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Abstract   This investigation deals with multi server queues with balking. The customers arrive in 
poisson fashion and independent of time, under the assumption that the system is initially empty. The 
number of customers in the system stochastically increases and distributed in a steady state (stationary 
state) as required. The expressions for the measure of the speed of convergence from transient state to 
steady state within in the probability of the system are obtained. 
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. دهد اين مقاله يک صف چند خدمت دهنده با ظرفيت محدود و بافر موقت را مورد بررسی قرار می   چکيده

 وارد – تحت شرايطی که سيستم در ابتدا خالی است - وآسن و مستقل از زمانپمشتريان بر طبق توزيع 
مورد نياز همانطور که ات بيابد و در حالت ث افزايش میتعداد مشتريان در اين سيستم بطور تصادفی . شوند می

 ثباتسرعت همگرايی از حالت گذرا به حالت احتمال عبارت ها برای اندازه گيری . می گردند توزيع، است
 .شوند تعريف می

 
 

1. INTRODUCTION 
 
In performance evaluation of various queuing 
systems such as production, manufacturing, 
telecommunication, computer communication, 
etc., the stochastic process plays an important 
role. In multi server M/M/C queuing systems, the 
computation of time-dependent distribution 
attracts the interest of many researchers. Abate 
and Whitt [1] and Parthasarthy [11] discussed a 
simple approach for transient solution to Single-
server M/M/1 queuing models. Baccelli and 
Massey [5] and Conolly Conolly and Langaris [6] 
also obtained the time dependent distribution for 

classical queuing system when the number of 
channel is unity. The transient analysis and other 
measures were obtained in multi server M/M/c (c 
> 1) queue by Kimura [9]. The numerical 
calculation of transient performance measures for 
the M/M/1 queue has been discussed by Abate 
and Whitt [2] and Van de Coevering [15]. Later, 
Stadje and Parthasarthy [14] obtained the 
expression for the measure of speed of 
convergence from transient state to stationary 
state in many server poisson queues. For detailed 
references, we refer to Kijima [8]. Due to wide 
applicability of discouragement queuing models, 
a large number of researchers have contributed in 
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this direction and obtained various performance 
indices. Daley and Servi [7] proposed the method 
to obtain moments estimators for the arrival and 
customer's loss rates for many server queuing 
systems with a poisson arrival process and 
customer loss via balking. Artateljo and Lopez-
Herrero [4] investigated ergodicity conditions 
making use of classical mean drift criterion for 
M/G/1 queues with balking. Mandelbaum and 
Shimkin [10] examined a model in which a 
customer arriving at an M/M/m queue which may 
not enter the system (i.e. balk), if he found that he 
will not get service immediately. The transient 
solution of non - truncated M/M/2 queue with 
balking and additional server for longer queues 
was suggested by Al-Seedy [3]. 
     In this paper, transient analysis of a multi server 
M/M/C queuing model by incorporating balking 
was considered. This investigation facilitates the 
measure of speed of convergence towards a 
stationary state by including balking concepts in a 
multi server model which was not taken into 
consideration by earlier researchers. Without loss 
of generality, it is assumed that the service rate is 
equal to one. We derive the expression for the 
measure of convergence to a steady state of 
probability distribution. In Section 2, we have 
provided the mathematical formulation of the 
model and recursive relations for transient 
probabilities and steady state probabilities. The 
steady state moments are given in Section 3. The 
measure of speed of convergence from transient 
state to steady state, are based on moments, and by 
using integration techniques given in Section 4. In 
Section 5, we have defined the matrix method 
technique to verify the stationary probability under 
special cases. The numerical illustration for 
stationary probability is given in Section 6. 
 
 
 

2. THE MATHEMATICAL MODEL AND 
RECURSIVE RELATIONS 

 
We consider the M/M/C queuing model with 
balking. It is assumed that, the arrival rate of 
customers follows the poisson distribution with 
rateλ (< c) and without restriction of generality 
service rate to 1. Denote X(t): The number of 
customers in the system at time t. 
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at time t. 
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The governing equations for the probabilities Pn(t) 
are as follows: 
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The stationary probabilities Pn can be obtained as 
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Recursive relations for stationary state probabilities 
are 
 

)1np1nβnpn(βλnpn1np1n −−−=−++  (5) 
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and 
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Where 
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3. STEADY STATE MOMENTS 
 
In this section, we obtain the steady state moments 
in terms of stationary probabilities as follows: 
Let 
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From Equations 8 and 9, we get 
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Also, 
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On comparing, Equations 11 and 12, we get 
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4. THE METHOD OF INTEGRATION 
 
In this section, we obtain the measure of 
convergence, based upon the moments as follows: 



30 - Vol. 20, No. 1, February 2007 IJE Transactions A: Basics 

Let: 
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From Equations 1-3 and 5-6, we get 
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On putting the value of (t)
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of calculus, under the assumption that ∑
∞
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a continuous function of t, we get Equation 15. 
     For special cases when βn = β, the measure of 
convergence is obtained, based upon the 
moments. On the lines of Stadje and 
Parthasarathy [14], we obtain 
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When c = 1, i.e. for single server model, Equation 
18 reduces to 
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When c = 2, i.e. for two server model, Equation 18 
yields 
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Where, 
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5. THE MATRIX METHOD 
 
For the particular case, when βn = β, the (c-1) 
x (c-1) matrix is considered, which has the 
form: 
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Where the functions (s)jk,u  are recursively 

determined by 
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The recursion can be written as: 
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Suppose ∑
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This value of stationary probability Pc-1 coincides 
with Equation 4 under special case when βn = β. 
 
 
 

6. NUMERICAL ILLUSTRATION 
 
To check the validity of the investigation, we take 
the numerical illustration and provide the 
necessary computation for stationary probabilities. 
The computational results are summarized in the 
form of a table. Table 1 displays the stationary 
probability Pc-1 for c = 1, 2 for different arrival 
rates of customers λ = 1, 2, 3, 4, 5 and balking 
probabilities β = .05, .10, .15. It is observed that 
for single server models c = 1, P0 decreases as λ 
and β increase. However, for multi server models 
when we fix c = 2, Pc-1 increases as λ and β 
increase, except for high traffic loads when λ = 5 
where it first decreases and then increases as we 
increase β. 
 
 
 

7. DISCUSSION 
 
In this investigation, we have obtained the steady 
state moments and measure of convergence for 
multi server queue by incorporating balking. Our 
study finds applications in performance evaluation 
of queuing systems in particular computer and 
telecommunication systems where transient states 
as well as steady states play key roles in stochastic 
modeling in order to maintain the desired grade of 
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TABLE 1. Evaluation of Stationary Probability PC – 1. 
 

λ 
β 

1 2 3 4 5 

c = 1      

0.05 0.95 0.90 0.85 0.80 0.75 

0.10 0.90 0.80 0.70 0.60 0.50 

0.15 0.85 0.70 0.55 0.40 0.25 

c = 2      

0.05 0.04 0.09 0.12 0.16 0.54 

0.10 0.09 0.16 0.22 0.27 0.30 

0.15 0.12 0.22 0.28 0.32 0.34 

 

service. 
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