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Abstract The resulting motion in waves can be considered as a superposition of the
motion of the body in still water and the forces on the restrained body. In this study the
effect of added mass fluctuation on vertical vibration of TLP in the case of vibration in still
water for both free and forced vibration subjected to axial load at the top of the leg is
presented. This effect is more important when the amplitude of vibration is large. Also this
is important in fatigue life study of tethers. The structural model used here is very simple.
Perturbation method is used to formulate and solve the problem. First and second order
perturbations are used to solve the free and forced vibration respectively.
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1. INTRODUCTION

Tension leg platforms (TLPs) are well-known
structures for oil exploitation in deep water and are
becoming increasingly popular for oil drilling at
very deep water sites. Figure. (1) shows different
components of the TLP made up of vertical and
horizontal elements on the upper structure and
vertical tendons connecting the structure to a
foundation on the seabed. These structures consist
of semi-submersible platforms with sufficient
buoyancy to develop the required tension in the
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tethers. The tension leg platform (TLP) is a
moored floating structure whose buoyancy is more
than its weight. The mooring system of TLP
consists of number of tensioned tethers connected
to the columns at the top and anchored to the
seabed at the bottom. These tethers are vulnerable
to failure due to fatigue produced by fluctuation of
tension. Many studies have been carried out to
understand the structural behavior of TLP and
determine the effect of several parameters on
dynamic response and average life time of the
structure [1-6]. The tether system is a critical and
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basic component of the TLP. The most important
point in the design of TLP is the pretension of the
legs. The pretension causes that the platform
behaves like a stiff structure with respect to the
vertical degrees of freedom (heave, pitch and roll),
whereas with respect to the horizontal degrees of
freedom (surge, sway and yaw) it behaves as a
floating structure. Therefore the periods of the
vertical degrees of freedom are lower than the
others. Among the various degrees of freedom,
vertical motion (heave) is very important because
of the direct effect on the stress fluctuation that
leads to fatigue and fracture. Therefore the
conceptual studies to understand the dynamic
vertical response of TLP, can be useful for
designers.

Simple models for heave response of tension
leg platform under harmonic vertical load has been
proposed [7]. The effect of added mass fluctuation
on the heave response of tension leg platform has
been investigated by using perturbation method for
discrete [8] and continues model [9]. Added mass
fluctuation has important effect on fatigue life of
tethers [8].

In this study the effect of added mass
fluctuation in the case of vibration in still water for
both free and forced vibration is discussed. A
similar formulation can be developed for motion
analysis of the restrained body in waves. The
problem is solved by means of perturbation
method [10-11].
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Figure 1. TLP configuration and components [12]
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2. FREE VIBRATION ANALYSIS

The resulting motion in waves can be seen as a
superposition of the motion of the body in still
water and the forces on the restrained body in
waves (Figure. 2).

- __
A N + ]
motion oscillation restrained

in waves in still water in waves

Figure 2. Superposition of hydromechanical
and wave loads [12]

In this paper the oscillation in still water is
considered. Also in the case of small diameter, the
forces of restrained body in waves are similar to
the oscillation in still water. Structural modeling of
a TLP as a moored structure is shown in Figure.
(3). Free vibration equation of motion is as follows

my +ky =0 1)
where
m =m_+m, (t) (2

m, is the structural mass and m,(t) is the time

S

varying added mass, and
k=k, +Kk, (3)
where k, and k, are mooring and buoyancy

stiffness respectively. If the structure is not being
vertically moored, k, is equal to zero.

Figure 3. Dynamic structural model
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Total added mass can be considered as summation
of two parts

ma (t) = maO + 8maO y(t) (4)

where m,, is constant and em,_,y(t) is the time
varying part. ¢ is the perturbation parameter and
y(t) is the wvertical motion. Defining
m,,/(m, +m,y)=a and o’ =./k/m, the equation
of motion can be written as

(L+ecay)y+w’y=0 (5)

Structural damping is assumed to be equal to zero.
Perturbation method is used to solve the Eq. (5). A
solution in the form of an infinite series of the
perturbation parameter ¢ is assumed as follows

y(t) = Y, (1) + &y, (1) + &%y, (1) + %Y, () + - (6)

The frequency of nonlinear vibration depends on
the amplitude of vibration and perturbation
parameter

22 2 3
O =, +e0, +E°0, +E0, + (7)

where o, are as yet undefined functions of

amplitude. In this study, the second order
perturbation method is wused to solve the
differential equation, therefore the response and
frequency of vibration are considered as follows

y(1) = Yo (1) + &y, () + €7y, (t) 8
o =0’ +ca, +&°a, 9)
Substituting Egs. (8) and (9) into Eqg. (5), one
obtains

{1+zaly, () +ey, 0 +e7y, O] x
[§, (0 +e5,(0) + €25, (0 ]+

(0> —go, —g%a,) x

[V ® +ey, ) +&%y, ()] =0

Since the perturbation parameter ¢ could have
been chosen arbitrarily, the coefficients of the
various powers of & must be equated to zero. This
leads to a system of equations which can be solved
successively

yo + (Dzyo =0 (11)

(10)
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yl + 0 Y, =—ay, yo +a,Y, (12)

yz +(Dzy2 :_a(Y1yo + yoy1)+a1y1 +a,Y, (13)
The solution of the Eq. (11), subjected to the initial
conditions y,(0)=A and y,(0)=0,is

Y, = Acosmt (14)
Substituting Eq. (14) into the right hand side of the
Eqg. (12), one obtains

2 .2

Y, +o’y, = o, Acos ot + ® (cos2ot+1)  (15)

The forcing term coswt leads to a secular term
tcosmt in the solution of y,. Such terms violate

the initial stipulation that the motion is to be
periodic. Therefore one must impose the following
condition

o, =0 (16)

Now imposing  the initial conditions
y,(0)=y,(0) =0, the solution of the Eq. (15) is as
follows

aA? 2 1
y, = > (1—§c030)t—500520)t) (17)

Substituting Eqgs. (14) and (17) into Eq. (13), one
obtains

. 2
y,toy, =
a’Alw’

(cos ot —%cos2 ot — (18)
5
gcos ot cos thj +o,Acosot

Equation (18) can be rewritten as

¥, +o’y Z_aZAstX
2 2 12
(4+4cos2mt +5c0s30t )+ (19)
2 p2 2
(a Ao +(x2JACOS(;)t
where
cos? of = £ Zg)t +1 and
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cos ot + cos3mt

cosmtcos2mt = have been used.

Similarly the forcing term coswt would lead to a
secular term in the solution; therefore one must
impose the following condition

a’A’w’

T 0

Now Eqg. (19) becomes

L atN?

J, + 'y, =———x (21)
(4 +4cos2mt +5cos3omt)

Imposing the initial conditionsy,(0)=y,(0)=0,
the solution of the Eq. (21) is as follows

_a’A’
288

Y, (-96+49cos wt + 22)

32c0s 2wt +15c0s3mt )

Substituting Egs. (14), (17) and (22) into Eg. (8),
the response of the system is obtained as follows

y(t) = Acosot +
2 2 A3

i 1—gc05mt—10032mt +g2 8 A
2 3 3 288

€ x (23)

(- 96 + 49cos mt +32cos 2mt +15c0s3wt)

Substituting Eg. (20) into Eqg. (7), the vibration
frequency becomes

2 ()

2

o = :
1+¢° A"
12

(24)

The frequency is found to decrease with the
amplitude, as expected because of increasing in
mass. Moreover considering the second order
perturbation, the frequency ® decreases with the
perturbation parameter. Therefore Eq. (23) is used
to determine the response of the system with
second order perturbation in which frequency ® is
calculated from Eq. (24). First order perturbation
response is determined from Eq. (23) in which

o= w,, and the terms having ¢ are vanished.
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3. FORCED VIBRATION ANALYSIS

Forced vibration equation of motion is as follows

fi+ caly, @) +ey, @)+ &%y, @] x
[5,(0) + 85, (0) + €9, () ]+
(0 —ga, —&’a,)x (25)

R

[0 )+ 81,0 + &%y, (0] =" cos(ca)

This leads to a system of equations which can be
solved successively

¥, + 0’y = %cos(Qt) (26)

¥, + o’ Yy =—aY, ¥, +0,Y, (27)
Y, +032y2 z_a(Y1yo + on1)+(x1y1 +a,Y, (28)
The solution to the Eq. (26), subjected to the initial
conditions y,(0) =0 and y,(0)=0,is

F, cos(ot) — cos(Qt)
=— 29
T T T o @)

Substituting Eqg. (29) into the right side of the Eq.
(27), one obtains

j,+ oy, =
o K cos(mt) — cos(Qt) _3( F,/m JZ y
‘'m o> —Q? 2\ 0> —Q? (30)
(0 + @)(cos(w — Q)t + cos(w + Q)t —1)
— 0" c0s 20t - Q7 cos 20|
Like previous one has
o, =0 (16)
The homogenous solution of Eq. (30) is
y” =C,sinot + C, cosot (31)
and the particular solution is
y{" =D, cos(w—Q)t + D, cos(m+ Q)t + (32)

D, cos2mt + D, cos2Qt + D,

Imposing the initial conditions y,(0)=y,(0)=0,
results in
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b - 2 F/m © 0+ _af F/mY
20207 QRe-Q)’ A ey

, o° +40'QY’ —11°Q" +6Q° oSt 4
p 23 _R/m ) o'+Q" o (o — 40 (4o’ —OF)
2 2l0*-Q%) QRo+Q) »
o +Q
—————cos(—-O)t - (33)
a F/m 2 Q(Z(:)—Q)
D3:——( 20 ZJ , o + O
6lo°—Q 3————cos(+O)t+
Q20+ Q)
2 2 2 2
p & F/m Q° cos2mt—3 ZQ —c0os20t —3° +ZQ
C2le? -0 ) o -407 o —40 ®
Substituting Egs. (29) and (33) into Eq. (28), one
F L 0?07 .
D, =%((D2°_/gzj ® (;LZQ , C,=0, obtains
yz +0~)2y2 = _a(ylyo + yoy1) -
c __af_F/m L 0° +40'Q? —110°Q" +6Q° ,Fy cos(ot) — cos(e) (34)
: 3o’ -Q? o’ (0> —4Q%) (4o’ — Q%) m o’ -Q°
Now the solution of the Eq. (30) is as follows where
. N aF;
Yi¥o t Yo = X

6 M0 Q- 40 + 290°0% —670°Q" +670°Q° — 290°Q° + 40" )
{0°(12c0s(20+ Q)t ~12c0s(20 — Q)t —6.C0s(0 + 2Q)t + 6C0s(0 — 2Q)t )+
. [— 4c0s 2wt + 2cos(m + Q)t + 2cos(m — Q)t + 22¢0s(2m + Q)t +12cosQt — J .\
9cos(w—2Q)t —4—20cos3mt + 22cos(2m — Q)t —14cos ot —9cos(m + 2Q)t
(~12cos(m—2Q)t + 36cos(2m — Q)t +12cos(w + 2Q)t —36.cos(2m + Q)t )+
(—16 c0s 2ot +10cos(m + Q)t +10cos(w — Q)t —85c0s(2m + Q)t — 66 cos Ot + ] . (35)
45c0s(m—2Q)t —16 + 85c0s 3wt —85¢0s(2m — Q)t + 73cos ot + 45cos(m + 2Q)t
(— 42c0s(m—2Q)t + 48c0s(2m — Q)t + 42c0s(w + 2Q)t — 48c0s(2m + Q)t )+
44c0s2mt —14cos(m + Q)t —14cos(m — Q)t —16cos(2m + Q)t —12cosQt — 60cos3Qt
+ 63cos(w — 2Q)t —16 — 20cos3mt —16¢0s(2m — Q)t — 62coswt + 63cos(m + 2Q)t J
(—24cos(m—2Q)t + 24cos(m + 2Q)t ) +
=~ [— 24— 24c0s 2wt —10cos(m + Q)t —10cos(m — Q)t +16cos(2m + Q)t +117 cos Qtj
+15¢083Qt — 36 cos(m—2Q)t +16 cos(2m — Q)t — 24 cos wt — 36 cos(m + 2Q)t

Q°(12c0s( — Q)t — 24c0sQt +12c0s(0 + )t )}

o' Q?
o’0?
o’ Q!
o'’
®’Q°

Similarly one has
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(0 —Q%)(-140° +730'Q% - 620°Q" - 24Q°)

5(aF,\’
a,=——2
i 6( m j (- 40" +290°Q? —670°Q" +670*Q° — 290°Q° + 40" )

(0° —Q%)(-140° + 730'Q? —620°Q" —24Q°)

(36)

0 =0’ —E Z[aFOJ
"6 M) (—40” +290°Q% - 670°Q" +670°Q° — 200°Q° +4Q% )

Now the first order perturbation solution becomes

y(t) =

F, cos(ot)—cos(Qt) a F,/m ?
— Y el 7| %
m o -Q 6\ —Q

cosmt +3

{ ®° +40'Q%* -116°Q* +6Q° ®*+Q

o’ (0° —4Q%)(4n* - Q?)

2 2 2
cos 2ot —3%COSZQI -32 0 }

o —4Q o)

inwhich o = o,,.

4. CASE STUDY

A numerical study has been carried out to
understand the effect of parameters ¢ and a on the
amplitude and frequency of vibration. It is
supposed that the period of the structure is equal to
1, therefore the frequency of system is o =2m,
and the initial condition A=1 is imposed. In
Figures (4-6) the time histories and phase planes of
system are shown for various values of ¢ and a.
Figure. (4) shows the response time history phase
plane for € =0.25 and a= 0.25, 0.5 and 0.75. It is
observed that the solution of first and second order
perturbations are close together and for a= 0.25,
0.5 and 0.75, the differences between the
amplitudes of the first and second order
perturbations are 5%, 9% and 14% respectively.
Similar results for ¢=0.5 and €=0.75 are
obtained from Figures. (5) and (6). In the case of
£=0.5 the differences between the amplitudes
related to various values of a are increased clearly.
Also in the case of e£=0.75 the differences
between the amplitudes related to various values of

6 - Vol. 18, No. 2, June 2005

Q2o-Q) Q(2on+Q)

@37)

®>+0Q?

cos(m—Q)t -3 cos(m+Q)t + (38)

a is more clear rather than previous values.

Phase planes illustrated in Figures (4-6) show
the stability and periodicity of the solutions. The
differences between the amplitudes related to
various values of a are shown in other way.

It is seen that for small values of a, the
difference between the first and second order
perturbations is small and it increases with
increasing a. Also increase in perturbation
parameter ¢, leads to increase the difference
between linear response and both the first and
second order perturbation solutions.

The analytical solution shows that considering
second order perturbation leads to change in the
frequency of vibration. Time history of response
for e =a=0.75, is shown in Figure. (7). It is seen
that there is not shift in period of vibration in the
case of first order perturbation in spite of a slowly
varying shift in the period of vibration in the case
of second order perturbation as mentioned in the
text because of being function of perturbation
parameter.

International Journal of Engineering
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Figure 4. Response and phase plane of the system (& =0.25 and a= 0.25, 0.5, 0.75)
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Figure 5. Response and phase plane of the system (¢ =0.75 and a= 0.25, 0.5, 0.75)
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Figure 6. Response and phase plane of the system (e =0.75 and a= 0.25, 0.5, 0.75)
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Figure 7. Time history response of the system (¢ =a =0.75)

5. CONCLUSION

The effect of added mass fluctuation on the heave
motion of a TLP subjected to axial load (or initial
conditions) at the top of the leg has been
investigated. Perturbation method has been used to
formulate and solve the problem. The solution
gives a conceptual view of the heave motion of a
TLP, also it is important in fatigue life study of
mooring lines. The parametric study shows the
effect of some parameters on the response in the
case of first and second order perturbation.
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