
IJE Transactions B: Applications Vol. 20, No. 1, April 2007 - 65

MAPPING ACTIVITY DIAGRAM TO PETRI NET:
APPLICATION OF MARKOV THEORY FOR

ANALYZING NON-FUNCTIONAL PARAMETERS

H. Motameni*

Department of Computer Engineering, Islamic Azad University
Science and Research Branch, Tehran, Iran

motameni@iausari.ac.ir

A. Movaghar

Department of Computer Engineering, Sharif University of Technology
Tehran, Iran

movaghar@sharif.edu

M. Fadavi Amiri

Department of Computer Engineering, Iran University of Science and Technology
Tehran, Iran

fadavi@comp.iust.ac.ir

*Corresponding Author

(Received: January 17, 2006 – Accepted in Revised Form: March 18, 2007)

Abstract The quality of an architectural design of a software system has a great influence on
achieving non-functional requirements of a system. A regular software development project is often
influenced by non-functional factors such as the customers' expectations about the performance and
reliability of the software as well as the reduction of underlying risks. The evaluation of non-
functional parameters of a software system at the early stages of design and its development process
are often considered as major factors in dealing with these issues. Because these evaluations can help
us to choose the most proper model which is the securest and the most reliable.In this paper, a method
is presented to obtain performance parameters from Generalized Stochastic Petri Net (GSPN) to be
able to analyze the stochastic behavior of the system. The embedded Continuous Time Markov Chain
(CTMC) is derived from the GSPN and the Markov chain theory is used to obtain the performance
parameters.

Keywords UML, Activity Diagram (AD), Generalized Stochastic Petri Net (GSPN), Continuous
Time Markov Chain (CTMC), Non-Functional Parameters, Markov Reward Models

. دارد تاثير زيادی در بدست آوردن نيازهای غيرعملياتی ستم نرم افزاریکيفيت طراحی معماری يک سيچكيده

عملياتی مانند انتظارات مشتری درباره کارايی يک پروژه نرم افزاری در حال توسعه اغلب به وسيله فاکتورهای غير
ارزيابی پارامترهای غير عملياتی يک . بديا تحت تاثير قرار گرفته، ريسک های اساسی آن کاهش میو قابليت اعتماد

سيستم نرم افزاری در مراحل اوليه طراحی و فرايند توسعه آن، اغلب به صورت فاکتورهای اساسی اين بحث در
در اين مقاله، .توانند در انتخاب امن ترين و مطمئن ترين مدل کمک کنند شوند و اين ارزيابی ها می نظر گرفته می

 تا بتوان رفتار شود معرفی می(GSPN)" شبکه پتری تصادفی عمومی" آوردن اين پارامتر ها از روشی برای به دست
 مشتق شده و تئوری مارکوف برای GSPNسپس زنجيره مارکوف زمان پيوسته از . نمودحليلتتصادفی سيستم را

 .گيرد به دست آوردن اين پارامترها مورد استفاده قرار می

1. INTRODUCTION

A PN is an abstract, formal model of information

flow. The properties, concepts, and techniques of
PNs are being developed for describing and
analyzing the flow of information and control in

66 - Vol. 20, No. 1, April 2007 IJE Transactions A: Applications

systems, particularly systems that may exhibit
asynchronous and concurrent activities. The major
use of PNs has been the modeling of systems of
events in which it is possible for some events to
occur concurrently but there are constraints on the
concurrence, precedence, or frequency of these
occurrences.
 There are three general characteristics of PNs
that make them interesting in capturing concurrent,
object-oriented behavioral specifications. First,
PNs allow the modeling of concurrency,
synchronization, and resource sharing behavior of
a system. Secondly, there are many theoretical
results associated with PNs for the analysis of
such issues as deadlock detection and
performance analysis. Finally, the integration of
PNs with object oriented software design
architecture could provide a means for automating
behavioral analysis [1].
 We present a method for obtaining non-
functional parameters from GSPN. The reason for
using GSPN is that, there are some methods for
transforming UML diagrams to GSPN as an
example one of them is introduced in [2,3].
 Currently the Unified Model Language (UML)
diagrams are widely used in the field of software
design as it is easy to use in comparison to other
alternatives, and is powerful in describing different
aspects of a system. However, the semi-formal
properties of the UML diagram cannot satisfy the
industry's need in predicting the non-functional
parameters of the software in the early stages of
the software life cycle.
 Since it is not possible to use UML diagrams
for performance evaluation, they were translated to
Generalized Stochastic Petri Net (GSPN) [2,3], a
more formal model that enables the authors to do
the performance evaluations.
 The authors' previous work on AD includes the
transformation of AD to Colored Petri Net [3, 4],
where some performance measures could be
obtained using simulation. The simulation-based
measurements seem to be more straightforward
compared to its alternatives, which are analytic
methods.
 First a brief discussion on GSPN is presented,
then UML will be disscussed to introduce its
fundamentals and history.
 For the next step transforming AD to
LGSPN(GSPN) is discussed and then how a

CTMC is derived from GSPN. Finally,
performance evaluation on the derived CTMC is
conducted and a case study is explained.
 In this research, analytic methods are used to
obtain results that are more accurate. Although
using these kinds of methods induces some
computational complexities to the calculation of
system performance, the gained results are more
reliable compared to simulation techniques.
Therefore, analytic methods remain as the only
choice for evaluating critical systems, but we
should consider that this method is more useful in
small systems because it is possible to have more
details

2. RELATED WORK

The Use of Stochastic Petri Net (SPN) and its
extensions have been discussed in several papers
[2,5,6,7 and 8]. Merseguer et al. used the derived
SPN from the UML model to evaluate
performance of internet based software retrieval
systems [7]. Derivation of an executable GSPN
model from a description of a system expressing a
set of UML State Machines (SMs) was reported in
[9].
 A group of works is devoted to transforming the
software model to Colored Petri Net (CPN), which
seems to be more related to software properties
than the other UML extensions [10-15].
 In the authors' previous works [4,16], the UML
model was transformed to CPN and then analyzed
by means of simulation. Trowitzsch et al. have
transformed the software UML diagrams to SPN
models for performance evaluation of real-time
systems [5].
 Most of the previous works discussed
transforming the software model to analytical
models or evaluating the performance model. In
other words, none of them provides an integrated
method, which can start from software models and
terminate with some derived performance
parameters.
 The method of [9], [17] was used to transform
the software model to a GSPN for evaluating
software performance parameters. In our previous
work [18,19] by using [2] and transforming

IJE Transactions B: Applications Vol. 20, No. 1, April 2007 - 67

software model to GSPN some performance
parameters are calculated. In this paper, the
performance model is evaluted in a way that leads
to gain meaningful parameters of the system like
reliability and security.

3. REVIEWING THE GSPN AND UML

3.1. GSPN The basic PN model includes two
components: places and transitions connected
together via arcs to model system behavior;
however, it may be extended by introducing the
notion of time, leading to timed Petri nets (TPN)
for a performance analysis of Petri Nets
quantitative analysis. In TPN an exact time is
associated to each transition. A timed PN is called
a SPN, when random variables are used in
specifying the time behavior. Whereas, it has been
shown that SPNs are, under certain conditions,
isomorphic to homogeneous Markov chains, by
analyzing metrics of the Markov chain (such as the
steady state probability distribution) it is possible
to investigate the behavior of the underlying
system being modeled by the PN [20].
 GSPN is defined as a PN N = (P,T,W,M0) with
its transition set T divided into two sub-sets TI and
TT, defining respectively the set of immediate and
timed transitions. Immediate transitions are fired
immediately once they are enabled, whereas, timed
transitions are fired after a random, exponentially
distributed, enabling time. Hence, in GSPN N,
transitions t ∈ TT are associated with a (possibly
marking-dependent) firing rate, r(t) that constitutes
the defining parameter of the corresponding
exponential distribution.
 The above characterization of immediate and
timed transitions implies that in a net reachable
marking, m, where, both, immediate and timed
transitions are enabled, immediate transitions have
precedence over the timed ones (since they are
instantaneous). Furthermore, in such a marking m
has zero duration in the net dynamics, and
therefore, it is characterized as vanishing. On the
other hand, a marking m in which all enabled
transitions are timed transitions and has zero
duration; therefore, such a marking is characterized
as tangible.
 Given a marking m with a set of

simultaneously enabled immediate transitions, I(m),
the modeler must provide a probability distribution
regulating the firing of the transitions in I(m). In the
GSPN terminology, this probability distribution is
characterized as a random switch E = {W1, W2, ...,
W(m)}. Furthermore, if a set of random switches
regulating the net behavior are marking-dependent,
they are characterized as dynamic; otherwise, they
are static [21].

3.2. UML UML consists of a set of graphs or
charts with explanatory comments that can be
expressed either in a formal way or in natural
language. Each diagram has a specific and precise
position in the design process. An activity diagram
is a dynamic diagram that shows the activity and
the event that causes the object to be in the
particular state. The activity is triggered by one or
more events, and it may result in one or more
events that may trigger other activities or
processes. The biggest disadvantage of activity
diagrams is that they do not clearly explain which
objects execute which activities, and the way that
the contection works between them. However,
labeling of each activity with the responsible
object can be performed. Often it is useful to draw
an activity diagram early in the modeling of a
process, to help understand the overall process
[22].

3.2.1. Annotating AD Additional information
is needed to transform the AD to GSPN, which
includes time information and priorities of conflict
sets. This information is provided by the notation.
The method used in this paper is identical to the
method introduced by Merseguer et al
recommending two different aspects in the
annotations: time and probability [2]. The method
uses tagged values as an extensibility mechanism
to integrate them in the UML models. Annotations
will be attached to both transitions and states.
 In this paper the suggested format is {n sec.;
P(k)} or {n-m sec.; P(k)} for timed transitions and
{P(k)} for untimed transitions. If no probability
(P(k)) is provided, it is assumed identical
probability for each transition in the same Enabling
Conflict Set (ECS). The other parameters needed
for evaluation could be attached to the above
notation with separated tagged values or in the
form of constraints.

68 - Vol. 20, No. 1, April 2007 IJE Transactions A: Applications

4. TRANSFORMING AD TO LGSPN

The transformation algorithm used to translate the
activity diagram to the GSPN model is the one
that is explained by Merseguer et al [2]. As long
as the provided formalism seems to be well
formed and well described, it was preferred to be
used in this research to define an alternative. The
only change made to the use of the algorithm is to
relate the ratios (like security, dependability etc)
assigned to the UML AD to GSPN elements.
These ratios are then included in the LGSPN
together with firing rates of transitions and the
weights of immediate transitions.
 The parameters like security ratio and reliability
ratio of the action are just attached to those AD
transitions that represent an action. These
parameters are then simply related to time
transitions of the LGSPN, which the tags are
attached to. The parameters attached to the action
states are attached to all of the places existing in
the transformation of that element to LGSPN.
Once the GSPN system is defined, some structural
properties may be computed to perform a
validation of the model. First, P and T semi-flows
can be computed to check whether the net is
structurally bounded and whether it may have
home-states. Other structural results that may be
computed are the Effective Conflict Sets (ECSs) of
the model. These results ensure that the net is
suitable for a numerical evaluation yielding the
steady-state probabilities of all its markings [3].

5. DERIVING THE EMBEDDED CTMC

The stochastic process associated with k-bounded
GSPN systems with M0, as their home state, can be
classified as a finite state space, stationary
(homogeneous), irreducible, and continuous-time
semi-Markov process [3]. In the case of GSPNs,
the Embedded Markov Chain (EMC) can be
recognized as disregarding the concept of time and
focusing attention on the set of states of the semi-
Markov process.
 The specifications of a GSPN system are
sufficient for the computation of the transition
probabilities of such a chain. The CTMC
associated with a given GSPN (the term GSPN is
used instead of LGSPN, as the labels provided by

the LGSPN do not have any effect on analyzing of
the net) system is obtained by applying some
simple rules:
 The CTMC state space S = {si} corresponds to
the reachability set RS(M0) of the PN associated
with the GSPN (Mi ↔ si).
 The transition rate from state si (corresponding
to marking Mi) to state sj (Mj) is obtained as the
sum of the firing rates (for timed transitions) or
weights (for immediate transitions) of the
transitions that are enabled in Mi and whose firings
generate marking Mj.
 Based on the simple rules listed above, it is
possible to devise algorithms for the automatic
construction of the infinitesimal generator (also
called the state transition rate matrix) of the
isomorphic CTMC, starting from the GSPN
description. Denoting this matrix by U, with wk the
firing rate (or weight for immediate transitions) of Tk
and with Ej(Mi) = {h : Th ∈ E(Mi)∧ Mi | Th > Mj} the
set of transitions whose firings bring the net from
marking Mi to marking Mj, the components of the
transition probability matrix would be:

iq

kW)iM(jEkT
j,iU

∑ ∈
= (1)

Let RS, TRS and VRS indicate the reachability set,
tangible reachability set and vanishing reachability
set of the stochastic process the following relation
is true among these sets:

φ=∩∪= TRSVRSandVRSTRSRS (2)

By ordering the markings so that the vanishing
ones correspond to the first entries of the matrix
and the tangible ones to the last, the transition
probability matrix U can be decomposed in the
following manner:[3]

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+=

FE
00

00
DC

BAU (3)

6. ANALYZING THE DERIVED CTMC

The solution of the system of linear matrix
equations

IJE Transactions B: Applications Vol. 20, No. 1, April 2007 - 69

⎩
⎨
⎧

=ψ

ψ=ψ

1T1
U

 (4)

in which ψ is a row vector representing the steady-
state probability distribution of the EMC, can be
interpreted in terms of numbers of state-transitions
performed by the EMC. Indeed, 1/ψi is the mean
recurrence time for state si (marking Mi) measured
in number of transition firings.
 Although this method is computationally
acceptable when the number of vanishing states are
small (compared with the number of tangible
states) but it also computes the probability of
vanishing markings that does not increase the
information content of the final solution since the
time spent in these markings is known to be null.
Moreover, vanishing markings, created by
enlarging the size of the transition probability
matrix U, tend to make the computation of the
solution more expensive and in some cases even
impossible to obtain. So the model must be
reduced by computing the total transition
probabilities among tangible markings only, thus
identifying a Reduced EMC (REMC). The
transition probability matrix of the REMC can thus
be expressed as:[3]

HEFU +=′ (5)

Where

[]⎪⎩

⎪
⎨
⎧

−−

∑ ==
D1CI

0n
0k D)kC(

H (6)

The solution of the problem

⎩
⎨
⎧

=ψ′

′ψ′=ψ′

1T1
U

 (7)

gives ψ a row vector representing the steady-state
probability distribution of the REMC. The
infinitesimal generator q´ of the CTMC associated
with a GSPN can be constructed from the
transition probability rate matrix U´ of the REMC
by dividing each of its rows by the mean sojourn
time (1/ui) of the corresponding tangible marking
(The sojourn time is the time spent by the PN

system in a given marking M). To conform to the
standard definition of the infinitesimal generators,
the diagonal elements of Q´ are set equal to the
negative sum of the off diagonal components:

⎪
⎪
⎩

⎪⎪
⎨

⎧

=∑
≠

′−

≠′
=′

ji
ij

jiq

jijiu
iJS

1

jiq (8)

An alternative way of computing the steady-state
probability distribution over the tangible markings
is thus that of solving the following system of
linear matrix equations:

⎩
⎨
⎧

=η

=′η

1T1

0Q
 (9)

The probability that a given transition Tk ∈ E(Mi)
fires first in marking Mi has the expression:

iq/kW}iM|kT{P ′= (10)

Using the same argument, it can be observed that
the average sojourn time in marking Mi is given by
the following expression:

iq/1iJS ′= (11)

The steady-state distribution η´ is the basis for a
quantitative evaluation of the behavior of the SPN
that is expressed in terms of performance indices.
These results can be computed using a unifying
approach in which proper index functions (also
called reward functions) are defined over the
markings of the SPN and an average reward is
derived using the steady-state probability
distribution of the SPN. Assuming that r(M)
represents one of such reward functions, the
average reward can be computed using the
following weighted sum:

∑
∈

η=
)0M(RSiM

i)iM(rR (12)

Different interpretations of the reward function can
be used to compute different performance indices.
In particular, the following quantities can be
computed using this approach:

70 - Vol. 20, No. 1, April 2007 IJE Transactions A: Applications

• The probability of a particular condition of
the GSPN: Assuming that condition Y(M) is true
only in certain markings of the PN. Reward
Function can be defined as follows [3]:

⎩
⎨
⎧ =

=
otherwise0

true)M(Y1
)M(r (13)

The desired probability P{Υ} is then computed
using the equation. The same result can also be
expressed as:

∑
∈

η′=
AiM

i}Y{P (14)

where

A = {Mi ∈ RS (M0) : Υ (Mi) = true}.

• The expected value of the number of tokens
in a given place: In this case, the reward function
r(M) is simply the value of the marking of that
place (say place j):

n)iP(Mifn)M(r == (15)

Again, this is an equivalent to identify the subset
A(j, n) of RS(M0) for which the number of tokens in
place pj is n (A(j,n) = {Mi | RS(M0) ∈ Mi(pj) = n})
the expected value of the number of tokens in pj is
given by:

{ }∑
>

=
0n

])n,j(APn[])jp(M[E (16)

where the sum is obviously limited to values of n ≤ k,
if the place is k bounded.

• The mean number of firings per unit of the
time of a given transition: Assume that the firing
frequency of transition Tj (the throughput of Tj)
was wanted to computed; observing that a
transition may fire only when it is enabled, the
reward function assumes the value wj in every
marking that enables Tj :

⎩
⎨
⎧ ∈

=
otherwise0

)M(EjTjW
)M(r (17)

The same quantity can also be computed using the
more traditional approach of identifying the subset
Aj of RS(M0) in which a given transition Tj is
enabled (Aj = {Mi ∈ RS(M0) : Tj ∈ E (Mi)}). The
mean number of firings of Tj per unit of time is
then given by:[3]

∑
∈

η=

jAiM
ijWif (18)

As we know, Petri nets are not only used as a
formalism for describing the behavior of
distributed/parallel systems and for assessing their
qualitative properties, but also as a tool for
computing performance indices that allow the
efficiency of these systems to be evaluated. As
these basic parameters are computed, some more
meaningful information can be derived. For
example, a metric formula comparing the security
of different architectures can be gained by using
the equation:

∑ ∈ ∑ ∈
∗

∑ ∈ +∑ ∈
∗

=

Pp 2/)Pp)pJS/)pTpS(

Tt tfTt /)tftS((

.NetSecurity

 (19)

Where St is the data security factor associated to
the transition t, ft is the firing rate of t, Sp the data
security factor associated to the place p, Tp is the
expected time in which there is a token in place p.
This is similar to the authors' previous work using
simulation. Identically the reliability can be
computed, but because the reliability is usually
related to the processes of the system, the
reliability factor is just usually associated to the
transitions than the places:

⎟
⎠
⎞⎜

⎝
⎛ ∑ ∈∑ ∈

∗

=

Tt tfTt /)tftLR

.NetliabilityRe

 (20)

where RLt, stands for the reliability of process t.

IJE Transactions B: Applications Vol. 20, No. 1, April 2007 - 71

7. CASE STUDY

Figure 1 shows the activity diagram of a parallel
system. The system operations are modelled as
follows. A set of new data is read (firing of
transition tnew), and two processes are started in
parallel with the same set of data (the fork
operation-firing of tstart). When both processes are

complete (firing of tpar, and tpar1, respectively), a
synchronization takes place (the join operation-
firing of transition tsyn). The consistency of the two
results is then controlled, and one of the two
transitions tOK or tKO fires, indicating whether the
results are acceptable, or not. If the results are not
consistent, the whole computation is repeated on
the same data, after a further control (firing of

 «PAStep»
{PArespTime='assm',max(N,'s')}

{Security=0.69 , Reliability=0.92}

«PAStep»
{PArespTime='assm',max(Teta,'s')}

«PAStep»
{PAprob=0.99}

{Security=0.85 , Reliability=0.73}

«PAStep»
{PArespTime='assm',max(M1,'s')}

{Security=0.63 , Reliability=0.83}

{Security=0.8 , Reliability=0.6}

«PAStep»
{PArespTime='assm',max(M2,'s')}

«PAStep»
{PArespTime='assm',max(L,'s')}

{Security=0.7 , Reliability=0.95}

«PAStep»
{PAprob=0.01}

Do Part2
{Security=0.7}

Do I/O
{Security=0.78}

Check Data
{Security=0.83}

Do Part1
{Security=0.56}

Input New Data
{Security=0.69}

Figure 1. Activity diagram that specifies a parallel system.

tnew tstarttsyn

tpar

tpar1

tKO

tOKtI/O

tcheck

2

1

3

4

5

6

78

9

Figure 2. Conversion result in GSPN.

72 - Vol. 20, No. 1, April 2007 IJE Transactions A: Applications

TABLE 1. Timed Transitions of Figure 2 and Their Specifications.

Transition Rate Semantics
Tnewdata λ Infinite-server

Tpar1 μ1 Single-server
Tpar2 μ2 Single-server
TI/O ν Single-server

Tcheck θ Single-server

TABLE 2. Immediate Transitions of Figure 2 and Their Specifications.

Transition Weight Priority ECS
tstart 1 1 1
tsyn 1 1 2
tOK α 1 3
tKO β 1 3

TABLE 3. The Markings of the GSPN Presented in Figure 2.

M0 = 2p1 M1 = p1 + p2 M2 = p1 + p3 + p4 M3 = p2 + p3 + p4

M4 = 2p3 + 2p4 M5 = p1 + p4 + p5 M6 = p1 + p3 + p6 M7 = p3 + 2p4 + p5

M8 = 2p3 + p4 + p6 M9 = p2 + p4 + p5 M10 = P1+p5+p6 M11 = p1 + p7

M12 = p1 + p9 M13 = p1 + p8 M14 = p2 + p3 + p6 M15 = 2p4 + 2p5

M16 = p3 + p4 + p5 + p6 M17 = p3 + p4 + p7 M18 = p3 + p4 + p9 M19 = p3 + p4 + p8

M20 = 2p3 + 2p6 M21 = p2 + p9 M22 = p2 + p8 M23 = p4 + 2p5 + p6

M24 = p4 + p5 + p7 M25 = p3 + p5 + 2p6 M26 = p4 + p5 + p8 M27 = p3 + p6 + p9

M28 = p3 + p6 + p8 M29 = p3 + p5 + 2p6 M30 = p3 + p6 + p7 M31 = p5 + p6 + p7

M32 = p7 + p9 M33 = 2p9 M34 = p8 + p9 M35 = p5 + p6 + p8

M36 = p7 + p8 M37 = 2p8

tcheck); otherwise, the results are output (firing of
transition tI/O), and a new set of data is considered.
The model is then converted to a GSPN model by
the methodology [2]. The conversion result is
shown in Figure 2. The model specifications are
shown in Tables 1 and 2. The net has 38 different

markings that could be separated into two subsets
of 18 vanishing markings and 20 tangibles. All
these markings are listed in Table 3. The four sub
matrices C, D, E, and F of Equation 3 have
dimensions (18×18), (18×20), (20×18), and
(20×20), respectively. Because of the relatively

IJE Transactions B: Applications Vol. 20, No. 1, April 2007 - 73

TABLE 4. Non-Zero Components of Matrixes C, D, E and F.

Probability Component Probability Component
1.0 d1,2(1,2) 1.0 c4,5(10,11)
1.0 d2,3(3,4) 1.0 c7,8(16,17)
1.0 d3,6(9,7) 1.0 c11,12(23,24)

a d5,8(11,12) 1.0 c13,14(29,30)
b d5,9(11,13) 1.0 c15,16(31,32)

1.0 d6,7(14,8) 1.0 c17,18(35,36)
a d8,11(17,18) - -
b d8,12(17,19) 1.0 e1,1(0,1)

1.0 d9,11(21,18) 1 2/()λ λ μ μ+ + e2,2(2,3)
1.0 d10,12(22,19) 2/()λ λ μ+ e4,3(5,9)

a d12,14(24,25) 2 2/()μ λ μ+ e4,4(5,10)
b d12,15(24,26) 1 1/()μ λ μ+ e5,4(6,10)
a d14,16(30,27) 1/()λ λ μ+ e5,6(6,14)
b d14,17(30,28) 2 1 2/()μ μ μ+ e6,7(7,16)
a d16,18(32,33) 1 1 2/()μ μ μ+ e7,7(8,16)
b d16,19(32,34) /()λ λ ν+ e8,9(12,21)
a d18,19(36,34) /()θ λ θ+ e9,1(13,1)
b d18,20(36,37) /()λ λ θ+ e9,10(13,22)
- - 1.0 e10,11(15,23)

1 1 2/()μ λ μ μ+ + f2,4(2,5) 1 2/()θ μ μ θ+ + e12,2(19,3)
2 1 2/()μ λ μ μ+ + f2,5(2,6) 1.0 e13,13(20,29)

1 1 2/()μ μ μ+ f3,6(4,7) 2 2/()μ μ ν+ e14,15(25,31)
2 2 2/()μ μ μ+ f3,7(4,8) 2/()θ μ θ+ e15,3(26,9)
1 1 2/()μ μ μ+ f6,10(7,15) 2 2/()μ μ θ+ e15,17(26,35)
2 1 2/()μ μ μ+ f7,13(8,20) 1 1/()μ μ ν+ e16,15(27,31)

/()ν λ ν+ f8,1(12,0) - -
1 2/()ν μ μ ν+ + f11,2(18,2) - -

1 1 2/()μ μ μ ν+ + f11,14(18,25) - -
2 1 2/()μ μ μ ν+ + f11,16(18,27) - -
1 1 2/()μ μ μ θ+ + f12,15(19,26) - -
2 1 2/()μ μ μ θ+ + f12,17(19,28) - -

2/()ν μ ν+ f14,4(25,5) - -
1/()ν μ ν+ f16,5(27,6) - -

1.0 f18,8(33,12) - -
/()ν θ ν+ f19,9(34,13) - -

74 - Vol. 20, No. 1, April 2007 IJE Transactions A: Applications

TABLE 5. Non-zero Components of Matrix U'.

Probability Component Probability Component

1 2/()ν μ μ ν+ + u′11,2(18,2) 1.0 u′1,2(0,2)

1 1 2/()μ μ μ ν+ + u′11,14(18,25) 1 2/()λ λ μ μ+ + u′2,3(2,4)

2 1 2/()μ μ μ ν+ + u′11,16(18,27) 1 1 2/()μ λ μ μ+ + u′2,4(2,5)

1 2/()θ μ μ θ+ + u′12,3(19,4) 2 1 2/()μ λ μ μ+ + u′2,5(2,6)

1 1 2/()μ μ μ θ+ + u′12,15(19,26) 1 1 2/()μ μ μ+ u′3,6(4,7)

2 1 2/()μ μ μ θ+ + u′12,17(19,28) 2 2 2/()μ μ μ+ u′3,7(4,8)

a u′13,16(20,27) 2/()λ λ μ+ u′4,6(5,7)

b u′13,17(20,28) 2 2/()αμ λ μ+ u′4,8(5,12)

2/()ν μ ν+ u′14,4(25,5) 2 2/()βμ λ μ+ u′4,9(5,13)

2 2/()αμ μ ν+ u′14,18(25,33) 1/()λ λ μ+ u′5,7(6,8)

2 2/()βμ μ ν+ u′14,19(25,34) 1 1/()αμ λ μ+ u′5,8(6,12)

2/()θ μ θ+ u′15,6(26,7) 1 1/()βμ λ μ+ u′5,9(6,13)

2 2/()αμ μ θ+ u′15,19(26,34) 1 1 2/()μ μ μ+ u′6,10(7,15)

2 2/()βμ μ θ+ u′15,20(26,37) 2 1 2/()αμ μ μ+ u′6,11(7,18)

1/()ν μ ν+ u′16,5(27,6) 2 1 2/()βμ μ μ+ u′6,12(7,19)

1 1/()αμ μ ν+ u′16,18(27,33) 1 1 2/()αμ μ μ+ u′7,11(8,18)

1 1/()βμ μ ν+ u′16,19(27,34) 1 1 2/()βμ μ μ+ u′7,12(8,19)

1/()θ μ θ+ u′17,7(28,8) 2 1 2/()μ μ μ+ u′7,13(8,20)

1 1/()αμ μ θ+ u′17,19(28,34) /()ν λ ν+ u′8,1(12,0)

1 1/()βμ μ θ+ u′17,20(28,37) /()λ λ ν+ u′8,11(12,18)

1.0 u′18,8(33,12) /()θ λ θ+ u′9,2(13,2)

/()ν θ ν+ u′19,9(34,13) /()λ λ θ+ u′9,12(13,19)

/()θ θ ν+ u′19,11(34,18) a u′10,14(15,25)

1.0 u′20,12(37,19) b u′10,15(15,26)

simple structure of the model, all four blocks are
quite sparse (few of the entries are non-zero).
Table 4 reports the non-zero values of all these

matrices, with the understanding that xi,j(r,s)
represents the non-zero component of the X matrix
located in row i and column j, and corresponding

IJE Transactions B: Applications Vol. 20, No. 1, April 2007 - 75

to the transition probability from state r to state s.
 Using the method outlined by Equation 5, the
transition probability matrix of the REMC reported
in Table 5 is obtained. Solving the system of
linearEquation 4, the steady state probabilities are
obtained for all the states of the REMC. Supposing
that the transition weights assume the following
values: λ = 0.2, μ1 = 2.0, μ2 = 1.0, θ = 0.1, ν = 5.0, α
= 0.99, and β = 0.01. Using Equations 19 and 20, it is
obtained: Security = 0.7078 and Reliability = 0.678.

8. CONCLUSION AND FUTURE WORKS

In this paper, we presented a method to derive non-
functional parameters from the Generalized
Stochastic Petri Net. These parameters can be a
good guidance for selecting sufficient software
models between recommended software models, to
achieve a model with a high security, reliability.
We use GSPN because it’s a formal model and
there are many methods for transforming UML
(which is widely used for modeling the system).
There are some key activities to achieve this goal:
Driving the CTMC from GSPN; which is
extensively described in this paper by analyzing
the CTMC then by obtaining the non-functional
parameters. The work can be improved by
integrating these steps in a CASE tool. It can also
be expanded by mapping other UML diagrams to
GSPN models.

9. REFERENCES

1. Robert, G,. Pettit, IV. and Gomaa, H., “Validation of

Dynamic Behavior in UML Using Colored Petri Nets”,
UML, Dynamic Behavior Workshop, York, England,
(October, 2000).

2. Merseguer, J., L´opezGrao, J. P. and Campos, J., “From
UML Activity Diagrams to Stochastic Petri Nets:
Application to Software Performance Engineering”,
ACM, WOSP 04, California, (January, 2004).

3. Ajmone Marsan, M., “Modeling with Generalized
Stochastic Petri Nets”, John Wiley Series in Parallel
Computing-Chichester, (1995).

4. Motameni, H., Movaghar, A. and Mozafari, M.,
“Evaluating UML State Diagrams Using Colored Petri
Net”, Proc. of SYNASC'05, Romania, (2005).

5. Trowittzsch Zimmermann, A. and Hommel, G.,
“Toward Quantitative Analysis of Real-Time UML

using Stochastic Petri Nets”, IPDPS, Colaorado, (2005).
6. S. Bernardi, S. Donatelli and J. Merseguer, “From UML

Sequence Diagrams and State Charts to Analysable
Petri Net Models”, ACM Proc. Int’l Workshop
Software and Performance, (2002), 35-45.

7. Merseguer, J., Campos, J. and Mena, E., “Performance
Analysis of Internet Based Software Retrieval Systems
using Petri Nets”, ACM, Colaorado, (2001).

8. King, P. and Pooley, R., “Using UML to derive
Stochastic Petri Net Models”, UKPEW, Bristol, (1999).

9. Merseguer, J., Bernardi, S., Campos, J. and Donatelli,
S., “A Compositional Semantics for UML State
Machines Aimed at Performance Evaluation”, M. Silva,
A. Giua and J. M. Colom (Eds.), Proc. of the 6th Int.
Workshop on Discrete Event Systems (WODES'02),
Zaragoza, Spain, (2002), 295-302.

10. Elkoutbi, M. and Keller, R. K., “Modeling Interactive
Systems with Hierarchical Colored Petri Nets”,
Advanced Simulation Technologies Conf., Boston,
MA, (1998), 432- 437.

11. Eshuis, R., “Semantics and Verification of UML
Activity Diagrams for Workflow Modeling”, Ph.D.
Thesis, University of Twente, (2002).

12. Fukuzawa, K. and Saeki, “Evaluating Software
Architecture by Colored Petri Net”, Dept. of Computer
Science, Tokyo Institute of Technology, Okayama 2-12-
1, Meguro-uk, Tokyo, 152-8552, SDkE, Japan, (2002).

13. Pettit, R. G. and Gomaa, H., “Validation of Dynamic
Behavior in UML Using Colored Petri Nets”, UML,
York, England, (2000).

14. Shin, M. E., Levis, A. H. and Wagenhals, L. W.,
“Transformation of UML-Based System Model into
CPN Model for Validating System Behavior”, Proc.
Compositional Verification of UML Models,
Workshop, Sixth International Conference on the
UML, San Francisco, CA, (October, 2003), 397-404.

15. Faul, M. B., “Verifiable Modeling Techniques Using a
Colored Petri Net Graphical Language”, Technology
Review Journal, Spring/Summer, (2004).

16. Motameni, H., Movaghar, A. and Kardel, B., “Verifying
and Evaluating UML Activity Diagram by Converting
to CPN”, Proc. of SYNASC'05, Romania, (2005).

17. Motameni, H., Zandakbari, M. and Movaghar, A.,
“Deriving Performance Parameters from the Activity
Diagram Using GSPN and Markov Chains”, ICCSA
2006 Proceedings of 4th International Conference on
Computer Science and Its Applications, San Ddiego,
California, USA, (2006).

18. Motameni, H., Montazeri, H., Siasifar, M., Movaghar,
A. and Zandakbari, M., “Mapping State Diagram To
Petri Net : An Approach To Use Markov Theory For
Analyzing Non-Functional Parameters”, CISSE’06
Proceedings of 2th IEEE International Conferences
on Computer, Information, and Systems Sciences, and
Engineering, Bridgeport, USA, (2006).

19. Motameni, H., Montazeri, H., Siasifar, M., Movaghar, A.
and Zandakbari, M., “Using Markov Theory for Deriving
Non-Functional Parameters on Transformed Petri Net
from State Diagram”, SEC(R) 2006 Proceedings of
International Conference on Software Engineering
Conference (Russia), Moscow, Russia, (2006).

76 - Vol. 20, No. 1, April 2007 IJE Transactions A: Applications

20. Rana, O. F. and Shields, M. S., “Performance Analysis
of Java Using Petri Nets”, Proceedings of the 8th
International Conference on High-Perfromance
Computing and Networking, (May, 2000), 657-667.

21. Choi, J. Y. and Reveliotis, S. A., “A Generalized
Stochastic Petri Net Model for Performance Analysis
and Control of Capacitated Re-entrant Lines”, IEEE
Transactions on R and A, Vol. XX, No. Y, (2003).

22. Object Management Group, UMLTM Profile for
Schedulability, Performance, and Time Specification,
OMG document, Version 1.1, (January, 2005).

23. Kim, G., Chung, W. and Kim, M., “A Selection
Framework of Multiple Navigation Primitives Using
Generalized Stochastic Petri Nets”, Poceedings of the
IEEE International Conference on Robotics and
Automation (ICRA), Barcelona, Spain, (2005).

