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Abstract   Reduced web section beams in shear-yielding moment-resistant steel frames are used for 
energy dissipating of earthquakes. The finite element analysis indicates that failure mode of these 
beams are governed by the combination of shear force and flexural moment. Therefore the analysis of 
frames with reduced web section beams needs consideration of shear-flexural interaction in those 
sections. In the present paper, modeling and analysis of reduced web section beams are investigated 
by using a special element which is called VM link element. The elastic and inelastic shear and 
flexural deformations and tangential stiffnesses in this link element are considered by using the multi-
surfaces plasticity concept with dissimilar yield surfaces. The developed VM link element is 
examined for some reduced web section beams and it is shown that the results have a good agreement 
with the finite element results. 
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براي استهلاک انـرژي مـورد     درقاب هاي خمشي لرزه بر ساختمانتيرهاي فلزي با جان سوراخ شده،چكيده       

خمـشي    است که ترکيب نيروي برشي و لنگردهندة اين کاربرد روش المان محدود نشان. شوند استفاده واقع مي
خمـشي   لنگر -کردن اندر کنش نيروي برشي اين لحاظ بوده و بنابرحاکم الاستيک اين تير ها بر نحوة رفتار غير 

سازي و تحليل اين نوع تير هـا بـا اسـتفاده از              در مقالة حاضر، مدل   . باشد در تحليل چنين تير هايي ضروري مي      
تغيير شکل هاي الاستيک و غير الاستيک برشي        . گيرد  مورد بررسي قرار مي    VMالمان ويژه اي به نام المان رابط        

ي هـاي مماسـي در ايـن المـان، براسـاس ايـدة سـطوح تـسليم چندگانـه در تئـوري                و خمشي و همچنين سخت    
 VMالمان رابط توسعه داده شـدة       . شوند پلاستيسيته وبا استفاده از سطوح تسليم غير متشابه مورد لحاظ واقع مي           

 المـان   بر روي چند مورد از تيرهاي با جان سوراخ شده استفاده شده و نتايج حاصله بـا نتـايج حاصـل از روش                      
 .گردد شود که انطباق خوبي بين آن ها مشاهده مي محدود مقايسه مي

 
 
 

1. INTRODUCTION 
 
Reduced web section beams in shear-yielding 
moment-resistant steel frames have been studied in 
recent researches [1]. These beams are used in 
steel frames for energy dissipating by shear 
yielding of their reduced webs. In Figure 1, two 
common types of these beams are shown. In type 
(a), near both ends of the beam, the web has been 
reduced. This type is usually used in frames with a 
small gravity load and the frames mainly resist 
lateral seismic loads. In these frames, the reduction 
of the beam’s web close to the ends does not affect 

their ability to resist the gravity loads and the 
reduced section part could dissipate the earthquake 
energy demand by yielding. In type (b), the beam’s 
web is reduced in the middle region. This type can 
be used in frames in which the gravity load is 
considerable. In these frames the gravity’s shear 
force is usually small in the middle and so the web 
section may be reduced. 
     Halterman and Aschheim [1] using the finite 
element method, indicated that the failure mode of 
these beams are affected by a combination of shear 
force and flexural moment. Thus analysis of these 
beams needs consideration in regard to the shear-
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flexural interaction in the reduced web zones. The 
VM link element, which was developed by Kazemi 
and Erfani [2] to model shear-flexural interaction 
could be employed for the reduced web zones, too. 
Kazemi and Erfani [2,3] examined the VM link 
element for modeling and analyzing of some type 
(a) reduced web section beams (Figure 1-a) and 
some link elements in eccentrically braced steel 
frames. Comparison with the finite element results 
showed the suitable nearness. In this paper, 
modeling of the beams with the reduced section at 
the center (Figure 1-b) using the improved VM 
link element will be presented. 
 
 
 

2. INELASTC FRAME ANALYSES 
 
Inelastic analysis and design of structures has 
made a great progress due to the rapid 
development of computer hardware and software 
in the recent decades [4-6]. Common approach for 
modeling of inelastic behavior in the beam 
elements has been to adopt inelastic hinge 
formation at the beam's critical sections. A 
generalized plastic hinge, with zero length, 
accounting for interaction for axial, torsional and 
biaxial bending moments, based on multi-surfaces 
plasticity concept was presented by Powell and 
Chen [7]. By using a piecewise linearized yield 
surface and linear kinematic hardening rule for 
concentrated hinges, Krenk et al. [8] developed a 
formulation for displacement discontinuities with 
extension and rotation components. A method for 
the modeling of members with yielding under 
combined flexure and axial force in steel frames 
subjected to earthquake ground motions was 
presented by Kim and Engelhardt [9]. Their 
method has the capability of modeling plastic 
axial deformation and changes in the axial 
stiffness, based on isotropic and kinematic strain-
hardening defined in axial-flexural space. Liew et 
al. [10-12] used the two-surface plasticity concept 
for considering the inelastic interaction between 
axial force and bending moment, too. 
     To consider the shear-flexural interaction, 
Ricles and Popov [13] developed a formulation 
for modeling links in the eccentrically braced 
steel frames (EBFs), based on multi-surfaces 
plasticity concept. The link beam had a nonlinear 

hinge at each end, which consisted of uncoupled 
shear and flexural nonlinear subhinges. The finite 
element method for modeling of the shear-
flexural inelastic zones could also be used, but it 
may take extensive time and is not applicable. 
Saritas and Filippou [14] investigated the shear-
flexural interaction in the link beams by using a 
displacement field based on Timoshinko's beam 
theory and integration of the biaxial stress-strain 
relations over several control sections along the 
beams. Each control section subdivided into 
several layers. This method is a general way of 
considering axial, shear and flexural interaction in 
the frames. Although predicted behavior shows a 
good accuracy, because of integration in several 
points, it is time consuming. Kazemi and Erfani 
[2,3,15] proposed the VM link element for use in 
frames where shear-flexural interaction should be 
considered. The element can be used in any 
arbitrary location of the frames and may have 
zero or a nonzero length. The multi-surface 
concept with dissimilar yield surfaces was 
adopted. In the present paper, a new improved 
revision of the VM link element is briefly 
described and is employed for modeling of the 
reduced web section beams type b (Figure 1-b). 
 
 
 

3. DEFINITION OF THE VM LINK 
ELEMENT 

 
The introduced VM link element includes one 
inner inelastic hinge with zero length and two rigid 
beams with zero or nonzero lengths in two sides of 
it. As seen in Figure 2, i and j are the outer nodes 
and h is the inner hinge which has an arbitrary 
location. The lengths of the two rigid parts are Li 
and Lj, and L = Li + Lj is the total length of the 
element. The inelastic zones of beams could be 
modeled by this link element. 
     If the link's end forces and displacements are 
described as column matrixes of P and U, 
respectively (see Figure 3a) and the element's 
internal forces and deformations in the inner 
inelastic hinge are defined as column matrixes of 
Ph and Uh, respectively (see Figure 3b). Then one 
could express: 
 

hAPP =  (1) 
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UTAhU =  (2) 
 
where A is the transformation matrix, which its 
components depend only on the lengths of the rigid 
parts of the link and are as follows: 
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It is assumed that no loads or masses are assigned 
to the hinge and to the rigid parts except at the end 
nodes. The element's tangential stiffness matrix K 
can be related to Kh and Fh as: 
 

TA1
hAFTAhAKK −==  (4) 

 
where Kh and Fh are the tangential stiffness and 

flexibility matrixes of the inner hinge, 
respectively. 
 
 
 

4. INNER HINGE'S FLEXIBILITY 
AND STIFFNESS 

 
If the rates of forces and deformations in the 
element's inner hinge are shown as hP&  and hU& , 
respectively, then one could write: 
 

hUhKhP && =  (5) 
 
The components of Kh can be obtained by 
inversing the inner hinge's tangential flexibility 
matrix, Fh. For the small deformation, Fh can be 
decomposed as: 
 

p
hFe

hFhF +=  (6) 

 

where e
hF  and p

hF  are the inner hinge's elastic and 

plastic tangential flexibility matrixes, respectively. 
The components of e

hF  may be obtained from the 

classic formulas and p
hF  is assumed as: 

 
p

MhFM
p

VhFV
p
hF ϕ+ϕ=  (7) 

 

In which p
hVF  and p

hMF  are the flexibility 

matrixes related to the pure shear and the pure 
flexural loadings, respectively. Vϕ  and Mϕ  are 
arbitrary functions satisfying the conditions of 

0M1,V =ϕ=ϕ  for the pure shear loading and 
1M,0V =ϕ=ϕ  for the pure flexural loading. In 

the present study, Vϕ  and Mϕ are supposed as: 
 

))2
Vm1()1va(1(2

VmV −−+=ϕ  (8) 
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MmM −−+=ϕ  (9) 

 
where mV and mM are the components of m vector, 

TYPE (a)

TYPE (b)

 
Figure 1. Two common types of reduced web section beams.
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Figure 2. Geometrical configuration of the VM link element. 
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which is the unit location vector of the action point 
in VM space (See Figure 4). The aV and aM are 
constant parameters which depend on the joint 
geometry, size and material. Using them, the 
flexibility may be decreased through combining of 
shear and flexure. The results of the experimental 
studies or the numerical analyses may be used for 
determination of p

hVF , p
hMF , aV and aM. In the 

current paper, they are obtained through using the 
finite element analysis. 
     Equation 7 implies that the flow rule is not 
associated. For non-associated plasticity, to 
differentiate between plastic flow and elastic 
unloading, the loading-unloading criteria need to 
be defined more precisely. Suppose the action 
point lies on a yield surface and the deformation 
rate is hU& . The first step is to take 1)e

hF(hK −= , 

the action rate hP&  is then predicted. If the 

condition 0hPTn1 <=λ &  was observed, it means 
that we have unloading and for the condition 

01 =λ , the natural loading is governed. 
     For the corner points, these conditions for 

both nB and nC should be satisfied. nB and nC are 
the unit normal vectors at points B and C, which 
are very close to the corner, but on two different 
surfaces (see Figure 4). 
     If the condition 01 >λ  was encountered, using 

1)p
hFe

hF(hK −+= , the new action rate hP&  is 

calculated using Equation 5. With the new hP& , if 

the condition 0hPTn2 >=λ &  is reached, the plastic 
loading condition will govern. For the corner 
point, plastic loading condition needs to be 
satisfied only for one of the unit vectors, Bn  or 

Cn . If 02 ≤λ , the stiffness matrix will be 
adjusted to: 
 

1)e
hF(

1

21)p
hFe

hF(hK −
λ

λ
−−+=  (10) 

 
By using the adjusted stiffness and calculating the 
new action rate hP&  (normality condition) 0hPTn =&  
will reach and the natural loading conditions will 
govern. 
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Figure 3. (a) The element's end forces and displacements, 
(b) The element's internal forces and deformations. 
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Figure 4. The normal and location vectors at a corner point. 
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Figure 5. Polygonal dissimilar yield surfaces. 

5. YIELD SURFACES 
 
For considering interaction between the shear force 
and flexure, the multi-surface concept in shear-
flexural space is used (see Figure 5). This concept, 
which was originally defined in stress space 
[16,17], was adapted with some modifications for 
the resultant forces space for the frame elements 
[7-14]. 
     It is assumed that the yield surfaces are convex 
and could be translated and changed in size. They 
could not be intersected, but could be tangential to 
each other. If the action point is in the internal part 
of initial yield surface, the behavior will be elastic 
and if it is on each of the surfaces, the behavior 
will be elastoplastic. In tangency of several yield 
surfaces, the outer surface properties define the 

current behavior. The similarity assumption among 
yield surfaces has been used in most works in 
regard to having parallel normal directions for the 
corresponding points on the yield surfaces. If it is 
assumed in the shear-flexural space that the yield 
surface i is similar to the yield surface j, then we 
will have: 
 

yjM
yiM

yjV
yiV

=  (11) 

 
where yiV , yjV , yiM  and yjM  are the points on i 

and j yield surfaces for the pure shear and flexural 
loadings. In general, this may not be a suitable 
assumption and the pure flexural yielding is very 
different from pure shear yielding. In the present 
research, with dissimilar polygonal yield 
surfaces shown in Figure 5, the shear-flexural 
interaction is considered more realistically. To 
prevent intersection of the yield surfaces, the 
corresponding sides of all yield surfaces should be 
parallel with each other and the length of any side 
of any yield surface should be smaller than the 
length of the corresponding side of the next outer 
yield surface. For the yield surfaces presented in 
Figure 5, the conditions of sjVsiV ≤ , sjMsiM ≤ , 

sjVyjVsiVyiV −≤− , and sjMyjMsiMyiM −≤−  

must be ensured. Also, in order to keep parallel the 
corresponding sides of the yield surfaces with each 
other, we should have: 
 

sjM
siM

sjV
siV

=  (12) 

 
 
 

6. HARDENING RULE 
 
All of the yield surfaces may move, except the last 
yield surface, which is fixed and presents the 
plastic capacity of the hinge. In some recent works 
[7-14], the element formulation is based on 
combined kinematic and isotopic hardening rules 
for shear force and only a kinematic hardening rule 
for the flexural moment. In this paper, only 
kinematic hardening is used for both the shear and 
flexure, although isotropic hardening could be 
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Figure 6. Action point and corresponding points on two 
adjacent yield surfaces. 

implemented, too. 
     For managing the yield surfaces, the kinematic 
hardening rule, which was recently proposed by 
Kazemi and Erfani [2,3] is used. The i-th yield 
function is defined as: 
 

0)iαhP(i =−φ  (13) 
 
where hP  is the action vector of the inner hinge 
and iα  is the i-th yield function center. If the 
action location is on the i-th yield surface and 
plastic loading occurs, the rate of i-th yield surface 
translation, iα& , may be defined as: 
 

μ−+= && )hiP1hiP(iα  (14) 
 
where, 1hiP +  is the intersection point between the 

direction of the action rate, hP& , and (i+1)-th yield 
surface. The term hiP  is the conjugate point of 

1hiP +  on i-th yield surface (see Figure 6). 
     By this definition, when the action point, hP , 
approaches closer to (i+1)-th yield surface, i-th 
yield surface moves, in a way that the two points 
on the i-th yield surface, hiP  and hP , approach 
closer to each other and coincide with 1hiP + , 
asymptotically. Then the inner moving yield 
surface may be tangential to the outer yield 
surface at the contact point and they never 
intersect. To calculate μ& , plastic loading 

condition ( 0i =φ& ) is used, hence: 
 

)hiP1hiP(
hP
i

hP
hP
i

−+∂

φ∂

∂

φ∂

=μ

&

&  (15) 

 
By substituting Equation 15 in Equation 11, iα&  can 
be demonstrated that: 
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iα&  is the translation rate for i-th yield surface, due 
to loading 
 
 
 

7. REDUCED WEB SECTION BEAM 
 
A reduced web section beam as shown in Figure 7 
is investigated. The beam consists of W21× 68 
section (A = 13131 mm2, I = 625770000 mm4, and 
As = 5900 mm2 ) with the span length of 4000 mm 
and only one hole at the center, where A, I and As 
are the area, the moment of inertia and the shear 
area of the beam section. The geometry of the hole 
is presented in Figure 7. Multi-linear kinematic 
hardening plasticity is assumed for the material of 
the beam, with Fy = 360 MPa, Fu = 500 MPa, E = 
200 GPa, H = 0.005E and ν = 0.3, where Fy and Fu 
are the yield and ultimate stress, E and H are the 
initial and the post yield moduli and ν is the 
Poisson ratio, respectively. 
     For the modeling of the central part of the 
beam, a VM link element with length of L = 1260 
mm is used. Location of the inner hinge is assumed 
in the middle of the VM element (Li = Lj = 630 
mm), coinciding with the center of the hole, as 
shown in Figure 8. 
     For determination of the VM link element’s 
parameters, the beam's middle part with a length of 
1260 mm and containing the hole is analyzed for 
pure shear and pure flexural, separately. In the pure 
shear loading, the flexural moment is zero and for 
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Figure 8. Modeling of the reduced web section beam with 
beam and the VM link elements. 
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Figure 9. Boundary conditions and loadings of the VM link 
element for (a) pure flexural and (b) pure shear. 

the pure flexural loading, the shear force is zero at 
the hole's center (see Figure 9). 
     The analyses are performed by the nonlinear 
finite element software, ANSYS, using solid 
element SOLID45. The Results are presented in 
Figure 10, where extracted yield points are shown. 

In the figures, the horizontal axes indicate the 
displacement and rotation of the right end. Based 
on the results, the yield surfaces for the inner hinge 
are simplified as shown in Figure 11 and Table 1. 
     The inner hinge flexibility matrixes in between the 
two consecutive yield surfaces may be calculated as: 
 

jAjjFT
jA*

h
F =  (17) 

 
Where jA  defined from Equation 3 with 

assumption of Lj = 630 mm and jjF  is the 

element at node j as follows: 
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 (18) 
 
r0, r1, r2, r3, and r4 are the equivalent effective 
stiffness factors. From the finite element analysis 
the values of 0.862, 0.955, 0.108, 0.955, and 
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Figure 7. Two common types of reduced web section beams. 
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0.955, are obtained, respectively. k1, k2, k3 and k4 
are the hardening coefficients. If we assume that 

k1 = k2 = k3 = k4 = 1, the *
hF  will change to e

hF , 
and if the coefficients are selected as appropriate 
value for pure loadings, as presented in Table 2, 
the *

hF  will change to p
hVF  or p

hmF . After the 

calculation of e
hF , p

hVF  and p
hmF , using Equations 

17 and 18, the total flexibility matrix, Fh, is 
obtained from Equations 6 and 7. For definition of 
the aV and aM, used in Equation 7, combined shear 
force and flexural moment at the inner hinge 
location should be applied. The middle part of the 
beam was reanalyzed by the finite element method 
for a combined loading and the aV and aM were 
resulted, as shown in Table 2. 
 
 
 

8. INELASTIC ANALYSIS USING 
VM LINK ELEMENT 

 
The beam shown in Figure 7 is analyzed for three 
different boundary conditions and loadings. The 
analyses are performed using the finite element 
method (ANSYS software), and VM link element 
modeling, and their main results are compared. 
     In the first example, rotational freedoms at the 
both ends are prevented and the right end of the 
beam is subjected to a cyclic displacement, as 
shown in Figure 12. The shear force at the inner 
hinge location resulted from the finite element 
method and VM link element modeling is 
compared in Figure 13. As seen, the results have 
excellent agreement with each other. It is noted 
that, the flexural moment at the inner hinge 
location is zero in this case and the shear yielding 
is the governing mode. 
     In the second example, the rotational freedom at 
the right end of the beam is released and the right 
end of the beam is subjected to a cyclic 
displacement, as shown in Figure 12. The 
comparison between the finite element method and 
the VM link element modeling are presented in 
Figure 14. As seen, the results have a good 
agreement with each other. 
     The translation of yield surfaces for the inner 
hinge of the VM link element is shown in Figure 
15. As seen, the action point is located at the shear-
flexural interaction zone. 
     For the third example, the displacement 
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Figure 10. Finite element results and extracted yield points in 
pure loadings. 
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Figure 11. The inner hinge yield surfaces. 
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freedom at the right end of the beam is prevented 
and the right end of the beam is subjected to a cyclic 
rotation, as shown in Figure 16. The comparison 
between the reseults of finite element method 
and the VM link element modeling is presented in 
Figure 17. As seen, the results have fairly good 
agreement with each other. The translation of 
yield surfaces for the inner hinge of the VM link 
element is shown in Figure 18. As seen, the shear 
yielding is governed, at the beginning, but later 
the action point moves to the shear-flexural 
interaction zone. Comparison of the results in the 
three cases yielded that, although the failure 
modes are different, the VM link element 
modeling has good accuracy. 
 
 
 

9. CONCLUSIONS 
 
In this paper, analysis of the reduced web section 
beams was investigated. The reduced web 
section beams are used for earthquake energy 

dissipation in shear-yielding moment-resistant 
steel frames. The shear-flexural interaction in the 
reduced web zones was modeled by the proposed 
VM link element. The elastic and inelastic shear 
and flexural deformations and tangential 
stiffnesses in this element, are considered by 
using the multi-surfaces approach with 
dissimilar yield surfaces. The VM link element 
was examined for some reduced web section 
beams and it was shown that the results of 
analysis using VM link element, which requires 
less computer time, have good agreement with 
the finite element results. 
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TABLE 1. The Inner Hinge Yield Surfaces Parameters. 
 

YieldSurfaces Vyi (kN) Myi (kN. m) Vsi (kN) Msi (kN. m) 

i = 0 230 770 161 375 

i = 1 350 790 169 394 

i = 2 460 820 177 413 

i = 3 540 850 185 431 
 
 
 
 

TABLE 2. The Inner Hinge Flexibility Matrixes Parameters. 
 

K1, K2, K3 and K4 aV and aM Between 

Yield Surfaces: Pure Shear Pure Flexural Pure Shear Pure Flexural 

0 and 1 0.250 0.150 3.0 3.0 

1 and 2 0.040 0.024 2.5 2.5 

2 and 3 0.020 0.012 2.0 2.0 
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Figure 14. Comparison of results for the second example. 
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Figure 12. Relative displacement applied between two ends of 
the first and second example. 
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Figure 13. Comparison of results for the first example. 
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Figure 15. Translation history of yield surfaces for the inner hinge for the second example. 
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Figure 16. Cyclic rotation applied to right end of the beam for the third example. 
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Figure 17. Comparison of results for the third example. 
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Figure 18. Translation history of yield surfaces for the inner hinge for the third example. 
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