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Abstract  The resulting motion in waves can be considered as a superposition of the 
motion of the body in still water and the forces on the restrained body. In this study the 
effect of added mass fluctuation on vertical vibration of TLP in the case of vibration in still 
water for both free and forced vibration subjected to axial load at the top of the leg is 
presented.  This effect is more important when the amplitude of vibration is large. Also this 
is important in fatigue life study of tethers. The structural model used here is very simple. 
Perturbation method is used to formulate and solve the problem. First and second order 
perturbations are used to solve the free and forced vibration respectively.               
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حرکت ايجاد شده بر اثر موج را می توان به صورت ترکيب خطی حرکت جسم در آب ساکن و حرکت ناشی از      هچكيد
قائم  پاسخ ديناميكي بردر حالت آب ساکن اثر جرم افزوده متغير مطالعه  اين در. نيروهای وارده به جسم ثابت در نظر گرفت

 اين.  اجباري تحت بار محوري در بالاي پايه ارائه شده استشارتعاسكوي داراي پايه كششي، براي دو حالت ارتعاش آزاد و 
.  اهميت بيشتري برخوردار استاز   بويژه در شرايطي كه دامنه ارتعاش قائم سازه، داراي مقدار قابل ملاحظه اي باشد،امر

.  بسيار ساده مي باشداستفادهمدل سازه اي مورد .  اثر در مطالعه عمر خستگي تاندونها داراي اهميت مي باشداين همچنين
 و در دوم حالت ارتعاش آزاد، از اختلال مرتبه در . شده استاستفادهبه منظور فرمول بندي و حل مساله از روش اغتشاش 

  .      اختلال مرتبه اول استفاده شده استاز اجباري ارتعاش مورد
   

  
  
 

1. INTRODUCTION 
 
Tension leg platforms (TLPs) are well-known 
structures for oil exploitation in deep water and are 
becoming increasingly popular for oil drilling at 
very deep water sites. Figure. (1) shows different 
components of the TLP made up of vertical and 
horizontal elements on the upper structure and 
vertical tendons connecting the structure to a 
foundation on the seabed. These structures consist 
of semi-submersible platforms with sufficient 
buoyancy to develop the required tension in the 

tethers. The tension leg platform (TLP) is a 
moored floating structure whose buoyancy is more 
than its weight. The mooring system of TLP 
consists of number of tensioned tethers connected 
to the columns at the top and anchored to the 
seabed at the bottom. These tethers are vulnerable 
to failure due to fatigue produced by fluctuation of 
tension. Many studies have been carried out to 
understand the structural behavior of TLP and 
determine the effect of several parameters on 
dynamic response and average life time of the 
structure [1-6]. The tether system is a critical and
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 basic component of the TLP. The most important 
point in the design of TLP is the pretension of the 
legs. The pretension causes that the platform 
behaves like a stiff structure with respect to the 
vertical degrees of freedom (heave, pitch and roll), 
whereas with respect to the horizontal degrees of 
freedom (surge, sway and yaw) it behaves as a 
floating structure. Therefore the periods of the 
vertical degrees of freedom are lower than the 
others. Among the various degrees of freedom, 
vertical motion (heave) is very important because 
of the direct effect on the stress fluctuation that 
leads to fatigue and fracture. Therefore the 
conceptual studies to understand the dynamic 
vertical response of TLP, can be useful for 
designers. 
     Simple models for heave response of tension 
leg platform under harmonic vertical load has been 
proposed [7]. The effect of added mass fluctuation 
on the heave response of tension leg platform has 
been investigated by using perturbation method for 
discrete [8] and continues model [9]. Added mass 
fluctuation has important effect on fatigue life of 
tethers [8]. 
     In this study the effect of added mass 
fluctuation in the case of vibration in still water for 
both free and forced vibration is discussed. A 
similar formulation can be developed for motion 
analysis of the restrained body in waves. The 
problem is solved by means of perturbation 
method [10-11].  

 

 
 

Figure 1. TLP configuration and components [12] 

2. FREE VIBRATION ANALYSIS 
 

The resulting motion in waves can be seen as a 
superposition of the motion of the body in still 
water and the forces on the restrained body in 
waves (Figure. 2). 
 
 

 
 

Figure 2. Superposition of hydromechanical  
and wave loads [12] 

 
 
In this paper the oscillation in still water is 
considered. Also in the case of small diameter, the 
forces of restrained body in waves are similar to 
the oscillation in still water. Structural modeling of 
a TLP as a moored structure is shown in Figure. 
(3). Free vibration equation of motion is as follows 

0=+ kyym &&                                                           (1)  

where 

)(tmmm as+=                                                       (2)   

sm  is the structural mass and )(tma  is the time 
varying added mass, and 

bt kkk +=                                                            (3)  

where tk  and bk  are mooring and buoyancy 
stiffness respectively. If the structure is not being 
vertically moored, tk  is equal to zero.    

 
 

Figure 3. Dynamic structural model 
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Total added mass can be considered as summation 
of two parts 

)()( 00 tymmtm aaa ε+=                                         (4)  

where 0am  is constant and )(0 tymaε  is the time 
varying part. ε  is the perturbation parameter and 

)(ty  is the vertical motion. Defining 
ammm asa =+ )/( 00  and mkn =ω2 , the equation 

of motion can be written as 

0)1( 2 =ω+ε+ yyay n&&                                             (5)  

Structural damping is assumed to be equal to zero. 
Perturbation method is used to solve the Eq. (5). A 
solution in the form of an infinite series of the 
perturbation parameter ε  is assumed as follows  

L+ε+ε+ε+= )()()()()( 3
3

2
2

10 tytytytyty           (6)  

The frequency of nonlinear vibration depends on 
the amplitude of vibration and perturbation 
parameter 

L+αε+αε+εα+ω=ω 3
3

2
2

1
22
n                           (7) 

where iα  are as yet undefined functions of 
amplitude. In this study, the second order 
perturbation method is used to solve the 
differential equation, therefore the response and 
frequency of vibration are considered as follows 

)()()()( 2
2

10 tytytyty ε+ε+=                               (8)  

2
2

1
22 αε+εα+ω=ω n                                           (9) 

Substituting Eqs. (8) and (9) into Eq. (5), one 
obtains 
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×αε−εα−ω

+ε+ε+

×ε+ε+ε+

tytyty

tytyty
tytytya

&&&&&&
                    (10) 

Since the perturbation parameter ε  could have 
been chosen arbitrarily, the coefficients of the 
various powers of ε  must be equated to zero. This 
leads to a system of equations which can be solved 
successively  

00
2

0 =ω+ yy&&                                                     (11) 

01001
2

1 yyayyy α+−=ω+ &&&&                                  (12) 

021110012
2

2 )( yyyyyyayy α+α++−=ω+ &&&&&&       (13) 

The solution of the Eq. (11), subjected to the initial 
conditions Ay =)0(0  and 0)0(0 =y& , is    

tAy ω= cos0                                                      (14) 

Substituting Eq. (14) into the right hand side of the 
Eq. (12), one obtains 

)12(cos
2

cos
22

11
2

1 +ω
ω

+ωα=ω+ taAtAyy&&        (15) 

The forcing term tωcos  leads to a secular term 
tt ωcos  in the solution of 1y . Such terms violate 

the initial stipulation that the motion is to be 
periodic. Therefore one must impose the following 
condition 

01 =α                                                                (16)  

Now imposing the initial conditions 
0)0()0( 11 == yy & , the solution of the Eq. (15) is as 

follows 

⎟
⎠
⎞

⎜
⎝
⎛ ω−ω−= ttaAy 2cos

3
1cos

3
21

2

2

1                     (17) 

Substituting Eqs. (14) and (17) into Eq. (13), one 
obtains 

tAtt
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        (18) 

Equation (18) can be rewritten as  

( )
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tt
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ω⎟⎟
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            (19)  

where  

2
12coscos2 +ω

=ω
tt  and 
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2
3coscos2coscos tttt ω+ω

=ωω   have been used. 

Similarly the forcing term tωcos  would lead to a 
secular term in the solution; therefore one must 
impose the following condition 

12

222

2
ω

−=α
Aa                                                  (20) 

Now Eq. (19) becomes 

( )tt

Aayy

ω+ω+

×
ω

−=ω+

3cos52cos44
12

232

2
2

2&&                 (21)  

Imposing the initial conditions 0)0()0( 22 == yy & , 
the solution of the Eq. (21) is as follows 

(

)tt

tAay

ω+ω

+ω+−=

3cos152cos32

cos4996
288

32

2                        (22) 

Substituting Eqs. (14), (17) and (22) into Eq. (8), 
the response of the system is obtained as follows  

( )ttt

AattaA
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⎞
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⎝
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  (23)  

Substituting Eq. (20) into Eq. (7), the vibration 
frequency becomes  

12
1

22
2

2
2

Aa
n

ε+

ω
=ω                                                (24) 

The frequency is found to decrease with the 
amplitude, as expected because of increasing in 
mass. Moreover considering the second order 
perturbation, the frequency ω  decreases with the 
perturbation parameter. Therefore Eq. (23) is used 
to determine the response of the system with 
second order perturbation in which frequency ω  is 
calculated from Eq. (24). First order perturbation 
response is determined from Eq. (23) in which 

nω=ω , and the terms having 2ε  are vanished. 

3. FORCED VIBRATION ANALYSIS 
 

Forced vibration equation of motion is as follows 
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               (25)  

This leads to a system of equations which can be 
solved successively  

)cos(0
0

2
0 t

m
Fyy Ω=ω+&&                                      (26) 

01001
2

1 yyayyy α+−=ω+ &&&&                                  (27)  

021110012
2

2 )( yyyyyyayy α+α++−=ω+ &&&&&&       (28)  

The solution to the Eq. (26), subjected to the initial 
conditions 0)0(0 =y  and 0)0(0 =y& , is    
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m
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Substituting Eq. (29) into the right side of the Eq. 
(27), one obtains 
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Like previous one has  

01 =α                                                                 (16)  

The homogenous solution of Eq. (30) is 

tCtCy h ω+ω= cossin 21
)(

1                                 (31) 

and the particular solution is 
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)(
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2cos2cos
)cos()cos(

DtDtD
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+Ω+ω
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          (32) 

Imposing the initial conditions 0)0()0( 11 == yy & , 
results in 
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Now the solution of the Eq. (30) is as follows 
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Substituting Eqs. (29) and (33) into Eq. (28), one 
obtains 
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where 
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Similarly one has 
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Now the first order perturbation solution becomes 
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in which nω=ω . 

 
 

4. CASE STUDY 
 

A numerical study has been carried out to 
understand the effect of parameters ε  and a on the 
amplitude and frequency of vibration. It is 
supposed that the period of the structure is equal to 
1, therefore the frequency of system is π=ω 2 , 
and the initial condition 1=A  is imposed. In 
Figures (4-6) the time histories and phase planes of 
system are shown for various values of ε  and a. 
Figure. (4) shows the response time history phase 
plane for 25.0=ε  and a= 0.25, 0.5 and 0.75. It is 
observed that the solution of first and second order 
perturbations are close together and for a= 0.25, 
0.5 and 0.75, the differences between the 
amplitudes of the first and second order 
perturbations are 5%, 9% and 14% respectively.  
     Similar results for 5.0=ε  and 75.0=ε  are 
obtained from Figures. (5) and (6). In the case of 

5.0=ε  the differences between the amplitudes 
related to various values of a are increased clearly. 
Also in the case of 75.0=ε  the differences 
between the amplitudes related to various values of 

a is more clear rather than previous values. 
     Phase planes illustrated in Figures (4-6) show 
the stability and periodicity of the solutions. The 
differences between the amplitudes related to 
various values of a are shown in other way.   
     It is seen that for small values of a, the 
difference between the first and second order 
perturbations is small and it increases with 
increasing a. Also increase in perturbation 
parameter ε , leads to increase the difference 
between linear response and both the first and 
second order perturbation solutions.  
     The analytical solution shows that considering 
second order perturbation leads to change in the 
frequency of vibration. Time history of response 
for 75.0==ε a , is shown in Figure. (7). It is seen 
that there is not shift in period of vibration in the 
case of first order perturbation in spite of a slowly 
varying shift in the period of vibration in the case 
of second order perturbation as mentioned in the 
text because of being function of perturbation 
parameter.       
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Figure 4. Response and phase plane of the system ( 25.0=ε  and a= 0.25, 0.5, 0.75)    
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Figure 5. Response and phase plane of the system ( 75.0=ε  and a= 0.25, 0.5, 0.75)    



International Journal of Engineering                                                                     Vol. 18, No. 2, June 2005 -9 

 

Figure 6. Response and phase plane of the system ( 75.0=ε  and a= 0.25, 0.5, 0.75)    
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5. CONCLUSION 
 

The effect of added mass fluctuation on the heave 
motion of a TLP subjected to axial load (or initial 
conditions) at the top of the leg has been 
investigated. Perturbation method has been used to 
formulate and solve the problem. The solution 
gives a conceptual view of the heave motion of a 
TLP, also it is important in fatigue life study of 
mooring lines. The parametric study shows the 
effect of some parameters on the response in the 
case of first and second order perturbation. 
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Figure 7. Time history response of the system ( 75.0==ε a )    


