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Abstract   Approximate dynamic analysis of structures is achieved by fast wavelet transform 
(FWT). The loads are considered as time history earthquake loads. To reduce the computational work, 
FWT is used by which the number of points in the earthquake record are reduced. For this purpose, 
the theory of wavelets together with filter banks are used. The low and high pass filters are used for 
the decomposition of earthquake records in the high and low frequency of the records. The low 
frequency content is the most important part; therefore this part of the record is used for dynamic 
analysis. A number of structures are analysed and the results are compared with exact dynamic 
analysis and the Fast Fourier method (FFT). 
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. رابر زلزله با استفاده از تبديل سريع موجكي مورد نظر استها در ب در اين مقاله تحليل تقريبي سازهچكيده       

. شود شده و براي سازه تحليل تاريخچة زماني انجام مي زلزله در نظر گرفته از بار اعمالي بر سازه، نيروي ناشي 
 براي اين. شود براي كاهش محاسبات كامپيوتري و كاهش تعداد نقاط زلزله از تبديل سريع موجكي استفاده مي

نگاشت زلزله  گذر براي تجزيه شتاب از فيلترهاي بالا و پايين. شود منظور از تئوري موجكها و فيلترها استفاده مي
هاي  هاي پائين زلزله و ديگري شامل فركانس ها شامل فركانس يكي از اين منحني. شود به دو منحني استفاده مي

داده، بنابراين از آنها براي تحليل ديناميكي سازه  تشكيل هاي پائين قسمت عمدة زلزله را  فركانس. بالاي آن است
تعدادي سازه در برابر زلزله با اين روش تحليل شده و نتايج آن با استفاده از تحليل دقيق و . شود استفاده مي

 .شود  مقايسه ميFFTروش 
 
 

1. INTRODUCTION 
 
Time history dynamic analysis of the structures for 
earthquake loads is, in general, time consuming 
and the computational cost of the process is high 
[1]. For large-scale problems, the computational 
time for time history analysis is excessive in 
particular. This makes the structure analysis 
process very inefficient, especially when a time 
history analysis is considered. 
     By Fourier Transform (FT), a signal can be 
expressed as the sum of a series ( possibly infinite) 

of sines and cosines. This sum is also referred to as 
a Fourier expansion [1]. The disadvantage of FT, 
however is that it has only frequency resolution 
and no time resolution [2]. To overcome this 
problem, in the past decades several solutions have 
been developed which are more or less able to 
represent a signal in the time and frequency 
domain simoultaniously [3]. Another disadvantage 
of the FT is that it cannot separate the low and high 
frequencies [4]. 
     The wavelet transform (WT) is probably the 
most recent solution to overcome the shortcomings 
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of the FT [5]. In the WT the use of a fully scalable 
window solves the signal-cutting problem. The 
window is shifted along the signal and for every 
position the spectrum is calculated. Then this 
process is repeated many times with a slightly 
shorter (or longer) window for every new cycle. In 
the end the result will be a collection of time-
frequency representations of the signal, all with 
different resolutions [2]. In the WT we normally 
speak about time-scale representations, scale being 
in a way the opposite of frequency [6]. 
     There are three kinds of wavelet transforms, 
continuous wavelet transforms (CWT) [7], discrete 
wavelet transforms (DWT) [8] and fast wavelet 
transforms (FWT) [9]. In references [10,11] the 
DWT is used for dynamic analysis. Then the DWT 
is used for optimisating structures for the 
earthquake induced loading [12-14]. 
     In the present study, the FWT is used for 
dynamic analysis. The FWT is used to transfer the 
ground acceleration record of the specified 
earthquake into a signal with a very small number of 
points. Thus the time history dynamic analysis is 
carried out at fewer points. The earthquake record is 
broken into multi level records. The original record 
passes through two complementary filters and 
emerges as two signals. For many earthquake 
records, the low frequency content is the effective 
part, because most of the energy of the record is in 
the low frequency part. On the other hand, for a 
record, the shape and the effects of the entire low 
frequency component are similar to those of the 
main record. For an earthquake record if the high 
frequency components are removed, the record is 
different, but the pattern of the record can still be 
distinguished. However, if the low frequency 
components are removed, the record is different, 
and the main record cannot be distinguished. The 
numerical results of the dynamic analysis show that 
this approximation is a powerful technique and the 
required computational work can be reduced 
greatly. The error involved in the FWT is small. 
 
 
 

2. BASIC FEATURES OF SIGNAL 
PROCESSING 

 
There are two kinds of signal processing, one is 
continuous signal processing (CSP) and the other 

is discrete signal processing (DSP). According to 
the Shanon sampling theory, each CSP can be 
converted into DSP [15] therefore we focus on 
DSP. In the signal processing theory, each point of 
a signal is called a sample or point. Discrete time 
signals are represented mathematically as a 
sequence of numbers. 
     One of the important system classes consists of 
those that are linear and time-invariant (LTI). The 
combination of these two properties leads to 
convenient representations for such systems. This 
class of systems is defined by the principle of 
superposition. From the principle of superposition 
and the property of time-invariance, it can be 
written [14]: 
 

∑
+∞

−∞=
−=

k
)kt(h)k(s)t(y  (1) 

 
As a consequence of Equation 1, a LTI system is 
completely characterized by its impulse response 
h(t) in the sense that, given h(t), it is possible to 
use Equation 1 to compute the output y(t) due to 
any input s(k). Equation 1 is commonly called the 
convolution sum [15]. This equation will be used 
for filtering the earthquake record in the 
subsequent sections. 
 
 
 

3. CONTINUOUS WAVELET 
TRANSFORMS 

 
The WT is being increasingly applied, in fields 
ranging from communications to engineering, to 
analyse signals with transient or non-stationary 
components [6]. Non-stationary means that the 
frequency content of the signal may change over 
the time and the onset of changes in the signal 
which cannot be predicted in advance. Earthquake 
records, which are transient-like and have very 
short durations, fit the definition of non-stationary 
signals. The analysis of non-stationary signals 
often involves a compromise between how well 
sudden variations can be located, and how well 
long-term behavior can be identified. Choosing 
basic functions well suited for the analysis of non-
stationary signals is an essential step in such 
applications. 
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FT is an example of basis functions used in 
function approximation. If a function is piecewise 
smooth, with isolated discontinuities, the FT is 
poor because of discontinuities. The WT are well 
suited to approximate piece-wise smooth signals. 
There is an important difference between FT and 
WT. The Fourier basis (sines and cosines) are 
localized in frequency but not in time, the WT is 
local in both frequency and time. 
     Like the FT (time-frequency representation) the 
complete WT process creates three-dimensional 
representation with description of time, scale, and 
amplitude of the WT coefficients. The WT 
decomposes a time series into time-scale space and 
enables one to determine both dominant modes of 
variability and how those modes vary in time. The 
CWT is performed by projecting a signal s(t) into a 
family of zero-mean functions deduced from an 
elementary function )t(ψ  by translations and 
dilations as follows [7]: 
 

∫
+∞

∞−

∗ψ= dt)t(b,a)t(s)b,a(CWT  (2) 

 
where the symbol * denotes the complex conjugate, 
and )t(b,aψ  is a wavelet and defined as: 

 

)
a

bt(5.0a)t(b,a
−

ψ−=ψ  (3) 
 
The wavelets )t(b,aψ  are generated from a single 

basic wavelet )t(ψ  that is called the mother 
wavelet by scaling and translation, a is the scaling 
factor, b represents the translation and the factor 

5.0a−  is for energy normalization across different 
scales. Equation 2 shows how signal s is 
decomposed into a set of basic functions )t(b,aψ . 

For large a, the basic function becomes stretched, 
while for small a, the basic function becomes a 
contracted wavelet. The most important properties 
of wavelets are the admissibility and the regularity 
of conditions and these are the properties that gave 
wavelets their name. 
     The variable a is the scale factor and controls 
the scale of the wavelet, so that taking |a| > 1 
dilates the wavelet ψ, and taking |a| < 1 compresses 
ψ. The variable b is the time translation factor and 
controls the position of the wavelet. The wavelet 

transform is characterized by the following 
properties: 
 
1. It is a linear transformation, 
2. It is covariant under translations: 
 

)ut(s)t(s −→      )ub,a(CWT)b,a(CWT −→  
 
3. It is covariant under dilations: 
 

)kt(s)t(s →      )kb,ka(CWT5.0k)b,a(CWT −→  
 
The basic difference between WT and FT is that 
when the scale factor a is changed, the duration 
and the bandwidth of the wavelet are both 
changed, but its shape remains the same. The CWT 
uses short windows at high frequencies and long 
windows at low frequencies, in contrast to FT, 
which uses a single analysis window. This partially 
overcomes the time resolution limitation of FT. 
CWT can also be assumed as a filter bank analysis 
composed of band-pass filters with a constant 
relative bandwidth. If CWT(a,b) is the WT of a 
signal s(t), then s(t) can be restored using the 
formula: 
 

∫ ∞+
∞− ∫ ∞+
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−−

ψ−
ψ= dadb2a)

a
bt()b,a(CWT1.C)t(s (4) 

 
providing that the FT of wavelet )t(ψ , denoted by 

)v(ψ  satisfies the following admissibility 
conditions: 
 

∫ ∞+
∞− ∞<−=ψ dv1v2)v(ψC  (5) 

 
which shows that )v(ψ , has to oscillate and decay. 
 
 
 

4. DISCRETE WAVELET TRANSFORMS 
 
The CWT, as described so far, is highly redundant 
because (a,b) are continuous. Therefore the 
transformation is usually evaluated by a discrete 
set of continuous basis functions [11]. Also we still 
have an infinite number of wavelets in the wavelet 
transform and this number must be reduced to a 
more manageable number. For most functions the 
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WT has no analytical solutions and they can be 
calculated only numerically. To overcome these 
problems DWT has been introduced. This is 
achieved by modifying the wavelet representation 
in Equation 3 by: 
 

)j
0a

j
0a0kbt

(j5.0
oa)t(k,j

−
ψ−=ψ  (6) 

 
then the DWT of Equation 2 is: 
 

∫
+∞

∞−

∗ψ= dt)t(k,j)t(s)k,j(DWT  (7) 

 
where j and k are integers and a0 > 1 is a fixed 
dilation step. The translation factor b0 depends on 
the dilation step. The effect of discretizing the 
wavelet is that the time-scale space is now sampled 
at discrete intervals. If the DWT is used to 
transform a signal, the result will be a series of 
wavelet coefficients. 
 
 
 

5. FAST WAVELET TRANSFORMS 
 
In FWT, a scaling function corresponding to the 
mother wavelet is used. In the FWT two signals are 
computed. Detail signals Dj and approximate 
signal Aj are obtained as follows: 
 

K...,,2,1kJ...,,2,1j
t

)kj2t(jh)t(s)t(jD

==

∑ −∗=
 (8) 

 

K...,,2,1kJ...,,2,1j
n

)kj2t(jg)t(s)t(jA

==

∑ −∗=
 (9) 

 
where h stands for high pass and g stands for low 
pass filters, the wavelets and scaling functions 
must be deduced from one stage to the next. 
Consider two filter impulse responses g(t) and h(t), 
the wavelets and the scaling functions are obtained 
iteratively as: 
 

∑ −=+
k

)k2t(1g)k(jg)t(1jg  (10a) 

∑ −=+
k

)k2t(1g)k(jh)t(1jh  (10b) 

 
It can be seen that for all the decomposed records 
the total time is the same as the original record but 
the number of points is reduced. 
     The FWT corresponds to the analysis of the 
filter bank, whereas the inverse fast wavelet 
transform (IFWT) corresponds to the synthesis 
one. The filters presented in the IFWT are 
precisely )t(h

~  and )t(g~ . The IFWT achieves multi 
resolution decomposition of s(t) on J stage labelled 
by j = 1, …, J, given by; 
 

∑
=

∑ −∑
=

+−∑=
J

1j k
)kj2t(jg~)t(jA

J

1j
)kj2t(jh

~
)t(jD

k
)t(s

 (11) 
 
where )kj2t(jh

~
−  is called the synthesis wavelets 

and )kj2t(jg~ −  is called the synthesis scaling 

functions [9]. The h
~  and g~  are used for high and 

low pass filters, respectively.  
 
 
 

6. FILTERS USED TO CALCULATE  
FWT AND IFWT 

 
All the filters used in the FWT and IFWT are 
intimately related to the sequence Ǘ )t(φ . Clearly 
if )t(φ  is compactly supported, the sequence )t(φ  
is finite and can be viewed as a filter. The filter 

)t(φ , which is called the scaling filter, is a low pass 
filter, and has a length of 2N, a sum of 1, a norm of 
( 2/1 ), LTI, and has only a finite number of 
nonzero samples [9]. From filter )t(φ , we define 
four filters, of length 2N and norm 1. The four 
filters are computed using the following scheme. 
 

)t(g~)t(g))t(h
~

(QMF)t(g~

)t(h
~

)t(h
)t(
)t()t(h

~

−=→=

↓

−=→
φ
φ

=

 

 
where h and g are used in the FWT to decompose, 
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and h
~  and g~  are used in the IFWT to 

reconstruction. The QMF is a quadrature mirror 
filter, and defined as [9]: 
 

N2,...2,1k)k1N2(h
~1k)1()k(g~ =−++−=  (12) 

 
 
 

7. THE FWT TO APPROXIMATE 
EARTHQUAKE RECORDS 

 
In the FWT, at each level of transformation, the 
signal is processed through a low pass and a high 
pass filter. The high pass filtered signal is known 
as the detail wavelet coefficients. The result of the 
low pass transform is then decimated by a factor of 
two and used as input signal at the next level of 
resolution. After the decimation, the same two 
filters are applied to the data. The process of 
decomposition is repeated until the resulting error 
is in the specified limit. In the present work an 
error of less than 10 percent for maximum 
difference is allowed. 
     For a record s(t) with Np points, the complete 
FWT consists of Nplog2  stages at most. The 
decomposition starts from the original record s(t), 
and produces two sets of signals; detail signals D1, 
and approximate signals A1. In each stage, the 
record is divided into two parts, the first part 
contains the high frequencies and the other 
contains the low frequencies. The main steps in the 
process of time history dynamic analysis of 
structures for a specified earthquake record 
employing the FWT are as follows: 
 
• The functions ψ and φ are defined. In this 

study, the Haar wavelet and the associate 
scaling function are selected [8].  

• The number of stages for decomposition of 
the record is chosen. In this paper four 
stages (j = 1, …, 4) are used. The numerical 
results indicate that the error in the 4th stage 
of decomposition is not acceptable. 

• The FWT of the earthquake record in the 
first stage is computed. Convolving X 
obtains these vectors with the low pass filter 
for A1 (by Equation 9), and with the high 
pass filter for D1 (by Equation 8), 
respectively. 

• Then from signal A1, the two signals A2 and 
D2 are evaluated and the process is 
continued until AJ and DJ are evaluated. For 
the earthquake record, the approximation 
record (Aj) with low frequency components 
is the effective part [15]. 

• The approximate version of the earthquake 
record in all stages (namely Aj) is used for 
dynamic analysis. 

• The dynamic responses of the structure for 
Aj record are calculated by Newmark beta 
method [1]. 

• The actual responses of the structure are 
calculated by IFWT using Equation 11. The 
algorithm is invertible and the signal can be 
reconstructed iteratively from the detail 
coefficients together with the last level 
coefficients of the low pass filter. 

 

In step (f) the dynamic responses of the structures 
is calculated by the Newmark beta method that is 
considered a generalization of the linear 
acceleration method [1]. This method is employed 
for a step-by-step numerical integration of motion 
of a multi degree freedom system. The dynamic 
equilibrium equation of the structures is as: 
 

)t(jAuMI)t(Ky)t(yC)t(yM =++ &&&  (13) 

 
where M, C and K are mass, damping and stiffness 
matrixes of the structure, respectively. The vectors 
y&& , y&  and y are acceleration, velocity and 
displacements of the degrees of freedom, 
respectively. Iu is the unit matrix and jA  is the 
acceleration record. In this paper, Aj is calculated 
by Equation 9. The mass and stiffness matrixes are 
computed by the characteristics of the members of 
the structure and the damping matrix is computed 
by the help of the mass and stiffness matrixes. In 
the Newmark beta method, the structure is 
analysed and the values of y&& , y& and y are 
calculated at all the time steps of the record. Then 
the member forces and stresses in the structure 
under consideration can be easily calculated 
employing y&& , y& and y. 
     It should be mentioned that in the process of 
filtering, the time intervals are also filtered and in 
fact, the time intervals corresponding to the high 
frequencies are deleted. Although the overall time 
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Figure 1. Shear building of 7 stories. 

 
 
 

TABLE 1. Results of Maximum Displacement of Example. 
 

Maximum dynamic displacement (cm) 
Floor No. 

EDA FFT A1 A2 A3 A4 
1 1.952 1.963 1.975 2.035 2.082 2.153 
2 3.758 3.796 3.859 3.928 3.972 4.058 
3 5.459 5.509 5.554 5.611 5.631 5.676 
4 7.027 7.016 7.008 7.045 7.017 6.981 
5 8.353 8.272 8.270 8.174 8.094 7.966 
6 9.340 9.297 9.168 8.945 8.830 8.623 
7 9.876 9.764 9.626 9.334 9.203 8.952 

is the same for all the filtered records, but the time 
intervals are not the same. On the other hand, the 
direct integration method by the Newmark beta 
method is carried out at less number of points with 
different time steps. 
 
 
 

8. NUMERICAL EXAMPLES 
 
Two examples are analysed for the El Centro 
Earthquake record (S-E 1940). The Haar wavelet is 
used for the FWT. The number of points of the El 
Centro is 2688, and the time interval is 0.02 
seconds. The exact response of structure is 
calculated by the Newmark beta method. A 
personal computer Pentium 4 is used and the 
computing time is calculated by clock time. The 
analysis is carried out by the following methods: 
 
1. Exact dynamic analysis (EDA) 
2. Dynamic analysis using the FFT 
3. Dynamics analysis with the FWT by signals 

A1, A2, A3, A4. 
 
8.1. Problem 1. Plane shear building   The 
plane shear building model of 7 stories shown in 
Figure 1, is analysed, with the assumption that the 
floor masses only move horizontally. It is assumed 
that the mass of each rigid floor of the model 
includes the effect of the masses of all the structural 
elements adjacent to the floor of the prototype 
building. The mass of each floor is 90 tons. The 

material properties are given as Young’s modulus, 
E = 2 × 106 kg/cm2, weight density, ρ = 0.0078 
kg/cm3 and damping ratio for all modes as 0.2. The 
moments of inertia for all columns are 2 × 104 cm4. 
     Results of the analysis for maximum 
displacement of each floor for all cases for the El 
Centro record are given in Table 1. The 
displacement history of the top storey, for the El 
Centro record for exact dynamic analysis, and 
dynamic analysis by A1, A2, A3 and A4 records are 
shown in Figures 2 to 6. 
     The results show that, not only the maximum 
displacements of each floor are almost the same, 
but also the displacement histories of all the cases 
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Figure 2. Displacement history of level 7 by EDA (cm). 
 
 

 
 

Figure 3. Displacement history of level 7 by A1 (cm). 
 
 

 
 

Figure 4. Displacement history of level 7 by A2 (cm). 

are similar. The time of computation in EDA is 
greater than FFT, FFT is greater than A1, A1 is 
greater than A2, A2 is greater than A3, and A3 is 
greater than A4. For the El Centro record the time 
of analysis for EDA, FFT, A1, A2, A3 and A4 are 

2.43, 1.31, 1.18, 0.64, 0.37 and 0.18 sec., 
respectively. The results indicate that as the 
decomposition process is continued, the time of 
analysis is reduced but the error involved is 
increased. 
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Figure 5. Displacement history of level 7 by A3 (cm). 

 
 

 
 

Figure 6. Displacement history of level 7 by A4 (cm). 

8.2. Problem 2   A double layer grid of the type 
shown in Figure 7 is chosen with dimensions of 
10×10 m for top layer and 8× 8 m for the bottom 
layer. The height of the structure is 0.5 m and is 
simply supported at the corners of the bottom 
layer. The material properties are given as 
Young’s modulus, E = 2.1×106 kg/cm2, weight 
density, ρ = 0.008 kg/cm3 and a  damping ratio for 
all modes as 0.1. The cross sections of all 
members are 15 cm2. The mass density of the 
material is assumed to be 0.001 kg-s2/cm4 and the 
mass of 10 kg-s2/cm is lumped at each free node. 
     Results of the analysis of maximum 
displacements of joints 3, 7, 14, 17, 24, 32, 39, 48, 

52 and 61 for directions X, Y and Z, for the El 
Centro record are given in Tables 2 to 4, 
respectively. 
 
 
 

9. CONCLUSIONS 
 
From the numerical results presented in this paper 
and a number of other structures [16], the 
following points can be concluded: 
 
• FWT is faster than FFT method for dynamic 

analysis. 
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Figure 7. Double layer grid. 

• The overall time required for dynamic 
analysis is reduced substantially using FWT. 

• In each successive decomposition, the time of 
analysis is reduced by a factor of nearly 2 but 
the error is increased by a factor of 2. 

• The best choice for approximation record is 
the second and third stages of decomposition 
(A2 and A3), because, the error of 
computation is acceptable. 

• By FWT we can separate the low and the high 
frequency of the record. The low frequency of 
record is important, because it contains most 
of the energy of the record and the shape of 
the low frequency is similar to the shape of 
the main record. Therefore we can analyse the 
structure against this part. The results are 
almost similar to those of the original 
earthquake record. The error is negligible, in 
particular in the first stages of decomposition. 
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