 
from Figure 1 that the model will project seven 
points (i,1), i = 1,…,7 to the same one-step ahead 
value, say 1kx̂ + . Therefore, the first-step forward 
prediction error for each transition of the point is: 
 
( ) ( )1,i1kx1kx̂1,ie +−+=  (7) 

 
i = 1,…,7 (Number of points projected to the same 
one-step forward value) and ( )1,i1kx +  denotes the 
true first step ahead value. By this assumption for 
embedding dimension, these errors will be large 
since only one fixed projection has been 
considered for all of these points. If the order of 
model is selected to d = 2, then for each points of 
xk + 1(i,1),   i = 1,…,7 different one-step ahead value 
is estimated. The prediction error in this case is: 
 
( ) ( ) ( )1,i1kx1,i1kx̂1,ie +−+=  (8) 

i = 1, …, 7 (Number of points projected to the 
same one-step ahead value) 
     The errors in this case are much smaller than 
the previous case, since the error in this analysis 
shows only the capability of selected model in 
predicting one-step forward value of chaotic 
dynamic. In addition, the mean squares of these 
errors for all points of the strange attractor differ so 
much in these two different choices. Typically, it is 
observed that the mean squares of prediction errors 
decrease while d increases and after awhile his 
changes on d has no effects on prediction error. 
This order is the best choice for the order of the 
model and is selected as minimum embedding 
dimension as well. 
     In the following, by using the above idea, the 
procedure of estimating the minimum embedding 
dimension for chaotic time series is presented. 
 
 
 

3. MODEL BASED PROCEDURE FOR 
ESTIMATION OF THE EMBEDDING 

DIMENSION 
 
The procedure for estimation of the embedding 
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dimension of chaotic time series consists of 7 
steps. The first step is devoted to preprocessing. 
The data has to be normalized. In addition, long-
term trends or seasonal effects have to be omitted 
in this step. 
     Some definite ranges for embedding dimension 
and degree of nonlinearity of the polynomial 
models have to be chosen such as 
 

}maxn,,2,1{pN
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K
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For each Did ∈  construct the delayed vector as: 
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For each delayed vector (10), find r nearest 
neighbors which r should be greater than m as 
defined in (12) [16,17]. 
     The following polynomial autoregressive model 
[19,20] is fitted to the set of neighbors found in the 
last step by well-known Least Square (LS) 
technique [19-21]. 
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The initial values of parameters in vector Θ which 
should be tuned by least square technique are 
chosen randomly. For the model order di and 
degree of nonlinearity n the number of parameters 
in vector Θ that should be estimated to identify the 
underlying model is: 

!in!id
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The mean square of prediction errors is computed 
as: 
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Where N is the total number of points and ek is the 
one-step forward prediction error. 
     The one-step forward prediction error should be 
calculated for all embedding dimension and degree 
of nonlinearity of the polynomial models by above 
procedure (the full range of D and Np). The value 
of d which the level of σ is reduced to a low value 
and will stay thereafter is considered as the 
minimum embedding dimension. 
     As it was said before, the method presented in 
this paper has the following advantages: (1) 
applicable to a short time series, (2) stable to noise, 
(3) computationally efficient (typically, the 
analysis of a 500-point time series takes just a few 
seconds on a desktop computer) and (4) with- out 
any purposely introduced parameters [13,14]. 
 
 
 

4. CASE STUDIES 
 
To show the effectiveness of the proposed 
procedure in Section 2, the procedure firstly is 
applied to some well-known chaotic systems such 
as “Mackey Glass system”, “Logistic Map” and 
“Triangular Map”. After that, the performance of 
the procedure is evaluated for estimating some 
solar activity indices such as sunspot number, Dst. 
and proton flux indices. 
 
4.1. Estimation of the Embedding 
Dimension for Some Well-Known Chaotic 
System   This subsection is devoted to estimate 
the embedding dimension for some well-known 
chaotic systems. These chaotic systems are, 
“Mackey Glass time series”, “Logistic Map” and 
“Triangular Map”. First of all, the Mackey Glass 
time series is considered. 
     The Mackey-Glass system has been introduced 
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TABLE 1. Mean Squared of First-Step Forward Prediction Error of Local Polynomial Models for Different  
Values of Model Order (d) and Degree of Nonlinearity (n) for Mackey Glass Time Series. 

 

n/d 1 2 3 4 5 
1 0.0023 0.0016 0.0029 0.0014 0.0001 
2 0.0016 0.0005 0.0036 0.0145 0.0428 
3 0.0134 0.0229 0.0780 0.0664 0.1226 

 
 
 

TABLE 2. Mean Squared of First-Step Forward Prediction Error of Local Polynomial Models for Different Values of  
Model Order (d) and Degree of Nonlinearity (n) for Mackey Glass Time Series with Different Numbers of Data. 

 

N = 100      
n/d 1 2 3 4 5 
1 0.0178 0.006 0.0023 0.0008 0.0021 
2 0.0161 0.0014 0.0117 0.5629 0.0771 
3 0.0169 0.0024 0.059 0.1749 0.1638 

N = 200      
1 0.0084 0.0079 0.0101 0.0092 0.0113 
2 0.0053 0.0041 0.0106 0.091 0.0813 
3 0.0058 0.0028 0.1507 0.0787 0.1619 

N = 700      
1 0.0026 0.0034 0.0036 0.0047 0.0056 
2 0.0023 0.0017 0.0021 0.0143 0.0334 
3 0.0031 0.0106 0.071 0.0949 0.2872 

N = 1000      
1 0.0025 0.0032 0.0009 0.0037 0.0049 
2 0.0025 0.0015 0.0011 0.0137 0.0315 
3 0.0025 0.0096 0.067 0.0909 0.2854 

as a model of white blood cell production [26]. 
 

( ) ( ) ( )
( )τ−+

τ−α
+β=

t10x1

txtx
dt

tdx  (14) 

 
Where x(t) is the value of the time series at time t. 
This system is chaotic for τ > 16.8. In this paper, 
the Mackey-Glass time series is constructed 
with parameter values α = 0.2, β = -0.1, τ = 30 
and x0 = 1.2. 
     The proposed method for estimating the 
embedding dimension or suitable order of model 
based on local polynomial modeling is 
implemented to this time series. For this time 
series, the developed general program of 

polynomial modeling is applied for various d and n 
and σ is computed for all the cases in a look up 
table. 
     Based on the discussions in Sections 2 and 3, 
the optimum embedding dimension is selected for 
this time series. The mean square of error, σ, for 
this chaotic system is in Table 1. According to 
these results, the optimum embedding dimension 
for this time series is estimated as 1 and 2. 
     Table 2 shows the effects of the number of data 
in estimating embedding dimension for this time 
series. It can be seen that the performance of the 
proposed algorithm in estimating the minimum 
embedding dimension of the Mackey-Glass chaotic 
time series even with a few numbers of data is good. 
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TABLE 3. Mean Squared of First Step Ahead Prediction Error of Local Polynomial Models for Different Values of 
Model order (d) and Degree of Nonlinearity (n) for Mackey Glass Time Series with Different SNRs. 

 

SNR = 0 dB      
n/d 1 2 3 4 5 
1 0.0023 0.0016 0.0029 0.0014 0.0001 
2 0.0016 0.0005 0.0036 0.0145 0.0428 
3 0.0134 0.0229 0.0780 0.0664 0.1226 

SNR = 10 dB      
1 0.0021 0.0047 0.0039 0.0019 0.0047 
2 0.0044 0.0057 0.0034 0.0012 0.0035 
3 0.0202 0.0049 0.0034 0.0033 0.0043 

SNR = 20 dB      
1 0.0114 0.0032 0.0069 0.0035 0.0075 
2 0.0109 0.0041 0.0043 0.0017 0.0022 
3 0.0144 0.0066 0.0052 0.0027 0.0027 

SNR = 30 dB      
1 0.0046 0.0096 0.0062 0.0046 0.0058 
2 0.0058 0.0094 0.0035 0.0055 0.0017 
3 0.0061 0.0054 0.0053 0.0017 0.0024 

To show the performance of the proposed method 
for embedding dimension of noisy chaotic time 
series, white Gaussian noise is added to this time 
series with different signal-to-noise ratios (SNRs). 
Table 3 shows the effects of noise in estimating 
embedding dimension for this time series. It can be 
seen that the performance of the proposed algorithm 
in estimating the minimum embedding dimension of 
the Mackey-Glass chaotic time series even for a 
noisy chaotic time series (SNR = 20 dB) is good. 
     The “Logistic Map” is considered as the second 
case study in this section and the proposed method 
is implemented to this time series. The Logistic 
Map is produced by a nonlinear difference system 
of the form: 
 

⎟
⎠
⎞⎜

⎝
⎛ −=+ kx1krx1kx  (15) 

 
Where xk is the value of the time series at time k. The 
time series is constructed with parameter value r = 4. 
     Like Mackey Glass time series, the proposed 
method for estimating the embedding dimension or 
suitable order of model based on local polynomial 
modeling is implemented to this time series. The 

mean square of error, σ, for this chaotic system has 
been shown in Table 4. According to these results, 
the optimum embedding dimension for this time 
series like the result of [14] is estimated 2. 
     At the end, the “Triangular Map” is considered 
and the proposed method is implemented to this 
time series. 
     The Triangular Map like Logistic Map is 
produced by a nonlinear difference system of the 
form [17]: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −−=+ kx5.021r1kx  (16) 

 
Where xk is the value of the time series at time k. 
The time series is constructed with parameter value 
of r = 0.91. 
     Like those two chaotic systems, the proposed 
method for estimating the embedding dimension or 
suitable order of model based on local polynomial 
modeling is implemented to this time series. The 
mean square of error, σ, for this chaotic system has 
been shown in Table 5. According to these results, 
the optimum embedding dimension for this time 
series is estimated as 1. 
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TABLE 4. Mean Squared of First-Step Forward Prediction Error of Local Polynomial Models for 
Different Values of Model Order (d) and Degree of Nonlinearity (n) for Logistic Map. 

 

d\n 1 2 3 
1 0.000074 0.000146 0.0017497 
2 0.000382 0.004291 0.0001985 
3 0.01006598 0.00078061 0.0001794 
4 0.000428 0.0007997 0.0001294 
5 0.002646 0.0002908 0.0001277 

 
 
 

TABLE 5. Mean Squared of First-Step Forward Prediction Error of Local Polynomial Models for 
Different Values of Model Order (d) and Degree of Nonlinearity (n) for Triangular Map. 

 

d\n 1 2 3 
1 0.00044197 0.00162738 0.00031293 
2 0.0020143 0.00726746 0.00281312 
3 0.0036166 0.00277505 0.0041647 
4 0.0175805 0.0094184 0.0250758 
5 0.0308898 0.0330916 0.0657115 

 

4.2. Estimation of the Embedding Dimension 
for Some of the Solar Activity Indexes   This 
subsection is devoted to estimate the embedding 
dimension for some of the solar activity indices. 
These indices are, “Sun Spot Number 
(SSN)”,“Dst.” and “Proton Flux” indices. First of 
all, the “sunspot number” time series is 
considered. 
     The level of sun’s activity, defined by the 
occurrence of solar flares, coronal mass ejections 
and sunspots has quasi periodic variations with a 
period of about eleven years. Each eleven-year 
solar cycle starts with a period of quiescence called 
solar minimum and gradually turns into a period of 
activity called solar maximum [24,25]. 
     The sunspot number is a good measure of solar 
activity and is computed according to the Wolf 
formulation: 
 
R = k (10g + s) (17) 
 
Where g is the number of sunspot groups, s is the 

total number of spots in all groups and k is a 
variable scaling factor which is related to the 
conditions of observation. The monthly and yearly 
averaged number of sunspots is accessible through 
several web sites from the sunspot Index Data 
Center in Belgium or US National Oceanic and 
Atmospheric Administration. In this paper yearly 
averaged number of sunspots is used for estimating 
embedding dimension of this time series. Figure 2 
shows this time series. 
     The proposed method for estimating the 
embedding dimension is implemented to this solar 
activity index. For this time series, for various d 
and n, σ is computed. Based on the discussions in 
Sections 2 and 3, the optimum embedding 
dimension is selected for this time series. The 
mean square of error, σ, for this chaotic system has 
been shown in Table 6. According to these results, 
the optimum embedding dimension for this time 
series is estimated as 2 and 4. 
     Table 7 shows the effects of the number of data 
in estimating embedding dimension for this time 
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Figure 2. Yearly averaged number of sun spot during 1700 to 2001. 
 
 
 

TABLE 6. Mean Squared of First-Step Ahead Prediction Error of Local Polynomial Models for 
Different Values of Model Order (d) and Degree of Nonlinearity (n) for Sun Spot Number. 

 

d\n 1 2 3 
1 0.0055 0.0050 0.0080 
2 0.0036 0.0033 0.0099 
3 0.0095 0.0119 0.0089 
4 0.0118 0.0107 0.0038 
5 0.0140 0.0074 0.0053 

 
 
 

TABLE 7. Mean Squared of First-Step Ahead Prediction Error of Local Polynomial Models for Different Values of Model 
Order (d) and Degree of Nonlinearity (n) for Sunspot Number Time Series with Different Numbers of Data. 

 

N = 100      
n/d 1 2 3 4 5 
1 0.0368 0.0026 0.0086 0.0125 0.0172 
2 0.0344 0.0114 0.0107 0.0053 0.01 
3 0.0346 0.0029 0.012 0.0012 0.0026 

N = 200      
1 0.0261 0.0044 0.0115 0.0066 0.0083 
2 0.0247 0.003 0.0075 0.0099 0.0095 
3 0.0236 0.0085 0.0061 0.0044 0.0061 

N = 301      
1 0.0055 0.0036 0.0095 0.0118 0.0140 
2 0.0050 0.0033 0.0119 0.0107 0.0074 
3 0.0080 0.0099 0.0089 0.0038 0.0053 
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Figure 3. The performance of the proposed method in one-step ahead prediction og sunspot number time series: 
(Upper) the predicted time series vs. the actual value for test set; (Lower) the prediction error. 

series. It can be seen that the performance of the 
proposed algorithm in estimating the minimum 
embedding dimension of the sunspot number as a 
natural noisy chaotic time series even with a few 
numbers of data is good. 
     To check the performance of the model for the 
reconstructed SSN dynamic, this model is used for 
one-step forward prediction of sunspot number 
time series. The estimated embedding dimension 
and degree of nonlinearity is used for this model. 
201 data from 1700 to 1900 is used for training and 
remaining 100 data from 1901 to 2001 is used for 
testing. Figure 3 shows the performance of this 
method in one-step forward prediction of sunspot 
number time series. Although this method is not 
proposed for prediction, but the performance of the 
trained model is good enough. 
     The Dst. is considered as the next solar activity 
indices and the proposed method is implemented to 
this time series. Like SSN, the hourly and daily 
averaged value of Dst. is accessible through 

several web sites from the sunspot Index Data 
Center in Belgium or US National Oceanic and 
Atmospheric Administration. In this paper, the 
hourly value of Dst. in 2001 is considered to be 
used for estimating the embedding dimension for 
this index. Figure 4 shows this index during 2001. 
     The proposed method for estimating the 
embedding dimension is implemented to this 
index. The mean square of error, σ, for this chaotic 
system has been shown in Table 8. According to 
these results, the optimum embedding dimension 
for this time series is estimated as 1 and 5. 
     At the end, the “proton flux” is considered and 
the proposed method is implemented to this solar 
activity indices. To estimate the embedding 
dimension for this time series, the hourly value of 
“proton flux” is considered for estimation. Figure 5 
shows “proton flux” during 2001. 
     According to Table 9, this time series as a 
natural chaotic system has an embedding 
dimension equal to 4 and the degree of nonlinearity 
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Figure 4. Hourly Dst. index during 2001. 
 
 
 

TABLE 8. Mean Squared of First Step Ahead Prediction Error of Local Polynomial Models for 
Different Values of Model Order (d) and Degree of Nonlinearity (n) for Dst. 

 

d\n 1 2 3 

1 0.0033 0.0432 0.0283 

2 0.0160 0.0228 0.0571 

3 0.0010 0.0161 0.0738 

4 0.0009 0.0014 0.0363 

5 0.0006 0.0012 0.0581 
 

for this time series is equal to 2. The adaptive 
method for calculating the Lyapunov exponents is 
implanted in this time series and like two other 
time series it is shown that the first and the biggest 
Lyapunov exponents has positive trend and like 
other indexes it is not possible to predict this index 
after a while. Figure 5 shows the trend of the 
Lyapunov exponents for this chaotic time series. 
     According to these results, the optimum 

embedding dimension for each chaotic system is 
estimated in Table 10. 
 
 
 

5. DISCUSSION AND CONCLUSIONS 
 
In this paper, an improved method for the 
estimation of embedding dimension based on 
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Figure 5. Hourly proton flux during 2001. 
 
 
 

TABLE 9. Mean Squared of First Step Ahead Prediction Error of Local Polynomial Models for 
Different Values of Model Order (d) and Degree of Nonlinearity (n) for Proton Flux index. 

 

d\n 1 2 3 

1 0.0028 0.0077 0.0208 

2 0.0034 0.0012 0.0106 

3 0.0032 0.0026 0.0032 

4 0.0015 0.0004 0.0012 

5 0.0025 0.0005 0.0014 
 
 
 

TABLE 10. The Estimated Optimum Embedding Dimension d for Each Chaotic System. 
 

Chaotic Systems d 

Mackey Glass Time Series 1-2 

Logistic Map 1 

Triangular Map 1 

Sun Spot Number (SSN) index. 1-4 

Dst. Index 2-5 

Proton Flux Index 4 
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polynomial modeling for solar activity dynamics 
as well-known natural chaotic time series is 
proposed. After fitting a general polynomial 
autoregressive model to the given time series, a 
canonical state space realization of the system is 
obtained. Then, the normalized one-step forward 
prediction error is measured to estimate the 
minimum embedding dimension. Moreover, the 
resulting local model can be used for prediction 
and Lyapunov exponents’ estimation as well. 
Finally, the simulation results of applying the 
method to some well-known chaotic systems and 
solar activity indices which their optimal value for 
embedding dimension is the purpose of this paper 
provided that these results depict the great 
performance of this method in estimating the 
embedding dimension of such chaotic systems. 
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