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Abstract   This paper presents a novel, integer-linear programming (ILP) model for an identical 
parallel-machine scheduling problem with family setup times that minimizes the total weighted flow 
time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the 
literature over the last three decades. However, the existing studies have been limited to the research 
of independent jobs, and most classical optimization methods are focused on parallel-machine 
scheduling problems without considering setup times and relationship between jobs. This problem is 
shown to be NP-hard one in the strong sense. Obtaining an optimal solution for this type of complex, 
large-sized problems in reasonable computational time is extremely difficult. A meta-heuristic 
method, based on genetic algorithms, is thus proposed and applied to the given problem in order to 
obtain a good and near-optimal solution, especially for large sizes. Further, the efficiency of the 
proposed algorithm, based on various test problems, is compared with the Lingo 8.0 software. 
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له زمانبنـدي   اجديـد بـرای مـس     )  خطـي  -عـدد صـحيح     (ريـزي مخـتلط       در اين مقاله يک مدل برنامه        چکيده
 به منظور حداقل نمودن کل زمـان   خانواده کارهاسازي هاي آماده هاي موازي يکسان با در نظر گرفتن زمان         ماشين

وازي توسط محققين زيادي مـورد      هاي م   هاي اخير مسائل زمانبندي ماشين      در سال . گردد  جريان ساخت وزنی مي   
سـازي    هـاي بهينـه     مطالعه قرار گرفته است، اما تحقيقات موجود محدود به کارهاي مستقل بـوده و اغلـب روش                

سـازي و ارتبـاط بـين کارهـا متمرکـز             هاي آماده   هاي موازي بدون در نظرگرفتن زمان       متداول روي مسائل ماشين   
ل اين نوع مسائل پيچيده و بـا مقيـاس بـزرگ در زمـان محاسـباتی       بدست آوردن جواب بهينه براي ح     . باشند  مي

ابتكـاري بـر اسـاس     بنابراين براي حل مسئله مورد نظر، ارائه يـک الگـوريتم فـرا   . باشد معقول بسيار مشکل مي
الگوريتم ژنتيک براي دستيابي به جواب مناسب و نزديک بهينه، مخصوصاً براي مسائل با اندازه بـزرگ، پيـشنهاد     

 مورد مقايـسه    ۸بعلاوه، کارايی الگوريتم پيشنهادی بر اساس چند مسئله نمونه با نرم افزار لينگو نسخه               . گردد مي
 .گيرد قرار مي

 
1. INTRODUCTION 

 
A machine scheduling problem is an extended field 
of research in various applications. The main 
elements of machine scheduling problems are 
machine configuration, job characteristics, and 
objective function. The machine configuration can 

be classified to single and multiple machine 
problems in a broad sense. Parallel-machine 
scheduling problems can be referred as a class of 
problems that relaxed from the multiple machine 
scheduling problems [1]. In an identical parallel 
machine system, all machines are identical and a 
job can be processed by any free machine. Three 
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issues are dealt with this scheduling as follows: 
 
• What machine to be allocated to which jobs? 
• How to order the jobs in an appropriate 

processing sequence? 
• How to rationalize the reasonableness of the 

schedule? 
 
The main criteria measures can also be classified to 
three distinct groups as follows [2]: 
 
1. Completion-time-based measures. 
2. Due-date-based measures. 
3. Idleness-penalty-based measures. 
 
1.1. Minimum Weighted Flow Time 
Problem   The minimum weighted flow time 
problem belongs to the first above-mentioned 
group. 
     Let Wj denotes the weight associated with 
job j . This problem finds an optimal non-
preemptive job schedule by minimizing the 
weighted flow time as follows: 
 

∑
=

=
n

ij
jjs

cwsfMin )(
 

 
s refers to a given schedule and f(s) is the 
corresponding objective function value. 
     General assumptions are listed below [3]: 
 
• Each job can be processed only by one 

operation. 
• No job can be processed on more than one 

machine simultaneously. 
• Any machine can process any job. 
• No machine may process more than one job 

at a time. 
• Machines never break down and are 

available during the scheduling period. 
• Job processing times are independent of the 

scheduling. 
• Number of jobs is fixed. 
• Number of machines is fixed. 
• Processing time of jobs on machine is given 

and fixed. 
 
In the other hands, scheduling problems in practice 
often require a trade-off between the system 

efficiency and timely completion of individual 
orders. A major reason for this is that there are 
typically efficiencies associated with processing 
similar parts together. This exerts pressure for 
scheduling long runs of similar jobs at the expense 
of some delays in other jobs. 
 
1.2. Literature Review   Many researchers 
studied parallel-machine scheduling problems in 
past. Cheng and Sin [4] surveyed a parallel-
machine scheduling problem and Allahverdi et al. 
[5] investigated a comprehensive review of setup-
time (or time) research for scheduling problems 
classifying into batch, non-batch, sequence-
independent, and sequence-dependent setup. Potts 
and Kovalyov [6] reviewed the literature on family 
scheduling models with single-machine, shop 
problems, and parallel machine. Research on 
family scheduling models is relatively new in the 
literature, and most of this work has been focused 
on single machine models [7]. Brono et al. [8] 
proved that even a two-machine system for finding 
the weighted sum of flow times with an unequally 
weighted set of jobs is NP-hardness. This is true 
even when the problem is simplified by assuming 
no family setup times [9], or assigning weight 1 for 
each job [10]. 
     Ahn and Hyun [1], Bruno and Sethi [11], 
Mason and Anderson [12], and Monma and Potts 
[13] proposed some algorithms to minimize the 
total weighted flow time on a single machine with 
family setup times. Mason and Anderson [12] 
described a branch-and-bound (B/B) method and a 
depth-first search algorithm. Ramachandra and 
Elmaghraby [14] proposed a binary integer 
program (BIP) and a dynamic program (DP) on 
two machines to minimize the weighted 
completion time. They also introduced a genetic 
algorithm (GA) procedure to solve the above-
mentioned problems. Other studies have been 
applied dynamic programming (DP) algorithms to 
the problem. Monma and Potts [13], while not 
explicitly defining an algorithm, identified the 
approach for extending their single-machine DP 
algorithm to accommodate parallel machines. 
     Webster and Azizoglu [7] described the 
problem of scheduling jobs with family setup times 
on identical-parallel machines to minimize the total 
weighted flow time. They presented two dynamic 
programming algorithms to solve the given 
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problem and identified characteristics of problems, 
in which each algorithm is best suited. However, 
they did not develop an algorithm to be directly 
implemented in practice. They believed that most 
real-world problems are much more complicated 
than the model under consideration, and hoped to 
take a step towards effective and practical 
solutions methods for more complex and more 
widely applicable models of scheduling problems 
in industries. 
     Nessah et al. [15] presented an identical 
parallel-machine scheduling problem with 
sequence-dependent setup times and release dates 
to minimize the total completion time. They 
proved a condition for local optimality as a priority 
rule, and defined a dominant subset based on this 
condition. They also proposed heuristic algorithms 
based on this condition to build a schedule 
belonging to a subset, and then developed the 
lower bound computed in a polynomial time. They 
constructed a branch-and-bound (B/B) algorithm in 
such way that the heuristic, lower bound, and 
dominance properties were incorporated. Monch et 
al. [16] attempted to minimize the total weighted 
tardiness on parallel batch machines with 
incompatible job families and unequal ready times 
of jobs. They proposed two approaches and applied 
genetic algorithm (GA) in both approaches. Leung 
et al. [17] analyzed efficient heuristics for the 
scheduling orders for multiple product types to 
minimize the total weighted completion time 
without release dates. 
     Zhu and Heady [18] introduced a mixed integer 
programming formulation to minimize the earliness 
and tardiness of all jobs for a scheduling problem 
with a non-uniform parallel machine and setup 
consideration. Omar and Teo [19] studied on 
minimizing the sum of earliness/tardiness in the 
presence of setups. They developed a mixed-integer 
programming formulation model to deal with such a 
scheduling problem. Biskup and Cheng [20] 
focused on two objectives, namely small deviations 
from a common due date and short flow times. 
Therefore, they proposed a model to minimize the 
earliness, tardiness, and completion time penalties. 
     Caoa et al. [21] developed a combinatorial 
optimization model and a heuristic algorithm to 
obtain the optimal or near-optimal solutions based 
on a tabu search (TS) mechanism on parallel 
machines scheduling problems by minimizing the 

sum of machine holding costs and job tardiness 
costs. Balakrishnan et al. [22] presented a compact 
mathematical model and described computational 
experience by using their model to solve small-
sized problems. Dunstall et al. [23] proposed a B/B 
algorithm for lower bounds for the problem of 
minimizing the weighted flow time on a single 
machine with family set-up times and static job 
availability. 
     Thus, as the case of many NP-hard problems, 
research on efficient heuristics capable of high 
quality solutions is warranted. Meta-heuristic 
methods can be developed to solve such hard 
problems. Park et al. [24] applied a neural network 
approach for scheduling jobs on parallel machines. 
Wardono and Fathi [2] developed a tabu search 
algorithm for the problem of scheduling N jobs on 
parallel machines in L successive stages with 
limited buffer capacities between stages. 
Ramachandra and Elmaghraby [14] proposed a 
genetic algorithm (GA) procedure to find a 
sequence of precedence-related jobs on two 
machines that minimizes the weighted completion 
time. Li and Cheng [25] considered the job 
scheduling problem in identical parallel-machine 
systems with an objective of minimizing the 
maximum weighted absolute lateness as follows: 
there are a set of jobs associated with known 
processing time s and weights, several parallel and 
identical machines, and a common due date that is 
not too early to constrain the scheduling decision. 
The objective is to find an optimal job schedule so 
as to minimize the maximum weighted absolute 
lateness. Further, Cheng and Gen [26] have applied 
genetic algorithms to the above problem. Kim et al. 
[27] proposed a simulated annealing (SA) method 
for unrelated parallel-machine scheduling 
problems with setup times. 
     Tavakkoli-Moghaddam et al. [28] presented a 
new mathematical model for a multi-criteria 
parallel-machine scheduling problem that 
minimizes the total earliness and tardiness 
penalties, and machine costs. A meta-heuristic 
method, based on genetic algorithms, is proposed 
and developed. Melve and Uzsoy [29] also 
proposed a genetic algorithm to a problem of 
minimizing the maximum lateness on parallel, 
identical batch-processing machines with dynamic 
job arrivals, based on random keys encoding. 
Leonardi and Raz [30] proposed an approximate of 
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the total flow time on parallel machines. Kang and 
Ng [31] presented a fully polynomial-time 
approximation scheme for the parallel-machine 
scheduling with deteriorating jobs. 
     The purpose of this paper is to develop a 
combinatorial optimization model and describe a 
meta-heuristic algorithm in order to schedule job 
families on parallel machines by minimizing the 
total weighted flow time, in which the weight of a 
job is the cost rate for delaying its completion [7]. 
Job families reflect the efficiencies associated with 
processing similar jobs together. The setup may 
reflect the need to change a tool or clean the 
machine. A machine must be set up when 
switching from one family to others. There is no 
setup time between two jobs from the same family. 
     The rest of this paper is given bellow. In 
Section 2, details of the given problem and the 
optimization model are presented. Section 3 
presents a description and design of the proposed 
genetic algorithm. In Section 4, several small-sized 
instances are solved by a combinatorial model with 
the Lingo 8.0 software to demonstrate the nature of 
the problem and the features of the model. In 
Section 5, various test problems are presented and 
solved by the proposed genetic algorithm. 
Computational results obtained by the proposed 
algorithm show its effectiveness of finding optimal 
or near-optimal solutions, especially for larger-
sized problems. Future research in this area and 
conclusions are presented in Section 6. 
 
 
 

2. PROBLEM FORMULATION 
 
The objective of the problem is to schedule 
identical parallel machines by minimizing the total 
weighted flow time. All jobs are available at time 
zero with known integer-processing times, setup 
times, and weights. Each job is related to a family, 
in which a setup time is required between two jobs 
from deferent families, and the family setup time is 
independent of the preceding family. A setup is 
also required prior to the processing of the first job 
on a machine. This is typical of environment when 
scheduling at the beginning of a new shift after 
machine down time. For a given schedule, the 
weighted flow time of a particular job is the 
product of its weight and job completion time, and 

the total weighted flow time of a schedule is the 
sum of weighted flow time over all jobs. 
 
2.1. Definition of Parameters   Following 
Parameters are used in the proposed model: 
 
i , j  Job indices where job 0 is a dummy job 

which is always at the first position on a 
machine (i, j = 0, 1, …, n) 

k  Machine index (k = 1, 2, …, m) 
f , g  Family indices 
n  Number of jobs 
m  Number of identical parallel machines 
o  Number of families, ( no ≤ ) 
M  A large positive number 

ifP  Processing time of job i from family of 

( f  = 1, 2, …, o) 

fS  Setup time of family f  

ifW  Weight of job i from family f  

ifjgγ  = 1, if gf ≠ ; and = 0, otherwise 
 
2.2. Definition of Decision Variable 
 

ifC  Completion time of job i  from family f  

ifkY = 1, if job i  from family f  is assigned to 
machine k ; and = 0, otherwise. 

ifjgkX = 1, if job j  from family g immediately 

follows job i  from family f  on machine 
k  ; and = 0, otherwise. 

ifkX 0 = 1, if job i  from family f  on machine k  
is the first in the queue; and = 0, 
otherwise. 

 
2.3. Proposed Model   The proposed 
mathematical model is as follows: 
 

1
Min ;

n

if if
i

T W FT C W
=
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Equation 1 represents the objective function 
minimizing the total weighted flow time. Equation 
2 states each job from each family must be 
assigned to exactly one machine. Equation 3 
ensures that completion time of a job from a family 
must be later or equal to its processing time and 
setup time. Equation 4 guarantees that the 
completion time of a job must be later or equal to 
the completion time of its direct predecessor job in 
the sequence, and its processing and setup time (if 
setup is necessary). This constraint becomes 
redundant if jobs i and j are assigned to different 
machines. Equation 5 ensures that a job must be 
processed at one and only one position on a 
machine. Equation 6 states that job j should 
immediately follow other job on machine k if it is 
placed on this machine. Equation 7 states that if 
job i, i ≠ 0, is processed on machine k, it will be 
immediately followed by at most one another job 
on this machine. Equation 8 enforces that only at 
most one job immediately follows the dummy job 
0 on each machine. Equation 9 states the properties 
of the decision variables. 

3. THE PROPOSED GENETIC 
ALGORITHM 

 
3.1. Structure of Genetic Algorithm   Genetic 
algorithm (GA) was first introduced by John 
Holland in the 1970s. It is a search technique based 
on the concept of the natural selection and 
evolution. The usual form of GA was described by 
Goldberg [32]. GA is a stochastic search technique 
based on the mechanism of the natural selection 
and natural genetics. Genetic algorithm, differing 
from conventional search techniques, it starts with 
an initial set of random solutions called a 
population. Each individual in the population is 
referred to a chromosome, representing a solution 
to the problem at hand. A chromosome is a string 
of symbols. Chromosomes evolve through 
successive iterations, namely generations. During 
each generation, chromosomes are evaluated by 
using some measures of fitness. To create the next 
generation, new chromosomes, referred to 
offspring, are formed by either 1 merging two 
chromosomes from the current generation by using 
a crossover operator, or 2 modifying a 
chromosome by using a mutation operator. A new 
generation is formed by 1 selecting, according to 
the fitness value, some of parents and offspring, 
and 2 rejecting others so as to keep the population 
size constant. After several generations, the 
algorithm converges to the best chromosome, 
which hopefully represents the optimal or sub-
optimal solution to the given problem [32]. 
     Usually, initialization is assumed to be random. 
There are only two types of operators in genetic 
algorithms: 
 
• Genetic operations: crossover, mutation 
• Evolution operations: selection 
 
A genetic algorithm consists of four search 
operators, namely selection, crossover, mutation, 
and reproduction, to transform a population of 
chromosomes while improving their ‘‘quality’’. 
Genetic search operators are then applied one after 
another to systematically obtain a new generation 
of chromosomes with a better overall quality. This 
process is repeated until the stopping criterion is 
met, and the best solution of the last generation is 
reported as the final solution. To efficiently search 
the GA process and find the proper solution 
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Figure 1. Structure of the proposed GA. 
 
 
 

Machine 2 (j1, k1) 
Machine 1 (j2, k3) (j1, k2) 

 
Figure 2. Schedule for three-jobs, two-families and two 
machines. 

structure, it is necessary that the initial population 
of schedules be a diverse representative of the 
search space. The structure of GA is illustrated in 
Figure 1. 
 
3.2. Application of GA to the Given 
Problem 
 
3.2.1. Chromosome representation   There 
are two essential issues to be dealt with all types of 
multiple machine scheduling problems [32]: 
 
• Partition of jobs to machines. 
• Sequence jobs for each machine. 
 
Also, each job (e.g., k) belongs to a family (e.g., j) 
as shown with (j, k). An extended permutation 
representation is proposed to encode these things 
into a chromosome. Where (j, k) represent all 
possible permutation of (j, k) (or sequence of (j, k)) 
and asterisks * designate the partition of (j, k) to 
machines. Each * in a chromosome is a gene of it. 
Let us consider a simple example with three jobs, 
two families and two machines subject to k1 and k2 
belong to j1 and k3 belong to j2. Suppose there is a 
schedule shown in Figure 2. 
     The chromosome can be represented as follows: 
 
[(j2, k3) (j1, k2) * (j1, k1)] 
 
In general, for an n-job, f-family and m-machine 
problem, a legal chromosome contains n symbols 
of (j, k) and m-1 partitioning symbols resulting in 
the total size of (n + m-1). 
 
3.2.2. Generation of the initial population   Initial 
population is randomly generated. 
 
3.2.3. Evaluation a   simple way to determine 
the fitness value for each chromosome is to use the 
inverse of total weighted flow time. Let TWFTk 
denote the total weighted flow time for the kth 
chromosome. The fitness value ( )( kveval ) is then 
calculated as follows: 
 

k
k TWFT

veval 1)( =  

 
Where, 

∑
=

=
n

ij
jk WFTTWFT  

 
WFTj is weighted flow time for the jth job that is 
computed as follows: 
 
WFTj = (Completion time of jth job) * (weight of jth 
job) 
 
3.2.4. Selection   The purpose of the parent 
selection in GA is to offer additional reproductive 
chances to those population members that are the 
fittest. One common technique used in the 
proposed GA is the roulette wheel selection. The 
roulette wheel can be constructed as follows: 
 
1. Calculate the fitness value eval(vk) for each 

chromosome vk (k = 1,2,…,pop_size) 
 
2. Calculate the total fitness for the population 
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3. Calculate selection probability Pk for each 

chromosome vk: F
veval

p k
k

)(
= , (k = 1, 2, 

…, pop _ size) 
 
4. Calculate cumulative probability kq  for 

each chromosome kv : ∑
=

=
k

ij
jk pq , (k = 

1, 2,…,pop_size) 
 
5. Generate a random number r from the 

interval [0,1] 
 
6. If 1qr ≤ , then select the first chromosome 

vk ; otherwise, select the kth chromosome vk 
( 2 _k pop size≤ ≤ ) such that 

kk qrq ≤− p1 . 
 
3.2.5. The genetic operators   Crossover is the 
main genetic operator. It generates offspring by 
combining both chromosomes’ features. To a great 
extend, the performance of genetic algorithms 
depends on the type of the crossover operator used. 
The crossover rate is defined as the ratio of the 
number of offspring produced in each generation 
to the population size [32]. There are several types 
of crossover operators. In this study, we use the 
order crossover (OX) operator. 
 
Order Crossover (OX)   The OX works as 
follows: 
 
• Select a substring from one parent at 

random. 
• Produce a proto-child by copying the 

substring into the corresponding positions. 
• Delete the jobs which are already in the 

substring from the second parent. The 
resulted sequence of jobs contains the jobs 
that the proto-child needs. 

• Place the jobs into the unfixed positions of 
the proto-child from left to right according 
to the order of the sequence to produce an 
offspring. 

The procedure is illustrated in Figure 3. By the OX 
procedure, we can produce two offspring in per 
iteration but the proposed crossover takes two 
parents and creates a single offspring. 
     Mutation is a background operator which 
produces spontaneous random changes in various 
chromosomes. The mutation rate is defined as the 
percentage of the total number of gene in the 
population. During past years several mutation 
operators have been proposed such as inversion, 
insertion, displacement, reciprocal exchange 
mutation [32]. The reciprocal exchange mutation 
(swapping mutation) is used here, in which we select 
two random positions and then swap their genes. 
 
Swapping Mutation   The randomly swapped 
genes may be either job or asterisk. The different 
combinations of job and asterisk result in four 
basic types of mutation. 
 
1. If both genes are job, two cases may occur: 

One case is that two selected jobs are 
processed by the same machine. In this case, 
the mutation alters the job order for the 
machine as shown in Figure 4(a) 

2. Another case is that two jobs are processed 
by different machines. In this case, the 
mutation alters both job order and job 
partition to machines for the chromosome as 
shown in Figure 4(b). 

3. If both genes are asterisk, the mutation 
performs a trivial operation as shown in 
Figure 4(c). 

4. If one gene is asterisk and another is job, the 
mutation alters both job order and job 
partition to machines for the chromosome as 
shown in Figure 4(d). 

 
The last one is the only genetic operation, which 
can alter the position of asterisks. 
 
 
 

4. ILLUSTRATED EXAMPLES 
 
To efficiently perform the proposed GA, two 
small-sized test problems are solved by using the 
Lingo 8.0 optimization software compared with the 
proposed GA. 
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Parent1 
 

(1 3) (1 5) (3 4) * (2 1) (3 6) (2 2) (1 7) 
 

Offspring 
 

(3 6) (1 5) (3 4) * (2 1) (1 3) (2 2) (1 7) 
 

Parent2 
 

(3 6) (1 5) * (3 4) (1 3) (2 1) (2 2) (1 7) 
 

Figure 3. Illustration of OX operator. 
 
 
 

Parent 
 

(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7) 
 

Offspring 
 

(3 4) (1 5) (1 3) * (2 1) (3 6) * (2 2) (1 7) 
 

(a) 
 

Parent 
(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7) 

 
Offspring 

 

(1 3) (3 6) (3 4) * (2 1) (1 5) * (2 2) (1 7) 
 

(b) 
 

Parent 
 

(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7) 
 

Offspring 
 

(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7) 
 

(c) 
 

Parent 
 

(1 3) (1 5) (3 4) * (2 1) (3 6) * (2 2) (1 7) 
 

Offspring 
 

(1 3) * (3 4) * (2 1) (3 6) (1 5) (2 2) (1 7) 
 

(d) 
 

Figure 4. (a) Swap two jobs within on machine; (b) Swap two jobs within different machine; 
(c) Trivial swap; (d) Swap the position of a job and an asterisk. 
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Example 4.1.   First, we consider a simple 
example of a three-job, two-family, and two-
machine problem given in Webster and Azizoglu 
[7]. The primary information is summarized in 
Table 1. 
     The globally optimal solution is found at 
iteration 514 with the best objective function 10, in 
which the associated sequence is given bellow: 
 
M1: (1 2) 
M2: (2 3) → (1 1) 
 
Example 4.2.   For the second example, we 
consider an identical parallel-machine scheduling 
problem with seven jobs, three families, and three 
machines. The other associated information is 
given in Table 2. 
     The globally optimal solution is found at 
iteration 165723with the best objective function 
147, and the associated Gantt chart for the best one 
is depicted in Figure 5. A comparison of these two 
examples also reveals the complexity of the 
problem. 
 
 
 

5. COMPUTATIONAL RESULTS AND 
PERFORMANCE EVALUATION 

 
Most real-world problems are more complicated 
than the previous examples. The proposed genetic 
algorithm can be used for more complex and 
widely applicable models of scheduling problems 
in industries. 
     The genetic algorithm is first used to solve the 
same two small-sized test problems as presented in 
Section 4. The related genetic solutions are 
compared with the optimal solutions obtained by 
the Lingo 8.0 software package. It is then used to 
solve one medium-sized problem to schedule 20 
jobs from 10 families on five machines with 
various Pc and Pm. 
 
Example 5.1.   For example 4.1, the genetic 
parameters are set as follows: pop-size = 5, max-
gen = 1, Pc = [0.3-0.8], and Pm = [0.1-0.6]. We 
run the proposed GA about 50 times and obtain an 
optimal schedule in any effort in first time. There 
are two distinct optimal schedules in the proposed 
GA (e.g., jobs (1,2) and (1,1) on one machine, and 
job (2,3) on the other machine, or alternatively, 

jobs (2,3) and (1,1) on one machine, and job (1,2) 
on the other machine). The associated 
computational results are presented in Table 3. 
 
 
 
TABLE 1. Input Data. 
 

JOB (I) 1 2 3 
Processing 
time (Pif) 

3 1 1 

Weight (Wif) 1 2 1 
Family (f) 1 1 2 
Setup time 

for each 
family (Sf) 

1 1 0 

 
 
 
TABLE 2. Input Data for the 2th Example. 
 

i 1 2 3 4 5 6 
Pif 3 5 7 6 4 2 
Wif 4 2 3 1 2 3 
f 2 2 1 3 1 3 
Sf 3 3 2 4 2 4 

 
 
 

M3 S3 = 4 P63 = 2 P43 = 6 

M2 S2 = 3 P12 = 3 P22 = 5 
M1 S1 = 2 P71 = 1 P51 = 4 P31 = 7 

 
Figure 5. Gantt chart for best schedule for the 2nd example. 
 
 
 
TABLE 3. Comparison of GA with DP and ILP Methods. 
 

Method Machine Schedule TWFT 
MI (1 2) DP 
M2 (2 3) → (1 1) 

10 

M1 (1 2) 
ILP 

M2 (2 3) → (1 1) 
10 

M1 (1 2) 
GA 

M2 (2 3) → (1 1) 
10 
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Example 5.2.   For example 4.2, the genetic 
parameters are set as follows: pop_size = 20, 
max_gen = 150, Pc = 0.3, Pm = 0.1. We run the 
genetic algorithm 10 times. The computational 
results obtained are summarized in Table 4. 
 
Example 5.3.   Table 5 shows an identical 
parallel-machine problem with 20 jobs, 10 
families, 5 machines and other information 
generated at random. 
      In this section, to compare various Pc and Pm, 
we choose the appropriate crossover rate and 
mutation rate for parallel machines with family 
setup times. Other parameters are tuned up as 
follows: pop_size = 10, max_gen = 20. We run the 
genetic algorithm 15 times. The associated 
computational results are summarized in Table 6. 
     As discussed above, the genetic search method 
is guided by the ‘tuning’ of three parameters, 
namely population size, crossover rate (Pc), and 
mutation rate (Pm). We choose these parameters 
empirically within the ranges as shown in Table 7. 
In Table 8 we compare the performance of the 
proposed GA with the Lingo 8 software in terms of 
computational times. The proposed GA has better 

solution than the Lingo software. Further, when the 
number of jobs increases, we can see that the 
computational time increases exponentially 
because of the NP-hard nature of the given 
problem. 
 
 
 

6. CONCLUSION 
 
The parallel-machine scheduling problem is an 
extended field of study in various applications. 
This type of problem is one of classical machine 
scheduling problems. This problem with family 
setup times is considered in the parallel machines 
problem, and shown to be NP-hardness in strong 
sense. We presented a new integer-linear 
programming (ILP) model of the foregoing 
problem. Further, we proposed a genetic algorithm 
(GA) that minimizes the total weighted flow time 
of jobs on identical parallel machines with family 
setup times. Some properties and solution methods 
for a generalized model consisting of job due dates 
and penalties for completing both early and tardy 
jobs can be used in further research. 

 
 
 

TABLE 4. Result of Example with Seven Jobs 
 

Total run Best one Worst one Average 
10 147 178 169.2 

 
 
 

TABLE 5. Information for Example 5.3. 
 

i Pif Wif f Sf i Pif Wif f Sf 

1 10 4 1 5 11 5 2 4 10 
2 12 2 1 5 12 5 2 3 10 
3 5 1 2 5 13 10 4 2 5 
4 12 3 3 10 14 15 2 9 5 
5 15 1 4 10 15 20 3 10 5 
6 10 2 5 5 16 10 4 8 10 
7 15 5 6 5 17 5 5 5 5 
8 18 4 7 10 18 5 1 3 10 
9 15 2 6 5 19 15 2 2 5 

10 10 5 5 5 20 10 5 1 5 
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