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Abstract   This investigation presents an economic production quantity (EPQ) model for 
deteriorating items with stock-dependent demand and shortages. It is assumed that a constant fraction 
of the on-hand inventory deteriorates and demand rate depends upon the amount of the stock level. 
Expression for various optimal indices as well as cost analysis are provided. By taking numerical 
illustration, sensitivity analysis has been carried out. For cost optimization, Newton’s method is 
employed. 
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 مدل مقدار توليد اقتصادی برای کالاهای فاسد شـدنی بـا کمبـود و تقاضـای وابـسته بـه         ،در اين مقاله  چكيده          

چنين فرض شده که کسری ثابت از موجودی از دست رفته، فاسد شده             . موجودی مورد مطالعه قرار گرفته است     
ختلف و همچنـين بـرای هزينـه هـای      برای حالات بهينه م کهاست و نرخ تقاضا وابسته به سطح موجودی است  

 بهينه سـازی هزينـه، از       برایبيان شده و    توسط مثال عددی    آناليز حساسيت   . متفاوت تجزيه و تحليل شده است     
 .روش نيوتن استفاده شده است

 
 

1. INTRODUCTION 
 
In recent years, most researches in the area of 
inventory control have been oriented towards the 
development of more realistic and practical models 
for decision makers. Recently, deteriorating of 
items in inventory systems has become an 
interesting topic due to its practical importance. In 
the competitive market situation, the customers are 
influenced by the marketing policies such as the 
attractive display of items in the showroom or in 
big malls. The display of items in large number has 
a motivational effect on the buyers and attracts the 
people to buy more, so the demand is influenced 
by stock status. 
     It is worthwhile to have a look at the recent 

studies by researchers on an EPQ model for a 
single-item inventory having a stock-dependent 
demand rate. In the traditional inventory model, as 
described by Silver and Peterson [12], sales at a 
retail level may be proportional to the amount of 
inventory displayed. Gupta and Vrat [6] have 
introduced the stock dependent phenomena in 
modeling inventory systems assuming the 
consumption rate to be a function of the order 
quantity. Datta and Pal [2] considered the demand 
rate as a linear function of on-hand inventory in 
developing the inventory models for deteriorating 
items. 
     The manufacturing flexibility which is capable 
of adjusting the production rate with the variability 
in the market demand is known as volume 
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flexibility [11]. Urban [14] considered the 
inventory system in which the demand rate of the 
product is a function of the on-hand inventory. Giri 
et al. [5] extended the model of Urban [14] to the 
case of items deteriorating overtime. Padmanabhan 
and Vrat [7] introduced an EOQ model for 
perishable items under stock dependent selling 
rates. Ray and Chaudhari [8] discussed an EOQ 
model with stock-dependent demand, shortage, 
inflation and time discounting of the different costs 
and prices being associated with the system. 
      Ray et al. [9] studied the inventory problem with a 
stock-dependent demand rate and two levels of 
storage, rented warehouses (RW) and owned 
warehouses (OW). Giri and Chaudhuri [4] 
investigated an inventory model with deteriorating 
items and discussed both the cases of non-linear 
time-dependent and stock-dependent holding costs. 
Dye [3] developed a deteriorating inventory model 
with stock dependent demand including the 
conditions of allowable shortage and permissible 
delay in payments. Hart and Brady [17] developed an 
optimal control model for cost-effective management 
of pollution, including two state variables, pollution 
stock and ecosystem quality. Papachristos and Skouri 
[18] considered a model where the demand rate is a 
convex decreasing function of the selling price and 
the backlogging rate is a time-dependent function, 
which ensures that the rate of backlogged demand 
increases as the waiting time to replenishment point 
decreases. Mondal et al. [19] developed an inventory 
model for ameliorating items. These items include 
the fast growing animals like ducks, pigs, broilers, 
etc. in poultry farm, high breed fish in pond, etc. 
When these items stay at farm or pond or in the sales 
counter or distribution centre, the stock either 
increases due to growth or decreases due to death. 
Sana and Chaudhari [10] considered a volume 
flexible manufacturing system for a deteriorating 
item with an inventory-level-dependent demand rate. 
     Subbaiah et al. [13] considered the demand rate 
dependent on stock status assuming the life time of 
the perishable items to be random and follows the 
three-parameter Weibull distribution, which 
includes the constant, increasing and decreasing 
rates of deterioration for different values of the 
parameters. Teng and Chang [16] established an 
economic production quantity (EPQ) model for 
deteriorating items when the demand rate 
depending not only the on-display stock level but 

also on the selling price per unit. Maiti and Mathi 
[15] proposed an appropriate solution to the 
contradiction faced during the inventory of 
displayed damageable items where both demand 
and damageability are stock-dependent. Chen and 
Chen [1] developed a tactical-level decision model 
that solves the production-scheduling problem 
taking into account the dynamic nature of customer 
demand, which is partially controllable through 
pricing schemes. 
     In the present paper, an EPQ model with 
shortage has been developed by incorporating the 
deterioration effect and stock-dependent demand 
rate. In Section 2, the fundamental assumptions for 
the proposed EPQ model are outlined along with 
notations used for mathematical formulation. In 
Section 3, the mathematical model is developed by 
constructing the differential equations, which are 
analytically solved. Then the total cost function is 
constructed and the necessary conditions for an 
optimal solution are outlined in Section 4. In 
Section 5, some special cases of the model are 
deduced by choosing appropriate values of 
parameters. Numerical illustrations and sensitivity 
analysis are provided in the subsequent Section 6. 
Finally conclusions are drawn in Section 7. 
 
 
 

2. ASSUMPTIONS AND NOTATIONS 
 
An Economic Production Quantity (EPQ) model 
was developed for a single-item inventory having a 
stock-dependent demand rate. The mathematical 
model of the economic production quantity has 
been developed on the basis of the following 
assumptions. 
     A single item is considered over a prescribed 
period of T units of time. D(I(t), p) is the demand 
rate, which is a function of the stock on-display 
I(t), and constant selling price (p) within the 
production cycle. Here it is assumed that D(I(t), p) 
is equal to α(p)+βI(t), where α(p) is a non-negative 
function of p and β  is a non-negative constant. 
Shortages are allowed and backlogged. The 
maximum allowable amount of displayed stock is 
P and the initial and ending inventory levels are 
zero. A constant fraction of on-hand inventory 
deteriorates per unit of time and deterioration of 
the units is considered only after those receiving 
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them in the inventory. 
     The following notations are used for 
mathematical formulation of the problem: 
 

I(t) Inventory level at any time t  
θ The constant deterioration rate 
R Maximum inventory level 
Q Unfilled order backlogged 
C Setup cost per cycle 
Cd The cost of a deteriorated item 
Ci Inventory carrying cost per unit 
Cs Shortage cost per unit 
t1 The production run time 
T The duration of a production cycle, 

where T = t1 + t2+ t3 + t4 
K The constant production rate 
TC Total average cost 
 
 
 

3. MATHEMATICAL MODEL AND 
ANALYSIS 

 
At the beginning the stock is assumed to be zero so 
that the economic production quantity level starts 
at a time t = 0, and reaches P maximum level after 
t1 time units have elapsed. The production is then 
stopped and the stock level declines continuously 
and the inventory level becomes zero at time t = t2. 
At this time, the shortage starts developing and 
reaches to level Q at time t = t3. The fresh 
production starts to clear the backlog by the time 
t = t4. The aim in the present investigation is to find 
the optimal values of t1, t2, t3, t4, P and Q that 
minimize total cost (TC) over the time horizon 
[0,T]. 
     The differential equations describing the stock 
status during the period 0 ≤ t ≤ T can be 
constructed as follows: 
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The boundary conditions are 
 
I(t) = 0 at t = 0, t1+t2 and T; I(t1) = R and -I(t3) = Q 
 
The solutions of Equations 1-4 with the above 
boundary conditions are 
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From Equations 5 and 6 using I(t1) = R, we  
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Thus, t1 and t2 are related by the equation 
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Again t3 and t4 are related by the equation 
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4. COST ANALYSIS 
 
The deterioration cost for the period (0,T) is 
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The inventory carrying cost over the period (0,T) is 
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The shortage cost can be obtained as 
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Now the total average cost of the inventory system 
is  

TC = Setup cost + deterioration cost + inventory 
carrying cost + shortage cost 
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Using Maclaurin series for approximation, Equation 
16 becomes 
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The problem is now to obtain the optimal values 
for t1, t2, t3, t4, Q, and R such that TC in 17 is 
maximized. For this purpose, equate the first 
derivatives of TC with respect to t1 and t2, equal to 
zero, thus: 
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and 
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To solve the two simultaneous non-linear 
Equations 18 and 19 Newton methods is used and 
we obtain the optimal values of t1 and t4. Then the 
values of t1 and t4 are put in Equations 9-12 and 16 
to obtain the optimal values of R, Q, t2, t3 and 
average total cost. The algorithmic procedure of 
Newton’s method has been outlined in the 
Appendix. 
 
 
 

5. SPECIAL CASES 
 
Here some special cases are considered for 
economic production quantity model by setting 
appropriate parameter values. 
 
Case I 
 
In this case, the deterioration rate is not considered, 
i.e. θ = 0, so that the total cost of the model 
becomes 
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Case II 
 
Consider the EPQ model without shortage, i.e. 
Cs = 0, so that the total cost-function reduces to 
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6. NUMERICAL ILLUSTRATION 
 
In order to explore the effect of system parameters 
on optimal cost, the numerical results are 
computed and summarized in Tables 1-6. Table 
1(a-c) displays the optimal cost for different cost 
elements Ci, Cd, Cs and varying values of θ. It is 
noted from Table 1(a), that the total cost (TC) 
increases as the inventory carrying cost (Ci) 
increases, but decreases with the increment in α(p) 
and deterioration rate (θ). Table 1(b) shows the 
effect of cost of deteriorating item (Cd), β and 
deterioration rate (θ); the total cost (TC) increases 
as the value of β increases and the cost of 
deteriorating item. The effect of shortage cost (Cs), 
α(p) and θ on the total cost is shown in Table 1(c); 
the decreasing trend of total cost is noted with the 
increase in α(p) and θ but reverse effect of Cs. 
     From Table 2, it is observed that as the value of 
‘θ’ increases, the values of t1 and t2 decrease but 
the values of t3, t4 increase. Maximum inventory 
level (R) and total average cost (TC) decrease as 
the deterioration rate (θ) increases. As the value of 
‘K’ increases, the values of ti (i = 1, 2, 3, 4) 
decrease but the maximum inventory level (R) and 
total cost (TC) increase. 
     It is noted from Table 3, that as the value of θ 
increases, the value of ti (i = 1, 2, 3, 4), R and TC 
decrease. The values of t1 and t4 increase as the 
α(p) increases but t2, t3, R and TC decrease with 
increments in α(p). In Table 4, it can be seen that ti 
(i = 1, 2, 3, 4) and R decrease as the value of β 
increases, but TC increases. 
     Table 5 shows the effect of α(p) and β on ti 
(i = 1, 2, 3, 4), R and TC. The values of ti and R 
decrease as the β increases, but value of TC 
increases as β increases. As α(p) increases, the 
values of t1 and t4 increase but other values 
decrease. Table 6 displays the effect of K and β 
on ti, R and TC. The values of t1, t2, t3 and R 
decrease as β increases, but t4 and TC increase. 
On increasing the value of K, both t1 and t4 
decrease but other values increase. 
     Overall it can be concluded that as with the 
increase the production, maximum inventory level 
and total cost increase. Maximum inventory level 
(R) and total average cost (TC) decrease as the 
deterioration rate (θ) increases. So, the building 
inventory is profitable and the production run 

continues until the inventory reaches the maximum 
allowable level. 
 
 
 

7. CONCLUSION 
 
This study presents an economic production 
quantity model for deteriorating items in which the 
demand has been considered as the function of the 
selling price and the stock on display. In particular, 
shortages are allowed and backlogged. This 
assumption is more realistic in the market. 
     Furthermore, the results of the sensitivity 
analysis are also consistent with the economic 
incentives. In future research on this problem, it 
would be of interest to incorporate the effect of 
more realistic demand rates in this model. On the 
other hand, the possible extension of this work 
may relax the assumption of constant deterioration 
rate. 
 
 
 

8. APPENDIX 
 
To solve Equations 18 and 19, the Newton method 
was used. Denoting L.H.S. of Equations 18 and 19 
by f1(t1,t4) and f2(t1,t4), the outlines of the algorithm 
to determine t1 and t4 are as follows: 
 
Algorithm 
 
Step 1. Evaluate the function 
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with the initial condition tk = 0, where k = 1,4. 
 
Step 2. Evaluate the Jacobian 
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TABLE 1. Optimal Values of TC for Different Values of (a) Ci, α(P) and θ, 
(b) Cd, β and θ and (c) Cs, α(p) and θ. 

 
(a) 

 

TC Ci α(p) 
θ = 0.1 θ = 0.2 θ =0.3 θ = 0.4 

0.1 37.92 29.31 25.84 24.30 
0.2 19.92 17.74 17.08 17.05 0.3 
0.3 15.35 14.69 14.76 15.14 
0.1 57.74 42.20 35.66 32.46 
0.2 29.13 24.55 22.73 22.03 0.5 
0.3 21.70 19.74 19.15 19.15 
0.1 77.56 55.10 45.48 40.61 
0.2 38.34 31.36 28.37 27.01 0.7 
0.3 28.05 24.79 23.54 23.16 

 
 

(b) 
 

TC Cd β 
θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 

0.1 8.92 9.31 9.87 10.48 
0.2 11.04 11.80 12.61 13.47 0.5 
0.3 14.32 15.16 16.11 17.12 
0.1 9.55 10.39 11.38 12.40 
0.2 11.80 13.19 14.62 16.08 1 
0.3 15.39 17.13 18.92 20.78 
0.1 10.18 11.47 12.88 14.35 
0.2 12.55 14.58 16.62 18.70 1.5 
0.3 16.46 19.10 21.73 24.43 

 
 

(c) 
 

TC Cs α(p) 
θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 

0.1 37.92 29.31 25.84 24.30 
0.2 19.92 17.74 17.08 17.05 0.6 
0.3 15.35 14.69 14.76 15.14 
0.1 54.28 41.12 35.68 33.15 
0.2 26.83 23.28 22.02 21.70 0.9 
0.3 19.63 18.33 18.13 18.41 
0.1 70.64 52.93 45.52 42.00 
0.2 33.74 28.82 26.96 26.36 1.2 
0.3 23.91 21.97 21.51 21.68 
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TABLE 2. Optimal Solution for Different Values of K and θ. 
 

K θ t1 t2 t3 t4 R TC 
0.1 0.034 2.67 2.93 0.03 16 50118 
0.5 0.027 1.96 2.92 0.04 12 32510 10 
0.9 0.022 1.54 2.91 0.05 9 25878 
0.1 0.012 3.33 3.69 0.004 35 261634 
0.5 0.009 2.44 3.65 0.009 25 142633 20 
0.9 0.007 1.92 3.61 0.012 20 102690 
0.1 0.006 3.70 4.08 0.0003 53 703904 
0.5 0.004 2.71 4.05 0.0036 39 347123 30 
0.9 0.003 2.14 4.02 0.0051 30 235829 

 
 
 

TABLE 3. Optimal Solution for Different Values of α(p) and θ. 
 

α(p) θ t1 t2 t3 t4 R TC 
0.1 0.0024 2.67 2.9444 0.0232 164 20328 
0.5 0.0011 1.96 2.9365 0.0396 120 13698 10 
0.9 0.0006 1.54 2.9258 0.0346 95 11300 
0.1 0.0026 1.99 2.1972 0.1592 145 8443 
0.5 0.0023 1.46 2.1687 0.1864 106 6788 20 
0.9 0.0021 1.15 2.1321 0.1804 84 6196 
0.1 0.0194 1.57 1.7346 0.5382 127 5422 
0.5 0.0151 1.15 1.7311 0.5531 94 4837 30 
0.9 0.0126 0.91 1.7298 0.5446 74 4687 

 
 
 

TABLE 4. Optimal Solution for Different Values of β and θ. 
 

β θ t1 t2 t3 t4 R TC 
0.1 0.0008 4.812 5.2933 0.0006 180 14344700 
0.5 0.0006 3.5288 5.2534 0.0003 132 5268242 1 
0.9 0.0004 2.7859 5.1254 0.0002 104 3017854 
0.1 0.0004 2.5206 2.6466 0.0012 94 17247560 
0.5 0.0003 2.1173 2.4789 0.0005 79 9147928 2 
0.9 0.0003 1.8252 2.2584 0.0001 68 5846210 
0.1 0.0003 1.7075 1.7644 0.0020 64 18417550 
0.5 0.0002 1.5123 1.5454 0.0004 57 11628880 3 
0.9 0.0002 1.3572 1.3658 0.0001 51 8125149 

 



IJE Transactions A: Basics Vol. 20, No. 2, June 2007 - 167 

TABLE 5. Optimal Solution for Different Values of α(p) and β. 
 

α(p) β t1 t2 t3 t4 R TC 
1 0.0065 3.8833 4.0775 0.0002 55 801962 
2 0.0036 1.989 2.0387 0.0008 28 860958 1 
3 0.0025 1.3368 1.3591 0.0019 19 882317 
1 0.0096 3.2069 3.3672 0.0074 53 289222 
2 0.0056 1.6425 1.6836 0.0056 27 305369 2 
3 0.004 1.104 1.1224 0.0039 18 311158 
1 0.0114 2.8042 2.9444 0.0235 51 163098 
2 0.0069 1.4363 1.4722 0.0165 26 170485 3 
3 0.005 0.9653 0.9814 0.0159 18 173120 

 
 
 

TABLE 6. Optimal Solution for Different Values of K and β. 
 

K β t1 t2 t3 t4 R TC 
1 0.0362 2.8042 2.9444 0.0331 17 54369 
2 0.0223 1.4363 1.4722 0.0352 9 56834 10 

3 0.0164 0.9653 0.9814 0.0482 6 57715 
1 0.0126 3.4891 3.6635 0.0031 36 292787 
2 0.0072 1.7871 1.8317 0.0041 19 311296 20 

3 0.005 1.2011 1.2211 0.0063 12 317959 
1 0.0065 3.8833 4.0775 0.0003 55 801961 
2 0.0036 1.989 2.0387 0.0008 28 860957 30 

3 0.00255 1.3368 1.3591 0.0019 19 882316 
 

Step 3. Solve the linear system 
 

)kt(Ft)kt(J =Δ  
 
where 
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Step 4. Compute the next point 

tkt1kt Δ+=+  
 
Now repeat the process till we get the perfect 
result. 
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