
IJE Transactions A: Basics Vol. 20, No. 2, June 2007 - 183

A NEW ILP MODEL FOR IDENTICAL PARALLEL-MACHINE
SCHEDULING WITH FAMILY SETUP TIMES MINIMIZING THE
TOTAL WEIGHTED FLOW TIME BY A GENETIC ALGORITHM

R. Tavakkoli-Moghaddam*

Department of Industrial Engineering, Faculty of Engineering
University of Tehran, P. O. Box 11365/4563, Tehran, Iran

tavakoli@ut.ac.ir

E. Mehdizadeh

Department of Industrial Engineering, Qazvin Branch
Islamic Azad University, Qazvin, Iran

mehdizadeh@qazviniau.ac.ir

*Corresponding Author

(Received: November 21, 2006 – Accepted in Revised Form: May 31, 2007)

Abstract This paper presents a novel, integer-linear programming (ILP) model for an identical
parallel-machine scheduling problem with family setup times that minimizes the total weighted flow
time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the
literature over the last three decades. However, the existing studies have been limited to the research
of independent jobs, and most classical optimization methods are focused on parallel-machine
scheduling problems without considering setup times and relationship between jobs. This problem is
shown to be NP-hard one in the strong sense. Obtaining an optimal solution for this type of complex,
large-sized problems in reasonable computational time is extremely difficult. A meta-heuristic
method, based on genetic algorithms, is thus proposed and applied to the given problem in order to
obtain a good and near-optimal solution, especially for large sizes. Further, the efficiency of the
proposed algorithm, based on various test problems, is compared with the Lingo 8.0 software.

Keywords Parallel Machine Scheduling, ILP Model, Family Setup Times, Total Weighted Flow
Time, Genetic Algorithm

له زمانبنـدي اجديـد بـرای مـس) خطـي -عـدد صـحيح (ريـزي مخـتلط در اين مقاله يک مدل برنامه چکيده
 به منظور حداقل نمودن کل زمـان خانواده کارهاسازي هاي آماده هاي موازي يکسان با در نظر گرفتن زمان ماشين

وازي توسط محققين زيادي مـورد هاي م هاي اخير مسائل زمانبندي ماشين در سال . گردد جريان ساخت وزنی مي
سـازي هـاي بهينـه مطالعه قرار گرفته است، اما تحقيقات موجود محدود به کارهاي مستقل بـوده و اغلـب روش

سـازي و ارتبـاط بـين کارهـا متمرکـز هاي آماده هاي موازي بدون در نظرگرفتن زمان متداول روي مسائل ماشين
ل اين نوع مسائل پيچيده و بـا مقيـاس بـزرگ در زمـان محاسـباتی بدست آوردن جواب بهينه براي ح . باشند مي

ابتكـاري بـر اسـاس بنابراين براي حل مسئله مورد نظر، ارائه يـک الگـوريتم فـرا . باشد معقول بسيار مشکل مي
الگوريتم ژنتيک براي دستيابي به جواب مناسب و نزديک بهينه، مخصوصاً براي مسائل با اندازه بـزرگ، پيـشنهاد

 مورد مقايـسه ۸بعلاوه، کارايی الگوريتم پيشنهادی بر اساس چند مسئله نمونه با نرم افزار لينگو نسخه . گردد مي
 .گيرد قرار مي

1. INTRODUCTION

A machine scheduling problem is an extended field
of research in various applications. The main
elements of machine scheduling problems are
machine configuration, job characteristics, and
objective function. The machine configuration can

be classified to single and multiple machine
problems in a broad sense. Parallel-machine
scheduling problems can be referred as a class of
problems that relaxed from the multiple machine
scheduling problems [1]. In an identical parallel
machine system, all machines are identical and a
job can be processed by any free machine. Three

184 - Vol. 20, No. 2, June 2007 IJE Transactions A: Basics

issues are dealt with this scheduling as follows:

• What machine to be allocated to which jobs?
• How to order the jobs in an appropriate

processing sequence?
• How to rationalize the reasonableness of the

schedule?

The main criteria measures can also be classified to
three distinct groups as follows [2]:

1. Completion-time-based measures.
2. Due-date-based measures.
3. Idleness-penalty-based measures.

1.1. Minimum Weighted Flow Time
Problem The minimum weighted flow time
problem belongs to the first above-mentioned
group.
 Let Wj denotes the weight associated with
job j . This problem finds an optimal non-
preemptive job schedule by minimizing the
weighted flow time as follows:

∑
=

=
n

ij
jjs

cwsfMin)(

s refers to a given schedule and f(s) is the
corresponding objective function value.
 General assumptions are listed below [3]:

• Each job can be processed only by one

operation.
• No job can be processed on more than one

machine simultaneously.
• Any machine can process any job.
• No machine may process more than one job

at a time.
• Machines never break down and are

available during the scheduling period.
• Job processing times are independent of the

scheduling.
• Number of jobs is fixed.
• Number of machines is fixed.
• Processing time of jobs on machine is given

and fixed.

In the other hands, scheduling problems in practice
often require a trade-off between the system

efficiency and timely completion of individual
orders. A major reason for this is that there are
typically efficiencies associated with processing
similar parts together. This exerts pressure for
scheduling long runs of similar jobs at the expense
of some delays in other jobs.

1.2. Literature Review Many researchers
studied parallel-machine scheduling problems in
past. Cheng and Sin [4] surveyed a parallel-
machine scheduling problem and Allahverdi et al.
[5] investigated a comprehensive review of setup-
time (or time) research for scheduling problems
classifying into batch, non-batch, sequence-
independent, and sequence-dependent setup. Potts
and Kovalyov [6] reviewed the literature on family
scheduling models with single-machine, shop
problems, and parallel machine. Research on
family scheduling models is relatively new in the
literature, and most of this work has been focused
on single machine models [7]. Brono et al. [8]
proved that even a two-machine system for finding
the weighted sum of flow times with an unequally
weighted set of jobs is NP-hardness. This is true
even when the problem is simplified by assuming
no family setup times [9], or assigning weight 1 for
each job [10].
 Ahn and Hyun [1], Bruno and Sethi [11],
Mason and Anderson [12], and Monma and Potts
[13] proposed some algorithms to minimize the
total weighted flow time on a single machine with
family setup times. Mason and Anderson [12]
described a branch-and-bound (B/B) method and a
depth-first search algorithm. Ramachandra and
Elmaghraby [14] proposed a binary integer
program (BIP) and a dynamic program (DP) on
two machines to minimize the weighted
completion time. They also introduced a genetic
algorithm (GA) procedure to solve the above-
mentioned problems. Other studies have been
applied dynamic programming (DP) algorithms to
the problem. Monma and Potts [13], while not
explicitly defining an algorithm, identified the
approach for extending their single-machine DP
algorithm to accommodate parallel machines.
 Webster and Azizoglu [7] described the
problem of scheduling jobs with family setup times
on identical-parallel machines to minimize the total
weighted flow time. They presented two dynamic
programming algorithms to solve the given

IJE Transactions A: Basics Vol. 20, No. 2, June 2007 - 185

problem and identified characteristics of problems,
in which each algorithm is best suited. However,
they did not develop an algorithm to be directly
implemented in practice. They believed that most
real-world problems are much more complicated
than the model under consideration, and hoped to
take a step towards effective and practical
solutions methods for more complex and more
widely applicable models of scheduling problems
in industries.
 Nessah et al. [15] presented an identical
parallel-machine scheduling problem with
sequence-dependent setup times and release dates
to minimize the total completion time. They
proved a condition for local optimality as a priority
rule, and defined a dominant subset based on this
condition. They also proposed heuristic algorithms
based on this condition to build a schedule
belonging to a subset, and then developed the
lower bound computed in a polynomial time. They
constructed a branch-and-bound (B/B) algorithm in
such way that the heuristic, lower bound, and
dominance properties were incorporated. Monch et
al. [16] attempted to minimize the total weighted
tardiness on parallel batch machines with
incompatible job families and unequal ready times
of jobs. They proposed two approaches and applied
genetic algorithm (GA) in both approaches. Leung
et al. [17] analyzed efficient heuristics for the
scheduling orders for multiple product types to
minimize the total weighted completion time
without release dates.
 Zhu and Heady [18] introduced a mixed integer
programming formulation to minimize the earliness
and tardiness of all jobs for a scheduling problem
with a non-uniform parallel machine and setup
consideration. Omar and Teo [19] studied on
minimizing the sum of earliness/tardiness in the
presence of setups. They developed a mixed-integer
programming formulation model to deal with such a
scheduling problem. Biskup and Cheng [20]
focused on two objectives, namely small deviations
from a common due date and short flow times.
Therefore, they proposed a model to minimize the
earliness, tardiness, and completion time penalties.
 Caoa et al. [21] developed a combinatorial
optimization model and a heuristic algorithm to
obtain the optimal or near-optimal solutions based
on a tabu search (TS) mechanism on parallel
machines scheduling problems by minimizing the

sum of machine holding costs and job tardiness
costs. Balakrishnan et al. [22] presented a compact
mathematical model and described computational
experience by using their model to solve small-
sized problems. Dunstall et al. [23] proposed a B/B
algorithm for lower bounds for the problem of
minimizing the weighted flow time on a single
machine with family set-up times and static job
availability.
 Thus, as the case of many NP-hard problems,
research on efficient heuristics capable of high
quality solutions is warranted. Meta-heuristic
methods can be developed to solve such hard
problems. Park et al. [24] applied a neural network
approach for scheduling jobs on parallel machines.
Wardono and Fathi [2] developed a tabu search
algorithm for the problem of scheduling N jobs on
parallel machines in L successive stages with
limited buffer capacities between stages.
Ramachandra and Elmaghraby [14] proposed a
genetic algorithm (GA) procedure to find a
sequence of precedence-related jobs on two
machines that minimizes the weighted completion
time. Li and Cheng [25] considered the job
scheduling problem in identical parallel-machine
systems with an objective of minimizing the
maximum weighted absolute lateness as follows:
there are a set of jobs associated with known
processing time s and weights, several parallel and
identical machines, and a common due date that is
not too early to constrain the scheduling decision.
The objective is to find an optimal job schedule so
as to minimize the maximum weighted absolute
lateness. Further, Cheng and Gen [26] have applied
genetic algorithms to the above problem. Kim et al.
[27] proposed a simulated annealing (SA) method
for unrelated parallel-machine scheduling
problems with setup times.
 Tavakkoli-Moghaddam et al. [28] presented a
new mathematical model for a multi-criteria
parallel-machine scheduling problem that
minimizes the total earliness and tardiness
penalties, and machine costs. A meta-heuristic
method, based on genetic algorithms, is proposed
and developed. Melve and Uzsoy [29] also
proposed a genetic algorithm to a problem of
minimizing the maximum lateness on parallel,
identical batch-processing machines with dynamic
job arrivals, based on random keys encoding.
Leonardi and Raz [30] proposed an approximate of

186 - Vol. 20, No. 2, June 2007 IJE Transactions A: Basics

the total flow time on parallel machines. Kang and
Ng [31] presented a fully polynomial-time
approximation scheme for the parallel-machine
scheduling with deteriorating jobs.
 The purpose of this paper is to develop a
combinatorial optimization model and describe a
meta-heuristic algorithm in order to schedule job
families on parallel machines by minimizing the
total weighted flow time, in which the weight of a
job is the cost rate for delaying its completion [7].
Job families reflect the efficiencies associated with
processing similar jobs together. The setup may
reflect the need to change a tool or clean the
machine. A machine must be set up when
switching from one family to others. There is no
setup time between two jobs from the same family.
 The rest of this paper is given bellow. In
Section 2, details of the given problem and the
optimization model are presented. Section 3
presents a description and design of the proposed
genetic algorithm. In Section 4, several small-sized
instances are solved by a combinatorial model with
the Lingo 8.0 software to demonstrate the nature of
the problem and the features of the model. In
Section 5, various test problems are presented and
solved by the proposed genetic algorithm.
Computational results obtained by the proposed
algorithm show its effectiveness of finding optimal
or near-optimal solutions, especially for larger-
sized problems. Future research in this area and
conclusions are presented in Section 6.

2. PROBLEM FORMULATION

The objective of the problem is to schedule
identical parallel machines by minimizing the total
weighted flow time. All jobs are available at time
zero with known integer-processing times, setup
times, and weights. Each job is related to a family,
in which a setup time is required between two jobs
from deferent families, and the family setup time is
independent of the preceding family. A setup is
also required prior to the processing of the first job
on a machine. This is typical of environment when
scheduling at the beginning of a new shift after
machine down time. For a given schedule, the
weighted flow time of a particular job is the
product of its weight and job completion time, and

the total weighted flow time of a schedule is the
sum of weighted flow time over all jobs.

2.1. Definition of Parameters Following
Parameters are used in the proposed model:

i , j Job indices where job 0 is a dummy job

which is always at the first position on a
machine (i, j = 0, 1, …, n)

k Machine index (k = 1, 2, …, m)
f , g Family indices
n Number of jobs
m Number of identical parallel machines
o Number of families, (no ≤)
M A large positive number

ifP Processing time of job i from family of

(f = 1, 2, …, o)

fS Setup time of family f

ifW Weight of job i from family f

ifjgγ = 1, if gf ≠ ; and = 0, otherwise

2.2. Definition of Decision Variable

ifC Completion time of job i from family f

ifkY = 1, if job i from family f is assigned to
machine k ; and = 0, otherwise.

ifjgkX = 1, if job j from family g immediately

follows job i from family f on machine
k ; and = 0, otherwise.

ifkX 0 = 1, if job i from family f on machine k
is the first in the queue; and = 0,
otherwise.

2.3. Proposed Model The proposed
mathematical model is as follows:

1
Min ;

n

if if
i

T W FT C W
=

= ∑ (1)

s.t.

1
1 ,

m

if k
k

Y i f
=

= ∀∑ (2)

IJE Transactions A: Basics Vol. 20, No. 2, June 2007 - 187

if f ifk if ifkC S Y P Y≥ + , ,i f k∀ (3)

);1(ifjgkifjgjgjgifjg XMSPCC −−++≥ γ

, , , , , ; ; i j f m g k i j f g∀ ≠ ≠ (4)

0 1

1 , ,
n m

if jgk
i k
j i

X f j g
= =
≠

= ∀∑ ∑ (5)

0
 , , ,

n

if jgk jgk
i
j i

X Y f j g k
=
≠

= ∀∑ (6)

1

 , , ,
n

ifjgk ifk
j
j i

X Y i f g k
=
≠

≤ ∀∑ (7)

0
1

1 ,
n

ifk
i

X f k
=

≤ ∀∑ (8)

0, , 0,1 ; 0ifk ifjgk ifk iY X X C= ≥
, , , ,i j f g k∀ (9)

Equation 1 represents the objective function
minimizing the total weighted flow time. Equation
2 states each job from each family must be
assigned to exactly one machine. Equation 3
ensures that completion time of a job from a family
must be later or equal to its processing time and
setup time. Equation 4 guarantees that the
completion time of a job must be later or equal to
the completion time of its direct predecessor job in
the sequence, and its processing and setup time (if
setup is necessary). This constraint becomes
redundant if jobs i and j are assigned to different
machines. Equation 5 ensures that a job must be
processed at one and only one position on a
machine. Equation 6 states that job j should
immediately follow other job on machine k if it is
placed on this machine. Equation 7 states that if
job i, i ≠ 0, is processed on machine k, it will be
immediately followed by at most one another job
on this machine. Equation 8 enforces that only at
most one job immediately follows the dummy job
0 on each machine. Equation 9 states the properties
of the decision variables.

3. THE PROPOSED GENETIC
ALGORITHM

3.1. Structure of Genetic Algorithm Genetic
algorithm (GA) was first introduced by John
Holland in the 1970s. It is a search technique based
on the concept of the natural selection and
evolution. The usual form of GA was described by
Goldberg [32]. GA is a stochastic search technique
based on the mechanism of the natural selection
and natural genetics. Genetic algorithm, differing
from conventional search techniques, it starts with
an initial set of random solutions called a
population. Each individual in the population is
referred to a chromosome, representing a solution
to the problem at hand. A chromosome is a string
of symbols. Chromosomes evolve through
successive iterations, namely generations. During
each generation, chromosomes are evaluated by
using some measures of fitness. To create the next
generation, new chromosomes, referred to
offspring, are formed by either 1 merging two
chromosomes from the current generation by using
a crossover operator, or 2 modifying a
chromosome by using a mutation operator. A new
generation is formed by 1 selecting, according to
the fitness value, some of parents and offspring,
and 2 rejecting others so as to keep the population
size constant. After several generations, the
algorithm converges to the best chromosome,
which hopefully represents the optimal or sub-
optimal solution to the given problem [32].
 Usually, initialization is assumed to be random.
There are only two types of operators in genetic
algorithms:

• Genetic operations: crossover, mutation
• Evolution operations: selection

A genetic algorithm consists of four search
operators, namely selection, crossover, mutation,
and reproduction, to transform a population of
chromosomes while improving their ‘‘quality’’.
Genetic search operators are then applied one after
another to systematically obtain a new generation
of chromosomes with a better overall quality. This
process is repeated until the stopping criterion is
met, and the best solution of the last generation is
reported as the final solution. To efficiently search
the GA process and find the proper solution

188 - Vol. 20, No. 2, June 2007 IJE Transactions A: Basics

Population Genetic
Operations

Fitness
Evaluation

Mating Pool

Selection

Exit

Subpopulation

Terminate

No

Phenotype

Insertion

Roulette
Wheel

Phenotype

Yes

Objective
function

Figure 1. Structure of the proposed GA.

Machine 2 (j1, k1)
Machine 1 (j2, k3) (j1, k2)

Figure 2. Schedule for three-jobs, two-families and two
machines.

structure, it is necessary that the initial population
of schedules be a diverse representative of the
search space. The structure of GA is illustrated in
Figure 1.

3.2. Application of GA to the Given
Problem

3.2.1. Chromosome representation There
are two essential issues to be dealt with all types of
multiple machine scheduling problems [32]:

• Partition of jobs to machines.
• Sequence jobs for each machine.

Also, each job (e.g., k) belongs to a family (e.g., j)
as shown with (j, k). An extended permutation
representation is proposed to encode these things
into a chromosome. Where (j, k) represent all
possible permutation of (j, k) (or sequence of (j, k))
and asterisks * designate the partition of (j, k) to
machines. Each * in a chromosome is a gene of it.
Let us consider a simple example with three jobs,
two families and two machines subject to k1 and k2
belong to j1 and k3 belong to j2. Suppose there is a
schedule shown in Figure 2.
 The chromosome can be represented as follows:

[(j2, k3) (j1, k2) * (j1, k1)]

In general, for an n-job, f-family and m-machine
problem, a legal chromosome contains n symbols
of (j, k) and m-1 partitioning symbols resulting in
the total size of (n + m-1).

3.2.2. Generation of the initial population Initial
population is randomly generated.

3.2.3. Evaluation a simple way to determine
the fitness value for each chromosome is to use the
inverse of total weighted flow time. Let TWFTk
denote the total weighted flow time for the kth
chromosome. The fitness value ()(kveval) is then
calculated as follows:

k
k TWFT

veval 1)(=

Where,

∑
=

=
n

ij
jk WFTTWFT

WFTj is weighted flow time for the jth job that is
computed as follows:

WFTj = (Completion time of jth job) * (weight of jth
job)

3.2.4. Selection The purpose of the parent
selection in GA is to offer additional reproductive
chances to those population members that are the
fittest. One common technique used in the
proposed GA is the roulette wheel selection. The
roulette wheel can be constructed as follows:

1. Calculate the fitness value eval(vk) for each

chromosome vk (k = 1,2,…,pop_size)

2. Calculate the total fitness for the population

IJE Transactions A: Basics Vol. 20, No. 2, June 2007 - 189

∑
−

=

=
sizepop

k
kvevalF

1

)()

3. Calculate selection probability Pk for each

chromosome vk: F
veval

p k
k

)(
= , (k = 1, 2,

…, pop _ size)

4. Calculate cumulative probability kq for

each chromosome kv : ∑
=

=
k

ij
jk pq , (k =

1, 2,…,pop_size)

5. Generate a random number r from the

interval [0,1]

6. If 1qr ≤ , then select the first chromosome

vk ; otherwise, select the kth chromosome vk
(2 _k pop size≤ ≤) such that

kk qrq ≤− p1 .

3.2.5. The genetic operators Crossover is the
main genetic operator. It generates offspring by
combining both chromosomes’ features. To a great
extend, the performance of genetic algorithms
depends on the type of the crossover operator used.
The crossover rate is defined as the ratio of the
number of offspring produced in each generation
to the population size [32]. There are several types
of crossover operators. In this study, we use the
order crossover (OX) operator.

Order Crossover (OX) The OX works as
follows:

• Select a substring from one parent at

random.
• Produce a proto-child by copying the

substring into the corresponding positions.
• Delete the jobs which are already in the

substring from the second parent. The
resulted sequence of jobs contains the jobs
that the proto-child needs.

• Place the jobs into the unfixed positions of
the proto-child from left to right according
to the order of the sequence to produce an
offspring.

The procedure is illustrated in Figure 3. By the OX
procedure, we can produce two offspring in per
iteration but the proposed crossover takes two
parents and creates a single offspring.
 Mutation is a background operator which
produces spontaneous random changes in various
chromosomes. The mutation rate is defined as the
percentage of the total number of gene in the
population. During past years several mutation
operators have been proposed such as inversion,
insertion, displacement, reciprocal exchange
mutation [32]. The reciprocal exchange mutation
(swapping mutation) is used here, in which we select
two random positions and then swap their genes.

Swapping Mutation The randomly swapped
genes may be either job or asterisk. The different
combinations of job and asterisk result in four
basic types of mutation.

1. If both genes are job, two cases may occur:

One case is that two selected jobs are
processed by the same machine. In this case,
the mutation alters the job order for the
machine as shown in Figure 4(a)

2. Another case is that two jobs are processed
by different machines. In this case, the
mutation alters both job order and job
partition to machines for the chromosome as
shown in Figure 4(b).

3. If both genes are asterisk, the mutation
performs a trivial operation as shown in
Figure 4(c).

4. If one gene is asterisk and another is job, the
mutation alters both job order and job
partition to machines for the chromosome as
shown in Figure 4(d).

The last one is the only genetic operation, which
can alter the position of asterisks.

4. ILLUSTRATED EXAMPLES

To efficiently perform the proposed GA, two
small-sized test problems are solved by using the
Lingo 8.0 optimization software compared with the
proposed GA.

190 - Vol. 20, No. 2, June 2007 IJE Transactions A: Basics

Parent1

(1 3) (1 5) (3 4) * (2 1) (3 6) (2 2) (1 7)

Offspring

(3 6) (1 5) (3 4) * (2 1) (1 3) (2 2) (1 7)

Parent2

(3 6) (1 5) * (3 4) (1 3) (2 1) (2 2) (1 7)

Figure 3. Illustration of OX operator.

Parent

(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7)

Offspring

(3 4) (1 5) (1 3) * (2 1) (3 6) * (2 2) (1 7)

(a)

Parent
(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7)

Offspring

(1 3) (3 6) (3 4) * (2 1) (1 5) * (2 2) (1 7)

(b)

Parent

(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7)

Offspring

(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7)

(c)

Parent

(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7)

Offspring

(1 3) * (3 4) * (2 1) (3 6) (1 5) (2 2) (1 7)

(d)

Figure 4. (a) Swap two jobs within on machine; (b) Swap two jobs within different machine;
(c) Trivial swap; (d) Swap the position of a job and an asterisk.

IJE Transactions A: Basics Vol. 20, No. 2, June 2007 - 191

Example 4.1. First, we consider a simple
example of a three-job, two-family, and two-
machine problem given in Webster and Azizoglu
[7]. The primary information is summarized in
Table 1.
 The globally optimal solution is found at
iteration 514 with the best objective function 10, in
which the associated sequence is given bellow:

M1: (1 2)
M2: (2 3) → (1 1)

Example 4.2. For the second example, we
consider an identical parallel-machine scheduling
problem with seven jobs, three families, and three
machines. The other associated information is
given in Table 2.
 The globally optimal solution is found at
iteration 165723with the best objective function
147, and the associated Gantt chart for the best one
is depicted in Figure 5. A comparison of these two
examples also reveals the complexity of the
problem.

5. COMPUTATIONAL RESULTS AND
PERFORMANCE EVALUATION

Most real-world problems are more complicated
than the previous examples. The proposed genetic
algorithm can be used for more complex and
widely applicable models of scheduling problems
in industries.
 The genetic algorithm is first used to solve the
same two small-sized test problems as presented in
Section 4. The related genetic solutions are
compared with the optimal solutions obtained by
the Lingo 8.0 software package. It is then used to
solve one medium-sized problem to schedule 20
jobs from 10 families on five machines with
various Pc and Pm.

Example 5.1. For example 4.1, the genetic
parameters are set as follows: pop-size = 5, max-
gen = 1, Pc = [0.3-0.8], and Pm = [0.1-0.6]. We
run the proposed GA about 50 times and obtain an
optimal schedule in any effort in first time. There
are two distinct optimal schedules in the proposed
GA (e.g., jobs (1,2) and (1,1) on one machine, and
job (2,3) on the other machine, or alternatively,

jobs (2,3) and (1,1) on one machine, and job (1,2)
on the other machine). The associated
computational results are presented in Table 3.

TABLE 1. Input Data.

JOB (I) 1 2 3
Processing
time (Pif)

3 1 1

Weight (Wif) 1 2 1
Family (f) 1 1 2
Setup time

for each
family (Sf)

1 1 0

TABLE 2. Input Data for the 2th Example.

i 1 2 3 4 5 6
Pif 3 5 7 6 4 2
Wif 4 2 3 1 2 3
f 2 2 1 3 1 3
Sf 3 3 2 4 2 4

M3 S3 = 4 P63 = 2 P43 = 6

M2 S2 = 3 P12 = 3 P22 = 5
M1 S1 = 2 P71 = 1 P51 = 4 P31 = 7

Figure 5. Gantt chart for best schedule for the 2nd example.

TABLE 3. Comparison of GA with DP and ILP Methods.

Method Machine Schedule TWFT
MI (1 2) DP
M2 (2 3) → (1 1)

10

M1 (1 2)
ILP

M2 (2 3) → (1 1)
10

M1 (1 2)
GA

M2 (2 3) → (1 1)
10

192 - Vol. 20, No. 2, June 2007 IJE Transactions A: Basics

Example 5.2. For example 4.2, the genetic
parameters are set as follows: pop_size = 20,
max_gen = 150, Pc = 0.3, Pm = 0.1. We run the
genetic algorithm 10 times. The computational
results obtained are summarized in Table 4.

Example 5.3. Table 5 shows an identical
parallel-machine problem with 20 jobs, 10
families, 5 machines and other information
generated at random.
 In this section, to compare various Pc and Pm,
we choose the appropriate crossover rate and
mutation rate for parallel machines with family
setup times. Other parameters are tuned up as
follows: pop_size = 10, max_gen = 20. We run the
genetic algorithm 15 times. The associated
computational results are summarized in Table 6.
 As discussed above, the genetic search method
is guided by the ‘tuning’ of three parameters,
namely population size, crossover rate (Pc), and
mutation rate (Pm). We choose these parameters
empirically within the ranges as shown in Table 7.
In Table 8 we compare the performance of the
proposed GA with the Lingo 8 software in terms of
computational times. The proposed GA has better

solution than the Lingo software. Further, when the
number of jobs increases, we can see that the
computational time increases exponentially
because of the NP-hard nature of the given
problem.

6. CONCLUSION

The parallel-machine scheduling problem is an
extended field of study in various applications.
This type of problem is one of classical machine
scheduling problems. This problem with family
setup times is considered in the parallel machines
problem, and shown to be NP-hardness in strong
sense. We presented a new integer-linear
programming (ILP) model of the foregoing
problem. Further, we proposed a genetic algorithm
(GA) that minimizes the total weighted flow time
of jobs on identical parallel machines with family
setup times. Some properties and solution methods
for a generalized model consisting of job due dates
and penalties for completing both early and tardy
jobs can be used in further research.

TABLE 4. Result of Example with Seven Jobs

Total run Best one Worst one Average
10 147 178 169.2

TABLE 5. Information for Example 5.3.

i Pif Wif f Sf i Pif Wif f Sf

1 10 4 1 5 11 5 2 4 10
2 12 2 1 5 12 5 2 3 10
3 5 1 2 5 13 10 4 2 5
4 12 3 3 10 14 15 2 9 5
5 15 1 4 10 15 20 3 10 5
6 10 2 5 5 16 10 4 8 10
7 15 5 6 5 17 5 5 5 5
8 18 4 7 10 18 5 1 3 10
9 15 2 6 5 19 15 2 2 5

10 10 5 5 5 20 10 5 1 5

IJE Transactions A: Basics Vol. 20, No. 2, June 2007 - 193

7. REFERENCES

1. Ahn, B. H. and Hyun, J. H., “Single facility multi-class

job scheduling”, Computers and Operations Research,
Vol. 17, (1990), 265-72.

2. Wardono, B. and Fathi, Y., “A tabu search algorithm for
the multi-stage parallel machine problem with limited
buffer capacities”, European Journal of Operational
Research, Vol. 155, (2004), 380-401.

3. Bjorndal, M, Caprara, A., Cowling, P., Croce, P.

TABLE 6. The Comparison Various Mutation and Crossover Rates.

No. of Job No. of
Machine

No. of
Family Pc Pm TWFT of

Best One Average

20 5 10 0.2 0.1 2758 3087
20 5 10 0.3 0.1 2755 3158
20 5 10 0.5 0.1 2570 2960

20 5 10 0.7 0.1 2760 3397
20 5 10 .3 0.2 2491 3085
20 5 10 0.5 0.2 2608 3151
20 5 10 0.7 0.2 2671 3253
20 5 10 0.3 0.4 2659 3036
20 5 10 0.3 0.6 2498 3008
20 5 10 0.5 0.7 2813 3171

TABLE 7. Basic Setting for GA Parameters.

Parameters Range
Pop-size 5 - 50
Max-gen 20 - 100

Pc 0.2 - 0.5
Pm 0.05 - 0.2

TABLE 8. Comparison of the Proposed GA and Lingo 8.

Lingo GA No. of
Job

No. of
Machine

No. of
Family OFV Time

(sec) OFV Time
(sec)

3 2 2 10 < 1 10 < 1
5 2 2 46 1 46 < 1
7 3 3 147 40 147 5

10 3 3 77 4906 77 20
10 3 2 68 9614 68 32

194 - Vol. 20, No. 2, June 2007 IJE Transactions A: Basics

Lourence, H., Malucelli, F., Orman, A., Pisinger, D.,
Rego, C. and Salazar, J., “Some thoughts on
combinatorial optimization”, European Journal of
Operational Research, Vol. 83, (1990), 253-270.

4. Cheng, T. and Sin, C., “A state-of-the-art review of
parallel-machine scheduling research”, European
Journal of Operational Research, Vol. 47, (1990), 271-
292.

5. Allahverdi, A., Ng, C. T., Cheng, T. C. E. and
Kovalyov, M. Y., “A survey of scheduling problems
with setup times or costs”, European Journal of
Operational Research, to appear in, (2007), DOI:
10.1016/j.ejor., (2006).06.060.

6. Potts, C. N. and Kovalyov, M. Y., “Scheduling with
batching: A review”, European Journal of Operational
Research, Vol. 120, (2000), 228-249.

7. Webster, S. and Azizoglu, M., “Dynamic programming
algorithms for scheduling parallel machines with family
setup times”, Computers and Operations Research,
Vol. 28, (2001), 127-137.

8. Bruno, L, Coofman, J. and Sethi, R., “Scheduling
independent tasks reduce mean finishing time”,
Communications on ACM, Vol. 17, (1974), 382-387.

9. Garey, M. R. and Johnson, D. S., “Computers and
intractability: a guide to the theory of NP-
completeness”, San Francisco, CA: Freeman, (1979).

10. Webster, S. T., “The complexity of scheduling job
families about a common due date”, Operations
Research Letters, Vol. 20, (1997), 65-74.

11. Bruno, J. and Sethi, R., “Task sequencing in a batch
environment with setup times”, Foundations of Control
Engineering, Vol. 3, (1978), 105-117.

12. Mason, A. J. and Anderson, E. J., “Minimizing flow
time on a single machine with job classes and setup
times”, Naval Research Logistics, Vol. 38, (1991), 333-
350.

13. Monma, C. L. and Potts, C. N., “On the complexity of
scheduling with batch setup times”, Operations
Research, Vol. 37, (1989), 798-804.

14. Ramachandra, G. and Elmaghraby, S. E., “Sequencing
precedence-related jobs on two machines to minimize
the weighted completion time”, Int. J. Production
Economics, Vol. 100, (2006), 44-58.

15. Nessah, R., Chu, C. and Yalaoui, F., “An exact method for

∑ =∑
=

n
1i)iC/ir,sds/mP(

n

1i
oriC/ir,sds/mp

problem”, Computers and Operations Research, Vol.
34, (2007), 2840-2848.

16. Monch, L., Balasubramanian, H., Fowler, W. J. and
Pfund, E. M., “Heuristic scheduling of jobs on parallel
batch machines with incompatible job families and
unequal ready times”, Computers and Operations
Research, Vol. 32, (2005), 2731-2750.

17. Leung, J. Y. - T., Li, H. and Pinedo, M. L., “Scheduling
orders for multiple product types to minimize total
weighted completion time”, Discrete Applied
Mathematics, Vol. 155, (2007), 945-970.

18. Zhu, Z. and Heady, R. B., “Minimizing the sum of
earliness/tardiness in multi machine scheduling with
sequence dependant setups on uniform parallel

machines”, Computer and Industrial Engineering, Vol.
38, (2000), 297-305.

19. Omar, M. K. and Teo, S. C., “Minimizing the sum of
earliness/tardiness in identical parallel machines
schedule with incompatible job families: An improved
MIP approach”, Applied Mathematics and
Computation, Vol. 181, (2006), 1008-1017.

20. Biskup, D. and Cheng, T. C. E., “Multiple-machine
scheduling with earliness, tardiness and completion time
penalties”, Computer and Operations Research, Vol.
26, (1999), 45-57

21. Caoa, D., Chen, M. and Wan, G., “Parallel machine
selection and job scheduling to minimize machine cost
and job tardiness”, Computers and Operations
Research, Vol. 32, (2005), 1995-2012.

22. Balakrishnan, N., Kanet, J. and Sridharan, S. V.,
“Early/tardy scheduling with sequence dependent setups
on uniform parallel machines”, Computer and
Operations Research, Vol. 26, (1999), 127-141.

23. Dunstall, S., Wirth, A. and Baker, K., “Lower bounds
and algorithms for flow time minimization on a single
machine with set-up times”, Journal of Scheduling,
Vol. 3, (2000) 51-69.

24. Park, Y., Kim, S. and Lee, Y. - H., “Scheduling jobs on
parallel machines applying neural network and heuristic
rules”, Computers and Industrial Engineering, Vol.
38, (2000), 189-202.

25. Li, C. and Cheng, T., “The parallel machine min-max
weighted absolute lateness scheduling problem”, Naval
Research Logistics, Vol. 41, (1993), 33-46.

26. Cheng, R. and Gen, M., “MinMax earliness/tardiness
scheduling in identical parallel machine system using
genetic algorithm”, Computer and Industrial
Engineering, Vol. 29, No. 1-4, (1995), 513-517.

27. Kim, D. - W., Kim, K. - H. Wooseung, Jang, F. and
Chen, F., “Unrelated parallel machine scheduling with
setup times using simulated annealing”, Robotics and
Computer Integrated Manufacturing, Vol. 18, (2002),
223–231.

28. Tavakkoli-Moghaddam, R., Jolai, F., Khodadadeghan,
Y. and Haghnevis, M., “A mathematical model of a
multi-criteria parallel machine scheduling problem: a
genetic algorithm”, International Journal of
Engineering, Transactions A: Basic, Vol. 19, No. 1,
(2006), 79-86.

29. Melve, S. and Uzsoy, R., “A genetic algorithm for
minimizing maximum lateness on parallel identical
batch processing machines with dynamic job arrivals
and incompatible job families”, Computers and
Operations Research, Vol. 34, (2007), 3016-3028.

30. Gen, M. and Cheng, R., “Genetic algorithms and
engineering design”, John Wiley and Sons, New York,
(1997).

31. Leonardi, S. and Raz, D., “Approximating total flow
time on parallel machines”, Journal of Computer and
System Science, Vol. 73, (2007), 875-891.

32. Kang, L. and Ng, C. T., “A note on a fully polynomial-
time approximation scheme for parallel-machine
scheduling with deteriorating jobs”, International of
Journal of Production Economics, Vol. 109, (2007),
180-184.

