
IJE Transactions B: Applications Vol. 20, No. 1, April 2007 - 65 

MAPPING ACTIVITY DIAGRAM TO PETRI NET: 
APPLICATION OF MARKOV THEORY FOR 

ANALYZING NON-FUNCTIONAL PARAMETERS 
 

H. Motameni* 
 

Department of Computer Engineering, Islamic Azad University 
Science and Research Branch, Tehran, Iran 

motameni@iausari.ac.ir 
 

A. Movaghar 
 

Department of Computer Engineering, Sharif University of Technology 
Tehran, Iran 

movaghar@sharif.edu 
 

M. Fadavi Amiri 
 

Department of Computer Engineering, Iran University of Science and Technology 
Tehran, Iran 

fadavi@comp.iust.ac.ir 
 

*Corresponding Author 
 

(Received: January 17, 2006 – Accepted in Revised Form: March 18, 2007) 
 

Abstract   The quality of an architectural design of a software system has a great influence on 
achieving non-functional requirements of a system. A regular software development project is often 
influenced by non-functional factors such as the customers' expectations about the performance and 
reliability of the software as well as the reduction of underlying risks. The evaluation of non-
functional parameters of a software system at the early stages of design and its development process 
are often considered as major factors in dealing with these issues. Because these evaluations can help 
us to choose the most proper model which is the securest and the most reliable.In this paper, a method 
is presented to obtain performance parameters from Generalized Stochastic Petri Net (GSPN) to be 
able to analyze the stochastic behavior of the system. The embedded Continuous Time Markov Chain 
(CTMC) is derived from the GSPN and the Markov chain theory is used to obtain the performance 
parameters. 
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. دارد تاثير زيادی در بدست آوردن نيازهای غيرعملياتی ستم نرم افزاریکيفيت طراحی معماری يک سيچكيده       

عملياتی مانند انتظارات مشتری درباره کارايی  يک پروژه نرم افزاری در حال توسعه اغلب به وسيله فاکتورهای غير
ارزيابی پارامترهای غير عملياتی يک . بديا تحت تاثير قرار گرفته، ريسک های اساسی آن کاهش میو قابليت اعتماد 

سيستم نرم افزاری در مراحل اوليه طراحی و فرايند توسعه آن، اغلب به صورت فاکتورهای اساسی اين بحث در 
در اين مقاله،  .توانند در انتخاب امن ترين و مطمئن ترين مدل کمک کنند شوند و اين ارزيابی ها می نظر گرفته می

 تا بتوان رفتار شود  معرفی می(GSPN)" شبکه پتری تصادفی عمومی" آوردن اين پارامتر ها از روشی برای به دست
 مشتق شده و تئوری مارکوف برای GSPNسپس زنجيره مارکوف زمان پيوسته از .  نمودحليلتتصادفی سيستم را 

 .گيرد به دست آوردن اين پارامترها مورد استفاده قرار می
 
 

1. INTRODUCTION 
 
A PN is an abstract, formal model of information 

flow. The properties, concepts, and techniques of 
PNs are being developed for describing and 
analyzing the flow of information and control in 
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systems, particularly systems that may exhibit 
asynchronous and concurrent activities. The major 
use of PNs has been the modeling of systems of 
events in which it is possible for some events to 
occur concurrently but there are constraints on the 
concurrence, precedence, or frequency of these 
occurrences. 
     There are three general characteristics of PNs 
that make them interesting in capturing concurrent, 
object-oriented behavioral specifications. First, 
PNs allow the modeling of concurrency, 
synchronization, and resource sharing behavior of 
a system. Secondly, there are many theoretical 
results associated with PNs for the analysis of 
such issues as deadlock detection and 
performance analysis. Finally, the integration of 
PNs with object oriented software design 
architecture could provide a means for automating 
behavioral analysis [1]. 
     We present a method for obtaining non-
functional parameters from GSPN. The reason for 
using GSPN is that, there are some methods for 
transforming UML diagrams to GSPN as an 
example one of them is introduced in [2,3]. 
     Currently the Unified Model Language (UML) 
diagrams are widely used in the field of software 
design as it is easy to use in comparison to other 
alternatives, and is powerful in describing different 
aspects of a system. However, the semi-formal 
properties of the UML diagram cannot satisfy the 
industry's need in predicting the non-functional 
parameters of the software in the early stages of 
the software life cycle. 
     Since it is not possible to use UML diagrams 
for performance evaluation, they were translated to 
Generalized Stochastic Petri Net (GSPN) [2,3], a 
more formal model that enables the authors to do 
the performance evaluations. 
     The authors' previous work on AD includes the 
transformation of AD to Colored Petri Net [3, 4], 
where some performance measures could be 
obtained using simulation. The simulation-based 
measurements seem to be more straightforward 
compared to its alternatives, which are analytic 
methods. 
     First a brief discussion on GSPN is presented, 
then UML will be disscussed to introduce its 
fundamentals and history. 
     For the next step transforming AD to 
LGSPN(GSPN) is discussed and then how a 

CTMC is derived from GSPN. Finally, 
performance evaluation on the derived CTMC is 
conducted and a case study is explained. 
     In this research, analytic methods are used to 
obtain results that are more accurate. Although 
using these kinds of methods induces some 
computational complexities to the calculation of 
system performance, the gained results are more 
reliable compared to simulation techniques. 
Therefore, analytic methods remain as the only 
choice for evaluating critical systems, but we 
should consider that this method is more useful in 
small systems because it is possible to have more 
details 
 
 
 

2. RELATED WORK 
 
The Use of Stochastic Petri Net (SPN) and its 
extensions have been discussed in several papers 
[2,5,6,7 and 8]. Merseguer et al. used the derived 
SPN from the UML model to evaluate 
performance of internet based software retrieval 
systems [7]. Derivation of an executable GSPN 
model from a description of a system expressing a 
set of UML State Machines (SMs) was reported in 
[9]. 
     A group of works is devoted to transforming the 
software model to Colored Petri Net (CPN), which 
seems to be more related to software properties 
than the other UML extensions [10-15]. 
     In the authors' previous works [4,16], the UML 
model was transformed to CPN and then analyzed 
by means of simulation. Trowitzsch et al. have 
transformed the software UML diagrams to SPN 
models for performance evaluation of real-time 
systems [5]. 
     Most of the previous works discussed 
transforming the software model to analytical 
models or evaluating the performance model. In 
other words, none of them provides an integrated 
method, which can start from software models and 
terminate with some derived performance 
parameters. 
     The method of [9], [17] was used to transform 
the software model to a GSPN for evaluating 
software performance parameters. In our previous 
work [18,19] by using [2] and transforming 
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software model to GSPN some performance 
parameters are calculated. In this paper, the 
performance model is evaluted in a way that leads 
to gain meaningful parameters of the system like 
reliability and security. 
 
 
 

3. REVIEWING THE GSPN AND UML 
 
3.1. GSPN   The basic PN model includes two 
components: places and transitions connected 
together via arcs to model system behavior; 
however, it may be extended by introducing the 
notion of time, leading to timed Petri nets (TPN) 
for a performance analysis of Petri Nets 
quantitative analysis. In TPN an exact time is 
associated to each transition. A timed PN is called 
a SPN, when random variables are used in 
specifying the time behavior. Whereas, it has been 
shown that SPNs are, under certain conditions, 
isomorphic to homogeneous Markov chains, by 
analyzing metrics of the Markov chain (such as the 
steady state probability distribution) it is possible 
to investigate the behavior of the underlying 
system being modeled by the PN [20]. 
     GSPN is defined as a PN N = (P,T,W,M0) with 
its transition set T divided into two sub-sets TI and 
TT, defining respectively the set of immediate and 
timed transitions. Immediate transitions are fired 
immediately once they are enabled, whereas, timed 
transitions are fired after a random, exponentially 
distributed, enabling time. Hence, in GSPN N, 
transitions t ∈ TT are associated with a (possibly 
marking-dependent) firing rate, r(t) that constitutes 
the defining parameter of the corresponding 
exponential distribution. 
     The above characterization of immediate and 
timed transitions implies that in a net reachable 
marking, m, where, both, immediate and timed 
transitions are enabled, immediate transitions have 
precedence over the timed ones (since they are 
instantaneous). Furthermore, in such a marking m 
has zero duration in the net dynamics, and 
therefore, it is characterized as vanishing. On the 
other hand, a marking m in which all enabled 
transitions are timed transitions and has zero 
duration; therefore, such a marking is characterized 
as tangible. 
     Given a marking m with a set of 

simultaneously enabled immediate transitions, I(m), 
the modeler must provide a probability distribution 
regulating the firing of the transitions in I(m). In the 
GSPN terminology, this probability distribution is 
characterized as a random switch E  =  {W1, W2, ..., 
W(m)}. Furthermore, if a set of random switches 
regulating the net behavior are marking-dependent, 
they are characterized as dynamic; otherwise, they 
are static [21]. 
 
3.2. UML   UML consists of a set of graphs or 
charts with explanatory comments that can be 
expressed either in a formal way or in natural 
language. Each diagram has a specific and precise 
position in the design process. An activity diagram 
is a dynamic diagram that shows the activity and 
the event that causes the object to be in the 
particular state. The activity is triggered by one or 
more events, and it may result in one or more 
events that may trigger other activities or 
processes. The biggest disadvantage of activity 
diagrams is that they do not clearly explain which 
objects execute which activities, and the way that 
the contection works between them. However, 
labeling of each activity with the responsible 
object can be performed. Often it is useful to draw 
an activity diagram early in the modeling of a 
process, to help understand the overall process 
[22]. 
 
3.2.1. Annotating AD   Additional information 
is needed to transform the AD to GSPN, which 
includes time information and priorities of conflict 
sets. This information is provided by the notation. 
The method used in this paper is identical to the 
method introduced by Merseguer et al 
recommending two different aspects in the 
annotations: time and probability [2]. The method 
uses tagged values as an extensibility mechanism 
to integrate them in the UML models. Annotations 
will be attached to both transitions and states. 
     In this paper the suggested format is {n sec.; 
P(k)} or {n-m sec.; P(k)} for timed transitions and 
{P(k)} for untimed transitions. If no probability 
(P(k)) is provided, it is assumed identical 
probability for each transition in the same Enabling 
Conflict Set (ECS). The other parameters needed 
for evaluation could be attached to the above 
notation with separated tagged values or in the 
form of constraints. 
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4. TRANSFORMING AD TO LGSPN 
 
The transformation algorithm used to translate the 
activity diagram to the GSPN model is the one 
that is explained by Merseguer et al [2]. As long 
as the provided formalism seems to be well 
formed and well described, it was preferred to be 
used in this research to define an alternative. The 
only change made to the use of the algorithm is to 
relate the ratios (like security, dependability etc) 
assigned to the UML AD to GSPN elements. 
These ratios are then included in the LGSPN 
together with firing rates of transitions and the 
weights of immediate transitions. 
     The parameters like security ratio and reliability 
ratio of the action are just attached to those AD 
transitions that represent an action. These 
parameters are then simply related to time 
transitions of the LGSPN, which the tags are 
attached to. The parameters attached to the action 
states are attached to all of the places existing in 
the transformation of that element to LGSPN. 
Once the GSPN system is defined, some structural 
properties may be computed to perform a 
validation of the model. First, P and T semi-flows 
can be computed to check whether the net is 
structurally bounded and whether it may have 
home-states. Other structural results that may be 
computed are the Effective Conflict Sets (ECSs) of 
the model. These results ensure that the net is 
suitable for a numerical evaluation yielding the 
steady-state probabilities of all its markings [3]. 
 
 
 

5. DERIVING THE EMBEDDED CTMC 
 
The stochastic process associated with k-bounded 
GSPN systems with M0, as their home state, can be 
classified as a finite state space, stationary 
(homogeneous), irreducible, and continuous-time 
semi-Markov process [3]. In the case of GSPNs, 
the Embedded Markov Chain (EMC) can be 
recognized as disregarding the concept of time and 
focusing attention on the set of states of the semi-
Markov process. 
     The specifications of a GSPN system are 
sufficient for the computation of the transition 
probabilities of such a chain. The CTMC 
associated with a given GSPN (the term GSPN is 
used instead of LGSPN, as the labels provided by 

the LGSPN do not have any effect on analyzing of 
the net) system is obtained by applying some 
simple rules: 
     The CTMC state space S = {si} corresponds to 
the reachability set RS(M0) of the PN associated 
with the GSPN (Mi ↔ si). 
     The transition rate from state si (corresponding 
to marking Mi) to state sj (Mj) is obtained as the 
sum of the firing rates (for timed transitions) or 
weights (for immediate transitions) of the 
transitions that are enabled in Mi and whose firings 
generate marking Mj. 
     Based on the simple rules listed above, it is 
possible to devise algorithms for the automatic 
construction of the infinitesimal generator (also 
called the state transition rate matrix) of the 
isomorphic CTMC, starting from the GSPN 
description. Denoting this matrix by U, with wk the 
firing rate (or weight for immediate transitions) of Tk 
and with Ej(Mi) = {h : Th ∈ E(Mi)∧ Mi | Th > Mj} the 
set of transitions whose firings bring the net from 
marking Mi to marking Mj, the components of the 
transition probability matrix would be: 
 

iq

kW)iM(jEkT
j,iU

∑ ∈
=  (1) 

 
Let RS, TRS and VRS indicate the reachability set, 
tangible reachability set and vanishing reachability 
set of the stochastic process the following relation 
is true among these sets: 
 

φ=∩∪= TRSVRSandVRSTRSRS  (2) 
 
By ordering the markings so that the vanishing 
ones correspond to the first entries of the matrix 
and the tangible ones to the last, the transition 
probability matrix U can be decomposed in the 
following manner:[3] 
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6. ANALYZING THE DERIVED CTMC 
 
The solution of the system of linear matrix 
equations 
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⎩
⎨
⎧

=ψ

ψ=ψ

1T1
U

 (4) 

 
in which ψ is a row vector representing the steady-
state probability distribution of the EMC, can be 
interpreted in terms of numbers of state-transitions 
performed by the EMC. Indeed, 1/ψi is the mean 
recurrence time for state si (marking Mi) measured 
in number of transition firings. 
     Although this method is computationally 
acceptable when the number of vanishing states are 
small (compared with the number of tangible 
states) but it also computes the probability of 
vanishing markings that does not increase the 
information content of the final solution since the 
time spent in these markings is known to be null. 
Moreover, vanishing markings, created by 
enlarging the size of the transition probability 
matrix U, tend to make the computation of the 
solution more expensive and in some cases even 
impossible to obtain. So the model must be 
reduced by computing the total transition 
probabilities among tangible markings only, thus 
identifying a Reduced EMC (REMC). The 
transition probability matrix of the REMC can thus 
be expressed as:[3] 
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The solution of the problem 
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gives ψ a row vector representing the steady-state 
probability distribution of the REMC. The 
infinitesimal generator q´ of the CTMC associated 
with a GSPN can be constructed from the 
transition probability rate matrix U´ of the REMC 
by dividing each of its rows by the mean sojourn 
time (1/ui) of the corresponding tangible marking 
(The sojourn time is the time spent by the PN 

system in a given marking M). To conform to the 
standard definition of the infinitesimal generators, 
the diagonal elements of Q´ are set equal to the 
negative sum of the off diagonal components: 
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An alternative way of computing the steady-state 
probability distribution over the tangible markings 
is thus that of solving the following system of 
linear matrix equations: 
 

⎩
⎨
⎧

=η

=′η

1T1

0Q
 (9) 

 
The probability that a given transition Tk ∈ E(Mi) 
fires first in marking Mi has the expression: 
 

iq/kW}iM|kT{P ′=  (10) 
 
Using the same argument, it can be observed that 
the average sojourn time in marking Mi is given by 
the following expression: 
 

iq/1iJS ′=  (11) 
 
The steady-state distribution η´ is the basis for a 
quantitative evaluation of the behavior of the SPN 
that is expressed in terms of performance indices. 
These results can be computed using a unifying 
approach in which proper index functions (also 
called reward functions) are defined over the 
markings of the SPN and an average reward is 
derived using the steady-state probability 
distribution of the SPN. Assuming that r(M) 
represents one of such reward functions, the 
average reward can be computed using the 
following weighted sum: 
 

∑
∈

η=
)0M(RSiM

i)iM(rR  (12) 

 
Different interpretations of the reward function can 
be used to compute different performance indices. 
In particular, the following quantities can be 
computed using this approach: 
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• The probability of a particular condition of 
the GSPN: Assuming that condition Y(M) is true 
only in certain markings of the PN. Reward 
Function can be defined as follows [3]: 
 

⎩
⎨
⎧ =

=
otherwise0

true)M(Y1
)M(r  (13) 

 
The desired probability P{Υ} is then computed 
using the equation. The same result can also be 
expressed as: 
 

∑
∈

η′=
AiM

i}Y{P  (14) 

 
where 
 
A = {Mi ∈ RS (M0) : Υ (Mi) = true}. 
 
• The expected value of the number of tokens 
in a given place: In this case, the reward function 
r(M) is simply the value of the marking of that 
place (say place j): 
 

n)iP(Mifn)M(r ==  (15) 
 
Again, this is an equivalent to identify the subset 
A(j, n) of RS(M0) for which the number of tokens in 
place pj is n (A(j,n) = {Mi | RS(M0) ∈ Mi(pj) = n}) 
the expected value of the number of tokens in pj is 
given by: 
 

{ }∑
>

=
0n

])n,j(APn[])jp(M[E  (16) 

 
where the sum is obviously limited to values of n ≤ k, 
if the place is k bounded. 
 
• The mean number of firings per unit of the 
time of a given transition: Assume that the firing 
frequency of transition Tj (the throughput of Tj) 
was wanted to computed; observing that a 
transition may fire only when it is enabled, the 
reward function assumes the value wj in every 
marking that enables Tj : 
 

⎩
⎨
⎧ ∈

=
otherwise0

)M(EjTjW
)M(r  (17) 

The same quantity can also be computed using the 
more traditional approach of identifying the subset 
Aj of RS(M0) in which a given transition Tj is 
enabled (Aj = {Mi ∈ RS(M0) : Tj ∈ E (Mi)}). The 
mean number of firings of Tj per unit of time is 
then given by:[3] 
 

∑
∈

η=

jAiM
ijWif  (18) 

 
As we know, Petri nets are not only used as a 
formalism for describing the behavior of 
distributed/parallel systems and for assessing their 
qualitative properties, but also as a tool for 
computing performance indices that allow the 
efficiency of these systems to be evaluated. As 
these basic parameters are computed, some more 
meaningful information can be derived. For 
example, a metric formula comparing the security 
of different architectures can be gained by using 
the equation: 
 

∑ ∈ ∑ ∈
∗

∑ ∈ +∑ ∈
∗

=

Pp 2/)Pp )pJS/)pTpS(

Tt tfTt /)tftS((

.NetSecurity

 

 
 (19) 
 
Where St is the data security factor associated to 
the transition t, ft is the firing rate of t, Sp the data 
security factor associated to the place p, Tp is the 
expected time in which there is a token in place p. 
This is similar to the authors' previous work using 
simulation. Identically the reliability can be 
computed, but because the reliability is usually 
related to the processes of the system, the 
reliability factor is just usually associated to the 
transitions than the places: 
 

⎟
⎠
⎞⎜

⎝
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=

Tt tfTt /)tftLR

.NetliabilityRe
 

 
 (20) 
 
where RLt, stands for the reliability of process t. 
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7. CASE STUDY 
 
Figure 1 shows the activity diagram of a parallel 
system. The system operations are modelled as 
follows. A set of new data is read (firing of 
transition tnew), and two processes are started in 
parallel with the same set of data (the fork 
operation-firing of tstart). When both processes are 

complete (firing of tpar, and tpar1, respectively), a 
synchronization takes place (the join operation-
firing of transition tsyn). The consistency of the two 
results is then controlled, and one of the two 
transitions tOK or tKO fires, indicating whether the 
results are acceptable, or not. If the results are not 
consistent, the whole computation is repeated on 
the same data, after a further control (firing of 

 
 
 

 «PAStep» 
{PArespTime='assm',max(N,'s')} 

 
{Security=0.69 , Reliability=0.92} 

«PAStep» 
{PArespTime='assm',max(Teta,'s')} 

«PAStep» 
{PAprob=0.99} 

 
{Security=0.85 , Reliability=0.73} 

«PAStep» 
{PArespTime='assm',max(M1,'s')} 

 
{Security=0.63 , Reliability=0.83} 

 
{Security=0.8 , Reliability=0.6} 

«PAStep» 
{PArespTime='assm',max(M2,'s')} 

«PAStep» 
{PArespTime='assm',max(L,'s')} 

 
{Security=0.7 , Reliability=0.95} 

«PAStep» 
{PAprob=0.01} 

Do Part2 
{Security=0.7}

Do I/O 
{Security=0.78}

Check Data 
{Security=0.83}

Do Part1 
{Security=0.56}

Input New Data 
{Security=0.69}

 
 

Figure 1. Activity diagram that specifies a parallel system. 
 
 
 

tnew tstarttsyn

tpar

tpar1

tKO 

tOKtI/O 

tcheck

2

1

3

4

5

6

78

9

 
 

Figure 2. Conversion result in GSPN. 
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TABLE 1. Timed Transitions of Figure 2 and Their Specifications. 
 

Transition Rate Semantics 
Tnewdata λ Infinite-server 

Tpar1 μ1 Single-server 
Tpar2 μ2 Single-server 
TI/O ν Single-server 

Tcheck θ Single-server 
 
 
 
 

TABLE 2. Immediate Transitions of Figure 2 and Their Specifications. 
 

Transition Weight Priority ECS 
tstart 1 1 1 
tsyn 1 1 2 
tOK α 1 3 
tKO β 1 3 

 
 
 

TABLE 3. The Markings of the GSPN Presented in Figure 2. 
 

M0 = 2p1 M1 = p1 + p2 M2 = p1 + p3 + p4 M3 = p2 + p3 + p4 

M4 = 2p3 + 2p4 M5 = p1 + p4 + p5 M6 = p1 + p3 + p6 M7 = p3 + 2p4 + p5 

M8 = 2p3 + p4 + p6 M9 = p2 + p4 + p5 M10 = P1+p5+p6 M11 = p1 + p7 

M12 = p1 + p9 M13 = p1 + p8 M14 = p2 + p3 + p6 M15 = 2p4 + 2p5 

M16 = p3 + p4 + p5 + p6 M17 = p3 + p4 + p7 M18 = p3 + p4 + p9 M19 = p3 + p4 + p8 

M20 = 2p3 + 2p6 M21 = p2 + p9 M22 = p2 + p8 M23 = p4 + 2p5 + p6 

M24 = p4 + p5 + p7 M25 = p3 + p5 + 2p6 M26 = p4 + p5 + p8 M27 = p3 + p6 + p9 

M28 = p3 + p6 + p8 M29 = p3 + p5 + 2p6 M30 = p3 + p6 + p7 M31 = p5 + p6 + p7 

M32 = p7 + p9 M33 = 2p9 M34 = p8 + p9 M35 = p5 + p6 + p8 

M36 = p7 + p8 M37 = 2p8   

tcheck); otherwise, the results are output (firing of 
transition tI/O), and a new set of data is considered. 
The model is then converted to a GSPN model by 
the methodology [2]. The conversion result is 
shown in Figure 2. The model specifications are 
shown in Tables 1 and 2. The net has 38 different 

markings that could be separated into two subsets 
of 18 vanishing markings and 20 tangibles. All 
these markings are listed in Table 3. The four sub 
matrices C, D, E, and F of Equation 3 have 
dimensions (18×18), (18×20), (20×18), and 
(20×20), respectively. Because of the relatively 
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TABLE 4. Non-Zero Components of Matrixes C, D, E and F. 
 

Probability Component Probability Component 
1.0 d1,2(1,2) 1.0 c4,5(10,11) 
1.0 d2,3(3,4) 1.0 c7,8(16,17) 
1.0 d3,6(9,7) 1.0 c11,12(23,24) 

a  d5,8(11,12) 1.0 c13,14(29,30) 
b  d5,9(11,13) 1.0 c15,16(31,32) 

1.0 d6,7(14,8) 1.0 c17,18(35,36) 
a  d8,11(17,18) - - 
b  d8,12(17,19) 1.0 e1,1(0,1) 

1.0 d9,11(21,18) 1 2/( )λ λ μ μ+ +  e2,2(2,3) 
1.0 d10,12(22,19) 2/( )λ λ μ+  e4,3(5,9) 

a  d12,14(24,25) 2 2/( )μ λ μ+  e4,4(5,10) 
b  d12,15(24,26) 1 1/( )μ λ μ+  e5,4(6,10) 
a  d14,16(30,27) 1/( )λ λ μ+  e5,6(6,14) 
b  d14,17(30,28) 2 1 2/( )μ μ μ+  e6,7(7,16) 
a  d16,18(32,33) 1 1 2/( )μ μ μ+  e7,7(8,16) 
b  d16,19(32,34) /( )λ λ ν+  e8,9(12,21) 
a  d18,19(36,34) /( )θ λ θ+  e9,1(13,1) 
b  d18,20(36,37) /( )λ λ θ+  e9,10(13,22) 
- - 1.0 e10,11(15,23) 

1 1 2/( )μ λ μ μ+ +  f2,4(2,5) 1 2/( )θ μ μ θ+ +  e12,2(19,3) 
2 1 2/( )μ λ μ μ+ +  f2,5(2,6) 1.0 e13,13(20,29) 

1 1 2/( )μ μ μ+  f3,6(4,7) 2 2/( )μ μ ν+  e14,15(25,31) 
2 2 2/( )μ μ μ+  f3,7(4,8) 2/( )θ μ θ+  e15,3(26,9) 
1 1 2/( )μ μ μ+  f6,10(7,15) 2 2/( )μ μ θ+  e15,17(26,35) 
2 1 2/( )μ μ μ+  f7,13(8,20) 1 1/( )μ μ ν+  e16,15(27,31) 

/( )ν λ ν+  f8,1(12,0) - - 
1 2/( )ν μ μ ν+ +  f11,2(18,2) - - 

1 1 2/( )μ μ μ ν+ +  f11,14(18,25) - - 
2 1 2/( )μ μ μ ν+ +  f11,16(18,27) - - 
1 1 2/( )μ μ μ θ+ +  f12,15(19,26) - - 
2 1 2/( )μ μ μ θ+ +  f12,17(19,28) - - 

2/( )ν μ ν+  f14,4(25,5) - - 
1/( )ν μ ν+  f16,5(27,6) - - 

1.0 f18,8(33,12) - - 
/( )ν θ ν+  f19,9(34,13) - - 
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TABLE 5. Non-zero Components of Matrix U'. 
 

Probability  Component  Probability Component  

1 2/( )ν μ μ ν+ + u′11,2(18,2) 1.0 u′1,2(0,2) 

1 1 2/( )μ μ μ ν+ +  u′11,14(18,25)  1 2/( )λ λ μ μ+ +  u′2,3(2,4)  

2 1 2/( )μ μ μ ν+ + u′11,16(18,27)  1 1 2/( )μ λ μ μ+ + u′2,4(2,5)  

1 2/( )θ μ μ θ+ +  u′12,3(19,4)  2 1 2/( )μ λ μ μ+ + u′2,5(2,6)  

1 1 2/( )μ μ μ θ+ +  u′12,15(19,26)  1 1 2/( )μ μ μ+ u′3,6(4,7)  

2 1 2/( )μ μ μ θ+ + u′12,17(19,28)  2 2 2/( )μ μ μ+ u′3,7(4,8)  

a  u′13,16(20,27) 2/( )λ λ μ+ u′4,6(5,7)  

b  u′13,17(20,28)  2 2/( )αμ λ μ+  u′4,8(5,12)  

2/( )ν μ ν+ u′14,4(25,5)  2 2/( )βμ λ μ+  u′4,9(5,13)  

2 2/( )αμ μ ν+  u′14,18(25,33)  1/( )λ λ μ+  u′5,7(6,8)  

2 2/( )βμ μ ν+  u′14,19(25,34)  1 1/( )αμ λ μ+  u′5,8(6,12)  

2/( )θ μ θ+  u′15,6(26,7)  1 1/( )βμ λ μ+  u′5,9(6,13)  

2 2/( )αμ μ θ+  u′15,19(26,34) 1 1 2/( )μ μ μ+  u′6,10(7,15) 

2 2/( )βμ μ θ+  u′15,20(26,37)  2 1 2/( )αμ μ μ+  u′6,11(7,18)  

1/( )ν μ ν+  u′16,5(27,6)  2 1 2/( )βμ μ μ+  u′6,12(7,19)  

1 1/( )αμ μ ν+  u′16,18(27,33)  1 1 2/( )αμ μ μ+  u′7,11(8,18)  

1 1/( )βμ μ ν+  u′16,19(27,34)  1 1 2/( )βμ μ μ+  u′7,12(8,19)  

1/( )θ μ θ+  u′17,7(28,8)  2 1 2/( )μ μ μ+ u′7,13(8,20)  

1 1/( )αμ μ θ+  u′17,19(28,34) /( )ν λ ν+  u′8,1(12,0)  

1 1/( )βμ μ θ+  u′17,20(28,37)  /( )λ λ ν+ u′8,11(12,18)  

1.0 u′18,8(33,12)  /( )θ λ θ+  u′9,2(13,2)  

/( )ν θ ν+  u′19,9(34,13)  /( )λ λ θ+  u′9,12(13,19)  

/( )θ θ ν+  u′19,11(34,18)  a  u′10,14(15,25)  

1.0 u′20,12(37,19)  b  u′10,15(15,26)  
 

 

simple structure of the model, all four blocks are 
quite sparse (few of the entries are non-zero). 
Table 4 reports the non-zero values of all these 

matrices, with the understanding that xi,j(r,s) 
represents the non-zero component of the X matrix 
located in row i and column j, and corresponding 
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to the transition probability from state r to state s. 
     Using the method outlined by Equation 5, the 
transition probability matrix of the REMC reported 
in Table 5 is obtained. Solving the system of 
linearEquation 4, the steady state probabilities are 
obtained for all the states of the REMC. Supposing 
that the transition weights assume the following 
values: λ = 0.2, μ1 = 2.0, μ2 = 1.0, θ = 0.1, ν = 5.0, α 
= 0.99, and β = 0.01. Using Equations 19 and 20, it is 
obtained: Security = 0.7078 and Reliability = 0.678. 
 
 
 

8. CONCLUSION AND FUTURE WORKS 
 
In this paper, we presented a method to derive non-
functional parameters from the Generalized 
Stochastic Petri Net. These parameters can be a 
good guidance for selecting sufficient software 
models between recommended software models, to 
achieve a model with a high security, reliability. 
We use GSPN because it’s a formal model and 
there are many methods for transforming UML 
(which is widely used for modeling the system). 
There are some key activities to achieve this goal: 
Driving the CTMC from GSPN; which is 
extensively described in this paper by analyzing 
the CTMC then by obtaining the non-functional 
parameters. The work can be improved by 
integrating these steps in a CASE tool. It can also 
be expanded by mapping other UML diagrams to 
GSPN models. 
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