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Abstract   Laminar stagnation flow, axi-symmetrically yet obliquely impinging on a rotating 
circular cylinder, as well as its heat transfer is formulated as an exact solution of the Navier-Stokes 
equations. Rotational velocity of the cylinder is time - dependent while the surface transpiration is 
uniform and steady. The impinging stream is composed of a rotational axial flow superposed onto 
irrotational radial stagnation flow normal to the cylinder with strength Γ. The relative importance of 
these two flows is measured by a parameter γ. The governing parameters are the stagnation - flow 
Reynolds number Re = Γa2 / 2υ and the dimensionless transpiration S = U0 / Γa, where a is cylinder 
radius, ν is kinematic viscosity of the fluid and U0 is the transpiration rate. An exact solution is 
obtained by reducing the Navier-Stokes equations to a system of differential equations governed by 
Reynolds number and the dimensionless wall transpiration rate. Dimensionless shear stresses 
corresponding to all the cases increase with the increase of Reynolds number and suction rate. Heat 
transfer is independent of cylinder rotation and its coefficient increases with the increasing suction 
rate, Reynolds number and Prandtl number. 

 
Keywords   Oblique Stagnation Flow, Axisymmetric, Time - Dependent Rotation, Time - 
Dependent Heat Transfer, Transpiration, Exact Solution 

 
 مايل برخورد کننده روی يک استوانه در حال چرخش همراه با متقارنه جريان سکون لا اين مسدر   يدهچک

سرعت چرخشی استوانه تابع . شود استوکس فرموله می - صورت حل دقيق معادلات ناويربهانتقال حرارت 
 ترکيبی از يک جريان ،هجريان برخورد کننده به استوان. است ولی دمش و مکش سطحی پايدار ،باشد یم زمان

 - ل دقيق با تبديل معادلات ناويرح. باشد محوری برهمنهش يافته با يک جريان شعاعی عمود بر اين استوانه می
ی عدد رينولدز و نرخ دمش و کرنش بدون بعد در پارامترها به يک سيستم معادلات ديفرانسيل با استوکس

. يابد بوطه برای تمام موارد با افزايش عدد رينولدز افزايش می بعد مربدونتنش برشی . آيد ديواره به دست می
ينولدز و ررخش سيلندر مستقل بوده و ضريب انتقال حرارت با افزايش نرخ مکش، عدد چ از حرارتانتقال 

 .يابد عدد پرانتل افزايش می
 
 
 

1. INTRODUCTION 
 
An exact solution for viscous axisymmetric flow 
stagnation obliquely on a rotating circular 
cylinder as well as its heat transfer is presented 
here. A schematic of this flow is given in Figure 
1. This study, which builds on the work of Wang 
[1], provides the three - dimensinal counterpart to 
oblique planar stagnation flow, first formulated 
and solved by Stuart [2]. This problem was 

independently reconsidered by Tamada [3] and 
again by Dorrepaal [4], each presenting additional 
results concerning the position and angle of the 
attaching streamline. Liu [5] and Tilley and 
Weidman [6] studied response of one fluid in the 
lower - half plane driven by an oblique stagnation 
flow of a second fluid in the upper - half palne. 
Wang was the first to investigate the stagnation 
flow normally directed to the surface of a circular 
cylinder and since then a number of variations 
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that take into account unsteady flow effects, 
cylinder translation and rotation and wall 
transpiration have appeared in the literature; see, 
for example, Gorla [7-9], Cunning et al. [10], 
Rahimi [11] and Saleh and Rahimi [12]. As 
pointed out by Peregrine [13], the results of the 
flow studied here may help to better understand 
the local behavior of certain viscous 
axisymmetric splash patterns. Also, taking into 
acccount the heat transfer, these axisymmetric 
stagnation flows may be relevant to the cooling of 
extruded tubes and rods using radially - inward 
directed fan or conical liquid jets. In the two - 
dimensional counterpart to the present 
investigation, Stuart, Tamada and Dorrepaal each 
realize that an outer planar oblique stagnation 
flow could be constructed by superposing a 
tangential flow of uniform shear onto planar 
irrotational stagnation - point flow. It is then 
relatively straightforward to derive the equations 
governing the viscous problem, comprised of a 
linear equation for the cross flow coupled to the 
nonlinear Hiemenz [14] equation governing the 

normal planar stagnation - point flow of a viscous 
fluid. Following this strategy, an outer oblique 
radial stagnation flow impinging on a cylinder is 
constructed by superposition of an appropriate 
axial shear flow onto inviscid radial stagnation 
flow impinging normal to a cylinder, Weidman 
and putkaradeze [15]. 
     The effects of cylinder rotation with time - 
dependent angular velocity and time - dependent 
heat transfer along with transpiration have not yet 
been investigated. This study generalizes the 
problem of stagnation - point flow and heat 
transfer of a fluid obliquely impinging on a 
rotating cylinder. In the present analysis, the 
unsteady viscous flow and heat transfer in the 
vicinity of an axisymmetric stagnation point of an 
infinite rotating cylinder with uniform 
transpiration is considered when the angular 
velocity varies arbitrarily with time. An exact 
solution of the Navier - Stokes equations and the 
energy equation is obtained. The general self - 
similar solution is obtained when the angular 
velocity of the cylinder and its surface 
temperature or heat flux vary in a prescribed 
manner. The cylinder may perform different types 
of motion: it may rotate with constant speed (i.e., 
steady state cooling processes in industry, etc.), 
with exponentially increasing/decreasing angular 
velocity (i.e., start up and stopping stages of 
centrifugal processes in industry, etc.), with 
harmonically varying rotation speed, or with 
accelerating/decelerating oscillatory angular 
speed (sinusoidal blenders in industry, etc.). The 
cylinder surface temperature and its surface heat 
flux may have the same behavior as the cylinder 
motion. For different forms of azimuthal 
component of velocity, sample distribution of 
shear stresses and temperature fields are 
presented for certain values of Reynolds numbers 
and different values of Prandtl numbers, Pr and 
selected values of uniform suction and blowing 
rates. Particular cases of these results are 
compared with existing results of Ref. [15]. For 
completeness, some semi - similar solutions of 
the Navier - Stokes equations are obtained and 
results, for example, of cylinder rotation in the 
form of a step - function is presented for selected 
values of flow parameters. The stream surfaces 
are shown and the deflection of the stagnation 
circle from its assumed location is calculated. 

 
 
Figure 1. Schematic diagram of a rotating cylinder under 
oblique stagnation flow in the fixed cylindrical coordinate 
system (r,ϕ,z). 
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2. PROBLEM FORMULATION 
 
We consider the laminar unsteady incompressible 
flow and heat transfer of a viscous fluid in the 
neighborhood of an axisymmetric stagnation - 
point of an infinite rotating circular cylinder with 
uniform normal transpiration U0 at its surface, 
where U0 > 0 corresponds to suction into the 
cylinder. The flow configuration is shown in 
Figure 1 in cylindrical coordinates (r,ϕ,z) with 
corresponding velocity components (u,v,w). The 
cylinder rotates with time - dependent angular 
velocity ω and the wall temperature or the wall 
heat flux is also a function of time. The external 
impinging stream is composed of a rotational axial 
flow surposed onto irrotational radial stagnation 
flow normal to the cylinder with strenght Γ. The 
relative importance of these two flows is measured 
by a parameter γ. The cylinder radius is a, centered 
at r = 0. The location of the stagnation - circle of 
the inviscid outer flow is at z = 0. The unsteady 
Navier - Stokes and energy equations in cylindrical 
polar coordinates governing the axisymmetric flow 
and heat transfer are given by [1,7,8]: 
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where p,ρ,υ and α  are the fluid pressure, density, 
kinematic viscosity and thermal diffusivity. The 
boundary conditions for the velocity field are: 
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Here, relations 6 are transpiration and no-slip 
boundary conditions on the cylinder wall, where 
U0(t) is the transpiration rate and ω(t) is the 
angular velocity of the cylinder. Relations 7 show 
that the viscous flow solution approaches, in a 
manner analogous to the Hiemenz flow, the 
potential stagnation field as r→∞, Ref. [10]. This is 
imposing the conditions of zero circulation at 
infinity on the swirl velocity of the stagnation 
flow. 
     For the temperature field we have: 
 

(t)wTi)T:ar ==      for defined wall temperature 
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where K is the thermal conductivity of the fluid 
and Tw(t) and qw(t) are temperature and heat flux at 
the wall cylinder, respectively. 
     A reduction of the Navier - Stokes equations is 
obtained by applying the following 
transformations:  
 

,)τη,(G
η

av,)τη,(f
η

aΓu =−=  

 

P2aΓρp,)η(g
2
γz)τη,(fΓ2w =′+′=  (9) 



70 - Vol. 20, No. 1, February 2007 IJE Transactions A: Basics 

where τ = 2Γt and η = (r/a)2 are dimensionless 
time and radial variables and prime denotes 
differentiation with respect to η. Transformations 9 
satisfy 1 automatically and their insertion into 
Equation 2 yields a differential equation in terms 
of f(η,τ) as following: 
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τ
fff2)f(1[Reffη =
∂
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−′′+′−+′′+′′′  (10) 

 
where Re = Γa2/2υ is the Reynolds number. From 
conditions 6 and 7, the boundary conditions for 10 
are: 
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in which 
aΓ

)τ(0U
)τ(S =  is the dimensionless wall 

- transpiration rate. 
     For the brevity, only results for S(τ) = constant 
are shown in this paper. For S(τ) = constant, none 
of the boundary conditions of Equation 10 are 
function of time and assuming steady - state initial 
conditions for this equation, we have: 
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Therefore in this case f(η,τ) = f(η) and Equation 10 
is reduced to the following form: 
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Insertion of transformations 9 into 3 and 4 yields 
two differential equations in terms of f(η), g(η) 
and G(η,τ) and an expression for the pressure: 
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From conditions 6 and 7, the boundary conditions 

for 12 and 13 are as following: 
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To transform the energy equation into a non - 
dimensional form for the case of defined wall 
temperature, we introduce 
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Making use of 9 and 17, the energy equation may 
be written as: 
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with the boundary conditions as: 
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For the case of defined wall heat flux, we introduce 
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Now making use of 9 and 20, the energy equation 
can be written as: 
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with the boundary conditions as: 
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Here, Equations 11-13 and 18 or 21 are for 
different forms of s(τ), ω(τ), Tw(τ) or qw(τ) 
functions and have been solved numerically with 
Re and Pr as parameters. 
     In what follows, first the self - similar equations 
and the exact solutions of some particular ω(τ), 
Tw(τ) or qw(τ) functions are presented. The semi - 
similar solutions can be obtained for given values 
of ω(τ) computationally. 



IJE Transactions A: Basics Vol. 20, No. 1, February 2007 - 71 

3. SELF - SIMILAR EQUATIONS 
 
Equations 13 and 18 or 21 can be reduced to 
ordinary differential equations if we assume that 
the function G(η,τ) in 13 and Θ(η,τ) in 18 or 21 
are separable as: 
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Substituting these separation of variables into 13 
and 18 or 21, correspondingly gives: 
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or for defined wall heat flux: 
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where again prime denotes differentiation with 
respect to η. Solutions to the differential equations 
in 24 and 25 or 26 with τ as an independent 
variable are as the following: 
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or for defined wall heat flux: 
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Here, 1i −=  and b, α and β and also c, ξ and δ 
are constants. The boundary conditions are: 
 
G(1,τ) = ω(τ) = φ(τ)m(1) → φ(τ) = ω(τ) and m(1) = 
1, gives: 
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For the above - defined wall temperature and wall 
heat flux, respectively, one obtains: 
 

])i([ExpcT)(T1
)(Q,1)1()(Q)1(1),1(

w τδ+ξ=−τ→
=τ=θ→τθ==τΘ

∞
 

 

])δiξ([Expc)(wq1)(Q1,
)1 (θ)(Q)1(θ1)τ1,(Θ

τ+=τ→=τ−
=′→τ′=−=′

 (32) 

 
0)(θ)τ(Q)(θ0)τ,(Θ =∞→∞==∞ (33) 

 
Substituting the solutions 27, 28, or 29 into the 
differential equations in 24 and 25 or 26 with η as 
independent variable results in: 
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Note that, in 30 b = 0 corresponds to the case of 
non - rotating cylinder, as of Weidman et al. [15]. 
If b = 0 and γ = 0, 30 corresponds to the case of 
non - rotating cylinder with normal stagnation 
flow, as of Wang [1]. b ≠ 0, α = β = 0 and γ = 0, 
30 gives the case of a uniformly rotating cylinder 
with constant angular velocity, Cunning et al. 
[10]. b ≠ 0, α ≠ 0 and β = 0, corresponds to the 
case of rotating cylinder with an exponential 
angular velocity. b ≠ 0, β ≠ 0 and α = 0, 
corresponds to the case of pure harmonic rotation 
of the cylinder. The case of non - zero b, α and β 
is the most general case which is considered in 
this paper. If b = 0 and c ≠ 0, γ = ξ = δ = 0, 
Equations 32 corresponds to the result of Gorla 
[8] which is for a non - rotating cylinder. Other 
combinations of values of c, ξ and δ in Equations 
32 give the different time - dependent wall 
temperature and wall heat flux functions. 
     To obtain solutions of Equations 34 and 35, it is 
assumed that the functions m(η) and θ(η) are 
complex functions as: 
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)η(2θi)η(1θ)η(θ +=  (37) 
 
Substituting 36 and 37 into 34 and 35, the 
following coupled systems of differential equations 
are obtained: 
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Considering the boundary conditions 6, 7, the 
boundary conditions for functions f, m and θ 
become: 
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m2 and θ1, θ2 are: 
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The coupled system of Equations 38 and 39 along 
with boundary conditions 42 and 43 have been 
solved by using the fourth - order Runge - Kutta 
method of numerical integration along with a 
shooting method, Press et al. [16]. Using this 
method, the initial values of (1)1m′ , (1)2m′ , 

(1))1θ(or1θ′  and (1)2θ′  were guessed and the 
integration was repeated until convergence was 
obtained. The values of m2(η) = 0 and θ2(η) = 0 
were assumed initially and then by repeating the 
integration of these two systems of equations, final 
values of m1 = (η), m2 = (η), θ1(η) and θ2(η) were 
obtained. 
     The angular velocity is: 
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and thus, the azimuthal component of velocity 

from definition 9 becomes: 
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4. SHEAR STRESSES 
 
The shear stress at the cylinder surface is 
calculated from, [9]: 
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where μ is the fluid viscosity. Using definition 9, 
the shear - stress at the cylinder surface for semi - 
similar solutions becomes 
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Thus the axial and azimuthal shear stress 
components are proportional to ])1(g)1(f[ ′′+′′  and 

])τ(ω)τ1,(G[ −′ , respectively. Azimuthal surface 
shear stress for self - similar solutions is presented 
by the following relation: 
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Some numerical values of real part of σφ will be 
presented later for few examples of angular 
velocities. Of course, it is noted that the real and 
imaginary parts of this quantity are actually the 
same but with a phase diffeference of π/2. 
 
 
 

5. HEAT TRANSFER COEFFICIENT 
 
The local heat transfer coefficient and rate of heat 
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transfer for defined wall temperature case are 
given by: 
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and for defined wall heat flux case: 
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for self - similar case. 
     From 49 and 51, it is seen clearly that for self - 
similar cases, the local heat transfer coefficient is 
not a function of time contrary to the fact that wall 
temperature and wall heat flux are time - 
dependent. 
 
 
 

6. STREAMLINES 
 
Following Weidman and Putkaradze [15], 
streamline patterns are readily obtained by 
evaluation of the dimensionless streamfunction 
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A typical streamline pattern is calculated in terms 
of Re and γ. From these patterns it is observed that 
the stagnation circle lies to the left of the origin 
and that the origin is the stagnation circle for the 
outer inviscid flow. Moreover, the slope of the 
viscous dividing streamline at attachment is greater 
than the attachment slope of the outer inviscid 
dividing streamline. Define m = m1  as the slope of 
the inviscid dividing streamline at attachment 
and ms  as the attachment slope of the viscous 
dividing streamline; furthermore, define Zs  as the 
axial position of the viscous stagnation circle. 
Mathematical expressions for ms and Zs are readily 
calculated. The dividing streamsurface Ψ = 0 
intersects the cylinder at the axial position for 
which the shear stress is zero. This position 
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determined from 47 is 
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The slope of the dividing streamline at attachment 
is computed from the limit: 
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Which is indeterminate. Four successive 
application of L’Hopital’s rule finally yield: 
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In the planar problem, Dorrepaal [4] has shown 
that the ratio ms/m = 3.74851 is independent of γ, 
while the independence on γ is also true here, the 
ratio ms/m now depends on Re through the 
relation 
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Some examples of streamline patterns are shown in 
the next section. 
 
 
 

7. PRESENTATION OF RESULTS 
 
In this section, only the real part of the solution of 
the self - similar Equations 34-35 and the semi - 
similar Equation 13 along with surface shear - 
stresses and heat transfer coefficient for different 
functions of angular velocity and prescribed values 
of wall temperature or wall heat flux, and selected 
values of suction and blowing rates are presented. 
Also, the real part of azimuthal component of 
velocity, ν(η,τ), for self - similar case is given. 
     Sample profiles of the f function in terms of η 
are shown in Figure 2, for selected values of 
transpiration rate and Reynolds number. This 
function, for the first time, was solved by Wang [5] 
for the case of S = 0 and later was presented by 

Cunning [10] for selected values of suction rate. It 
is evident from this figure that as Reynolds number 
increases the f function increases a little and 
approaches the inviscid solution in the limit. In this 
figure the dash - dot curves present the variations 
of f function in terms of transpiration rate in which 
negative S is blowing rate and positive S is the 
suction rate. Sample profiles of the f ′  and f ′′  
functions in terms of η are depicted in Figures 3 
and 4 for selected values of transpiration rate and 
Reynolds number. From these figures, the initial 
slope of the f ′  function ))1(f( ′′  increases with 
increasing Reynolds number and transpiration rate 
and causes its limiting solution approach to one in 
quicker manner. From relations 9 and 47, f ′  
presents the velocity profile in z  direction and 

(1)f ′′  is the value of wall shear - stress in this 
direction. Therefore, the increase of suction rate 
and Reynolds number increases the wall shear - 
stress in z direction and on the other hand causes 
that the value of fluid velocity in this direction 
approaches its value in inviscid flow, rapidly. In 
fact the increase of suction rate and Reynolds 
number decrease the thickness of the boundary 
layer. 
     Sample profiles of the g(η) function in terms of 
η are presented in Figure 5 for selected values of 
Reynolds number. This function is the main 
parameter in defining the flow stream function and 
thus drawing the streamlines. As it is expected, the 

 
 
Figure 2. Sample profiles of f(η) function for selected values 
of suction rate and Reynolds number. 



IJE Transactions A: Basics Vol. 20, No. 1, February 2007 - 75 
 

value of g(η) is increased as Reynolds number is 
increasing and this causes the increase of the flow 
momentum. In Figure 6 the g(η) function is shown 
for selected values of transpiration rate and at Re = 1. 
As it is seen the value of this function is increased 
rapidly by increasing suction rate and decreases by 
increasing the blowing rate. Figure 7 presents the 
function g'(η) at Re = 1 and selected values of 
transpiration rate. This function is another main 
factor in determining the axial velocity in 
boundary layer on the cylinder and as it is seen 
from the figure it starts from g'(1) = 0 and after 
increasing inside the bounadry layer its behavior is 
linear outside this layer and g′(η) ≈ 0 as S → −∞ 
and the axial velocity will be z)τη,(fΓ2w ′= . 
Sample profiles of g"(η) are shown in Figure 8 for 
selected values of transpiration rates and at Re = 1. 
This quantity is one of the factors in determining 
stress tensor on the cylinder and as it is seen from 
this figure the value of g"(1) decreases as Reynolds 
number increases. Also, as suction rate increases 
g"(1) increases rapidly which is in the direction of 
increasing stress tensor and in the case of blowing 
g"(1) → 0 which in the direction of decreasing 
stress tensor. 
     Sample profiles of m(η) function for ω(τ) in 
exponential form for accelerating and decelerating 
case at Re = 1.0 are presented in Figure 9, for 
selected values of transpiration rate. It is 
interesting to note that as α or suction rate 
increases, the depth of the diffusion of the fluid 
velocity field decreases, and it increases as α or 
suction rate decreases. For α < 0 , at any rate of 
suction and for the absolute value of α greater than 
a certain value, the fluid velocity in the vicinity of 
the cylinder cannot decrease with the same rate as 
the cylinder rotation velocity and therefore in this 
region the fluid velocity is greater than the cylinder 
velocity. Note, α = 0 indicates the case of a 
rotating cylinder with constant angular velocity, 
Ref. [13]. 
     Sample profiles of m1 = (η) function for ω(τ) 
for accelerating and decelerating oscillatory 
motion and pure harmonic motion of the cylinder 
at Re = 1000 displyed in Figure 10 for 
transpiration rate of S = 0 show that like the 
exponential angular velocity case, the depth of the 
diffusion of the fluid velocity field for α > 0 is 
less and for α < 0 is more than that for the case of 

 
 

Figure 3. Sample profiles of )η( f ′  function for selected 
values of suction rate and Reynolds number. 
 
 
 

 
 
Figure 4. Sample profiles of )η(f ′′  function for selected 
values of suction rate and Reynolds number. 
 
 
 

 
 

Figure 5. Sample profiles of )η(g  function for selected 
values of Reynolds function. 
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α = 0. Further, it is concluded that the case of α = 
β = 0 is the same as in Ref. [14] and clearly the 
imaginary part of m(η) is zero. As in the 
foregoing discussion, we observe that the thinning 
of the difussion of the velocity field with 
increasing values of β is evident. 
     Sample profiles of )(1m η′  is shown in Figure 
11 for constant rotational speed and selected values 

 
 
Figure 6. Sample profiles of )η(g  function for selected 
values of transpiration rates, at Re = 1.0. 
 
 

 
 
Figure 7. Sample profiles of )η(g′  function for selected 
values of transpiration rates, at Re = 1.0. 
 
 

 
 
Figure 8. Sample profile of )η(g ′′  function for selected 
values of transpiration rates, at Re = 1.0. 

 
 
 

 
Figure 9. Sample profiles of m(η) for cylinder with 
exponential angular velocity for Re = 1. and selected values of 
suction and α . 
 
 
 

 
Figure 10. Sample profiles of real part of azimuthal velocity 
in terms of time for cylinder with harmonic rotation, for Re = 
1000., s = 0. 
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of transpiration rate at Re = 1.0. This function 
produces the tangential stress tensor which 
increases rapidly as the suction rate increases and 
as S → −∞, this function tends to zero. 
Sample profiles of G'(η) in terms of η with no 
transpiration and for the case of constant rotational 
speed is shown in Figure 12 for selected values of 
Reynolds numbers. As it is seen from the figure, 
this function starts from negative values at η = 1 
and tends to zero as η → ∞. The absolute value of 

G'(1) increases as Reynolds number increases. 
     Sample profiles of the real part of azimuthal 
component of velocity for pure harmonic motion 
of the cylinder for selected time variation (βτ) are 
given in Figure 13, at Re = 1000 and S = 0. Here, 
the real azimuthal velocity component is shown for 
a complete period of oscillation. 
     Sample profiles of radial velocity are presented 
in Figure 14 for selected values of Reynolds 
number. As it is evident from this figure, because 

 
Figure 11. Sample profiles of derivative of real part of 
azimuthal velocity for constant rotation case for selected 
values of transpiration rate at Re = 1. 
 
 
 

 
Figure 12. Sample profile of G′(η) function for S = 0 and 
selected values of Reynolds number. 

 
Figure 13. Azimuthal velocity in terms of time for cylinder 
with harmonic rotation, for Re = 1000., s = 0. 
 
 
 

 
Figure 14. Sample profiles of radial velocity for S = 0 and at 
selected values of Reynolds numbers. 
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of no transpiration the velocity is zero at η = 1 and 
after much increase inside the boundary layer 
increases with respect to η outside of this layer. 
     The flow streamlines in z−η plane are shown in 
Figures 15-18 for selected values of Reynolds 
number and γ. As it can be seen the intersection of 
Ψ(η,z) = 0 and the cylinder is not at z = 0, pointed 
out by Weidman [15]. Displacement of this point 
depends on the Reynolds number of the flow and 
increases as Re is smaller. In Figure 18 this 
displacement tends to zero because of the increase 
of flow momentum and decrease of boundary 
layer. 
     The real part of azimuthal shear stress 
component on the surface of the cylinder with 
harmonic rotation and with accelerating and 
decelerating oscillatory motions at Re = 1000 is 
presented in Figure 19, for transpiration rate S = 0. 
This shear - stress is for a complete period 
between 0 and 2π. It can be seen that as the 
frequency of the oscillation increases, the 
maximum of the absolute value of the shear - 
stress increases and β = 0 corresponds to the case 
of constant angular velocity in which the 
imaginary part of the azimuthal shear - stress is 
zero and its real part is a constant, as in Ref. [12]. 
Comparing Figures 13 and 19, it is concluded that 
the real part of azimuthal shear - stress and 
azimuthal velocity are in different phases. This 
figure also shows that the maximum of the 
absolute value of the real part of azimuthal shear - 
stress for a > 0 is more and for a < 0 is less than 
the case of pure oscillation. Also note that the 
phase - difference of shear - stress and azimuthal 
velocity decreases with increasing a. 
     Sample profiles of axial shear stress on the 
cylinder for selected values of Reynolds number 
and no transpiration are presented in Figure 20. As 
is clear from this figure, stress tensor increases 
linearly with Z and also increases as Renolds 
number increases. 
     Sample profiles of the θ(η) function for wall 
temperature and wall heat flux, both varying 
exponentially with time are presented in Figures 21 
and 22, for selected values of Reynolds number, 
Prandtl number and transpiration rate. From 21, it 
is seen that as the rate of exponential function or 
suction rate increases, the depth of diffusion of 
the temperature field decreases and thus the heat 

 
 
Figure 15. Streamlines in z−η plane for flow with S = 0, γ = 1
and Re = 1. 
 
 

 
 
Figure 16. Variation of Zs and ms/m in terms of Reynolds 
number. 
 

 
 

Figure 17. Streamlines in z−η plane for S = 0, γ = 1 and Re = 10.
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transfer coefficient increases. From 22, it is noted 
that as the rate of exponential function increases, 
wall temperature and its depth of diffusion 
decreases. In Figure 21 for γ < 0, as the absolute 
value of γ increases, the fluid in the vicinity of the 
cylinder is not cooled as fast as the cylinder wall 
and therefore the fluid temperature here is greater 
than the wall temperature. It is interesting to note 
that for a particular negative value of γ, the slope 
of temperature on the surface is zero and therefore 

 
 
Figure 20. Variation of axial stress tensor on cylinder surface 
with respect to Reynolds number. 
 
 

 
 
Figure 21. Temperature function with respect to η for known 
value of wall temp. for S = 0 and selected values of Re and Pr.
 
 

 
 

Figure 22. Temperature function with respect to η for known 
value of wall heat flux for S = 0 and selected values of Re and 
Pr. 

 
 
Figure 18. Streamlines in z−η plane for S = 0, γ = 1, at Re = 
100. 
 
 
 

 
 
Figure 19. Real part of tangential stress tensor on the cylinder 
surface for different rotation situation and S = 0, at Re = 1000.
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there is no heat transfer. From both of these figures 
and γ = 0, the results of Ref. [9] are obtained. 
     Sample profiles of θ1(η) function for wall 
temperature and wall heat flux, both varying with 
accelerating and decelerating oscillatory functions 
of time with different rates for transpiration rate 
S = 0 are given in Figures 23 and 24 for selected 
values of Reynolds number and Prandtl number. It 
is noted in Figure 23 that as the oscillation 
frequency increases, the initial slope of θ1(η) 
increases. Further, as γ increases, the depth of the 

θ1(η) decreases. From 24, as oscillation frequency 
increases, θ1(η) and its depth of diffusion decrease. 
Also, as γ increases, the absolute value of θ1(η) 
and its depth of diffusion decrease. From both of 
these figures and for δ = 0, the results of Ref. 9 are 
obtained. 
     Sample profiles of the θ1(η) function for wall 
temperature and wall heat flux varying with an 
accelerating oscillatory function of time and for 
selected values of Prandtl number and Reynolds 
number are depicted in Figures 25 and 26, for 
transpiration rate S = 0. From 25, it is noted that as 
Prandtl number or Reynolds number increases, the 
depth of diffusion of the temperature field decreases 
rapidly and therefore the heat transfer coefficient 
increases. In 26, the absolute value of θ1(η) 
function and its depth of diffusion decrease with 
increasing Prandtl number or Reynolds number. 
     Sample profiles of the real part of local heat 
transfer coefficient (Nusselt number) for (a) wall 
temperature and (b) wall heat flux varying with 
accelerating oscillatory functions for selected 
values of γ and δ in terms of Prandtl number at 
Re = 1000 are depicted in Figure 9 for S = 0. In 
both cases, Nusselt number increases as Prandtl 
number increases. Besides, as γ and δ increase, the 
real part of Nusselt number increases. 
 
 
 

8. CONCLUSIONS 
 
An exact solution of the Navier - Stokes equations 
and energy equation is obtained for the problem of 
stagnation - point flow obliquely impinging on a 
circular cylinder with uniform transpiration rate. 
The formulation of the problem, though, is for the 
more general case of time - dependent transpiration 
rate. A general self - similar solution is obtained 
when the cylinder has different forms of rotational 
motions including: constant angular velocity 
rotation, exponential angular velocity rotation, 
pure harmonic rotation, both accelerating and 
decelerating oscillatory rotations. Since the heat 
transfer is axisymmetric in the θ direction, the 
cylinder rotation has no effect on the temperature 
field. Results for different time-dependent wall 
temperature and heat flux functions including: 
constant wall temperature or heat flux, exponential 
and oscillatory form of wall temperature or wall 

 
 
Figure 23. Temperature function with respect to η for known 
value of heat flux for S = 0 and selected values of Re and Pr. 
 
 
 

 
 
Figure 24. Temperature function with respect to η for known 
value of heat flux for S = 0 and selected values of Re and Pr. 
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heat flux are presented. Also, some sample semi - 
similar solutions for the same problem have been 
considered when the circular cylinder is rotating 
with different types of time - dependent angular 
velocity and also with time - dependent wall 
temperature or wall heat flux. The azimuthal 
component of fluid velocity and surface azimuthal 
shear - stress on the cylinder are obtained in all the 
above situations and for different values of 
Reynolds number and transpiration rates. The 
absolute value of the azimuthal shear - stress 
corresponding to all the cases increases with 
increasing Reynolds number and suction rate. 

Also, the maximum value of shear - stress 
increases with increasing oscillation frequency and 
accelerating and decelerating parameter a in the 
exponential amplitude function. In the defined wall 
temperature case, heat transfer increases with the 
increase of Reynolds number, Prandtl number and 
suction rate, whereas the depth of the diffusion of 
temperature field decreases. In the case of defined 
wall heat flux, the wall non - dimensional 
temperature, θ(η) and its depth of diffusion 
decrease with increase of Reynolds number, 
Prandtl number and suction rate. So, an increase of 
suction rate can be used as means of cooling the 
surface and increase of blowing can be used as 
means of heating the surface. It is shown that by 
providing blowing on the surface of a cylinder, a 
reduction of resistance against its rotation inside a 
fluid can be achieved. It is also shown that a 
cylinder spun up from rest in an exponential 
manner is azimuthaly stress - free for certain 
combinations of Reynolds number and rate of this 
exponential function. Further, it is found that 
higher suction rates are means for cooling the 
surface and higher blowing rates are means of 
heating the surface of the cylinder. An interesting 
result is also obtained showing that a cylinder with 
certain type of exponential wall temperature 
exposed to a temperature difference has no heat 
transfer. The local coefficient of heat transfer is 
found to be independent of time, though the 
temperature field is time - dependent. 
 
 
 

9. NOMENCLATURE 
 
a Cylinder radius 
b,c Constant 
f(η),f(η,τ) Function 
g(η),g(η,τ) Function 
h Heat transfer coefficient 
i 1−  
K Thermal conductivity 
m(η) Function 
ms Slope of the dividing streamline 
Nu Nusselt number 
p Pressure 
Pr Prandtl number 
Q(τ) Function 

 
 
Figure 25. Temperature function with respect to η for known 
value of wall temp. for S = 0 and selected values of Re and Pr.
 
 

 
 
Figure 26. Temperature function with respect to η for known 
value of heat flux for S = 0 and selected values of Re and Pr. 
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qw Wall heat flux 
Re Reynolds number 
r,φ,z Cylindrical coordinates 
S Dimensionless transpiration 
t Time 
T Temperature 
Tw Wall temperature 
T∞ Ambient temperature 
u,ν,w Velocity components 
Uo Transpiration rate 
 
Greek 
 

α,β Constants 
α  Thermal diffusivity 
Γ Impinging stream strength 
γ Parameter 
ξ,δ Constants 
η Dimensionless radial variable 
θ(η) Function 
Θ Dimensionless temperature 
µ Fluid viscosity 
ν Kinematic viscosity 
ρ Density 
σ Shear stress 
σφ Azimuthal surface shear stress 
τ  Dimensionless time 
φ(η) Function 
Ψ(η,z) Dimensionless streamfunction 
ω Angular velocity 
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