
International Journal of Engineering Vol. 18, No. 2, June 2005 -1

COOPERATIVE CO-EVOLVING NEURAL NETWORKS
FOR ROBOSOCCER SIMULATION

M. Torabi-M, M.-R. Akbarzadeh-T, M. Khademi
Department of Electrical Engineering, Ferdowsi University of Mashhad

torabimm@hotmail.com , Akbarzadeh@ieee.org , khademi@ferdowsi.um.ac.ir

(Received: April 11, 2004– Accepted in Revised Form: Aug. 5, 2005)

Abstract Among various frameworks of intelligence, in general, feed-forward perceptron
neural networks (FPNN) is a useful and common method, because of the network's ability
to approximate highly nonlinear functions. Similarly, among various paradigms of learning,
evolutionary-based algorithms such as genetic algorithms (GA) have gained increasing
interest in recent years due to their ability to locate globally optimal solutions in nonlinear,
noisy and uncertain problem domains. Here, we propose a cooperative co-evolutionary
strategy for finding weights and structure of FPNN simultaneously. The new algorithm
allows for separate populations of weights and structures of neural networks to coexist and
cooperatively evolve thru two separate genetic algorithms. The proposed algorithm is
simulated in RoboSoccer multi-agent environment, and is used for learning the "ball
interception" skill of robot soccer players. Also, the convergence properties of the new
algorithm are statistically compared with two other approaches as well as standard back
propagation (BP) algorithm. Simulation results indicate that the proposed co-evolutionary
approach is superior in terms of consistently finding improved solutions.

Keywords Cooperative Co-Evolution, Neural Networks, Weight Optimization, Structure
Optimization, Genetic Algorithms, Back Propagation

يكي از روشهاي بسيار كارا ميباشند كه توانايي بالايي در , شبكه هاي عصبي از ميان ساختارهاي متنوع هوشمند هچكيد
روشهاي مبتني , همچنين از ميان قالبهاي متنوع يادگيري و بهينه سازي . تقريب الگوهاي آموزشي و روابط غير خطي دارند

 تكاملي مانند الگوريتمهاي ژنتيك به علت توانايي آنان در بهينه سازي مسائل پيچيده و غير خطي كه عموما همراه بر اصول
در ايـن مقالـه روشـي . توجه بسياري را در سالهاي اخير به خود جلب كـرده انـد ,با عدم قطعيتها و نويزهاي بسيار ميباشند

 ,ه سازي همزمان وزنهـا و سـاختار شـبكه هـاي عـصبي پيـشنهاد ميـشود تركيبي مبتني بر همكاري هم تكاملي براي بهين
. بطوريكه جمعيتهايي مجزا از وزنها و ساختارهاي شبكه عصبي بطور همزمان و موازي همكاري نموده و تكامل پيدا ميكنند

پ توسـط بازيكنـان بـا الگوريتم پيشنهادي بر محيط چند عامله روباتهاي فوتباليست و بمنظور يادگيري مهارت دريافت تـو
خـصوصيات . وجود نويزهاي محيطي قابل توجه مانند وزش باد و رفتار تصادفي بازيكنان شبيه سازي و آزمـوده شـده اسـت

 مقايسه شـده)بعنوان معيار(همگرايي اين روش از لحاظ آماري با دو روش تكاملي ديگر و همچنين روش پس انتشار خطا
 .ستو برتري آن نشان داده شده ا

1. INTRODUCTION

Artificial neural networks (ANN), among various
intelligence paradigms, are considered one of the
most potent paradigms for learning and classifying

highly nonlinear training patterns. This is while
common ways of determining appropriate ANN,
and in particular multilayer perceptrons, are still in
part ad hoc and in part idealized, i.e. assuming
ideal properties of the optimization landscape for

 - Vol. 18, No. 2, June 2005 International Journal of Engineering 2

convergence to globally optimal solutions and
hence ignoring much of the possible complexities
of the application. Hence, a robust and general
design methodology which is capable of
optimizing both weights and structure of ANN,
while the system under study is allowed to contain
all of its complexities of both possibilistic and
probabilistic nature, would provide a desirable
solution to this problem.
Among various algorithms that optimize only
weight parameters of an ANN, back propagation
(BP) is the most common and popular of
supervised algorithms for multilayer perceptrons.
BP is a gradient-descent algorithm, which
determines the connection weights by back
propagating the error in layers of the perceptron
such that a given error function is minimized [1,2].
Until today, there have been many successful
applications of BP in intelligent systems, control
systems, medicine and various other fields [3,4].
Theoretically, BP has been shown to always find
the optimum point within limited epochs by
properly adjusting training parameters such as
learning rate and momentum if the initial weights
are set correctly. However, the weakness of BP is
that adjustment of these parameters is not a simple
task and needs initial information. Additionally, if
the error curve is sufficiently complex such that
there are many local minimums, BP may never
find the global minima.
Unlike BP, evolution-based algorithms such as
genetic algorithms (GA) are not easily caught in
locally optimal solutions because of their
stochastic and parallel exploitation of the
optimization landscape [5,6]. Therefore, their
application to ANN weight optimization was quite
promising. Similar to natural evolution, GA aims
to produce progressively better solutions by
preferential selection and reproduction of “fitter”
individuals (survival of the fittest) and by
maintaining diversity through introducing new
genetic structures into the population by applying
random mutation. One of the advantages of
evolutionary algorithms is that they are blind to the
problem specifications, i.e. they do not require any
problem specific information to build their initial
search space. In 1986, Whitley proposed using GA
to learn the weights of an ANN [5]. As one of the
earlier applications, he demonstrated that GA
outperformed the back-propagation algorithm by

employing an encoding GA with a relatively high
mutation rate [7]. Later, in 1989, Montana and
Davis used GA for training a relatively large NN
and reported their successful applications [8].
Since then efforts have been made in different
ways to improve this technique. Two surveys on
the topic of using evolution in optimizing weights
of a ANN can be found in [9,10].
While various researches have been directed to
determining optimal weights, the problem of
optimizing ANN structure remains a challenging
problem. In fact, traditional perceptron design is
commonly performed by trial and error. Such ad
hoc mechanism of finding ANN structure is
nontrivial and does not always succeed.
Furthermore, there is never a guarantee that the
chosen structure is optimal. In recent years several
researchers have attended to this problem and
proposed several algorithms for determining the
structure of multilayer perceptrons. The difficulty
is that theoretical estimation of an exact number of
hidden neurons is nontrivial, but numerical
optimization is available. For example, Ash
developed the method of dynamic node creation. A
new node is created in hidden layer when the
training error rate is above an arbitrarily chosen
critical value [11]. In 2000, Peng, et. al. proposed a
new hybrid algorithm, which was based on the
relationship between the sample approximation
error and the number of hidden units. The
algorithm also searches the weights [12]. The
drawback in above algorithms is that an acceptable
sample approximation error is problem specific
and is therefore difficult to estimate a priori.
Using evolutionary computing and programming,
several algorithms have been introduced in order to
determine the optimized structure for neural
networks [13,6]. But, leaving many parameters in a
bundle for an evolutionary algorithm to organize
and optimize presents several problems. Even
though, these algorithms are evolutionary, they
may still fall prey into premature convergence and
problem of competing conventions. The problem
of competing conventions is particularly prevalent
here because of large number of interdependent
parameters when optimizing structure and weights
of an ANN using standard evolutionary technique.
Co-evolutionary optimization, in comparison,
attempts to divide a difficult problem into simpler
sub-problems while remaining a population based

International Journal of Engineering Vol. 18, No. 2, June 2005 -3

evolutionary search engine. In this fashion, it
attempts to avoid the problem of competing
conventions. Hence as will be shown in this paper,
it demonstrates a great potential to solve complex
problems. Co-evolution refers to the simultaneous
evolution of two or more species with strongly
coupled fitness. In terms of solving engineering
problems, if a problem’s complex parameter space
can be separated, co-evolution allows for searching
the reduced parameter spaces in parallel. Such
parallel exploration and exploitation of the
parameter space can be expected to reduce the
problem of competing conventions, and hence
yield increased performance and favor the
discovery of optimal solutions. In cooperative co-
evolutionary algorithms, a number of
independently evolving species cooperate to find
fitter coupled solutions. The fitness of an
individual depends on its ability to collaborate with
individuals from other species [14, 15, 16].
Co-evolutionary algorithms have attracted many
researchers in recent years. Potter first proposed
cooperative co-evolution in 1994 as a general
function optimization approach [17]. Later in 1995,
Potter presented a co-evolutionary architecture for
solving decomposable problems and applied it to
the evolution of weights of artificial neural
networks [18]. The co-evolutionary approach
utilized a divide-and-conquer technique in which
species representing simpler subtasks are evolved
in separate instances of a genetic algorithm
executing in parallel. Collaborations among the
species are formed representing complete
solutions. In 2001, Reyes and Sipper proposed
their co-evolutionary algorithm ‘Fuzzy Co-Co’ for
simultaneously determining the membership
functions and rule sets in a fuzzy system [15]. In
2000, Potter and Dejong developed a model in
which a number of populations explored different
decompositions of the problem. They concluded
that their approach adequately addresses issues like
problem decomposition and interdependencies
between subcomponents [20]. Paredis [14] applied
cooperative co-evolution to problems which
involved simultaneous search for values and order
of pieces of a solution. In the current literature,
several other co-evolutionary algorithms can be
mentioned for simultaneously finding the unknown
quantities in a problem [21, 22]. A general
characteristic of above co-co algorithms is that

they tend to decompose a problem into many
smaller sub-problems, hence replacing the
complexity of the original problem by the
complexity of handling the interactions among
many simpler sub-problems.
In 1997 and later in 2003, Akbarzadeh, et. al. [19,
20] proposed a co-evolutionary mechanism for
optimizing fuzzy systems in which two
subpopulations (parameters of membership
functions and rule structures) were co-evolved by
two different evolutionary paradigms, GA and GP.
There, GA was advocated as a good paradigm for
optimizing numeric strings, while GP was a good
paradigm for optimizing rule-based structures. This
strategy provided for a reasonable balance between
problem decomposition and complexity of
interaction. In this paper, we continue this strategy
of simple cooperation by proposing a general
cooperative co-evolutionary strategy for finding
weights and structure of FPNN simultaneously as
shown in Figure 1. The new algorithm allows for
separate populations of weights and structures of
neural networks to coexist and to cooperatively
evolve in parallel by two genetic algorithms [21].
The first GA is real-valued in order to optimize
weights of FPNN, while the second GA is binary
valued in order to optimize discrete number of
neurons in each of layers. The proposed algorithm
can be expected to help avoid premature
convergence and competing conventions. The
proposed algorithm is simulated in RoboSoccer
multi-agent system environment, and is used for
learning the "ball interception" skill of robot soccer
players. Statistical analysis of simulation results
and comparisons with two other algorithms
indicate that the proposed co-evolutionary
approach is superior in terms of consistently
finding improved solutions.

 - Vol. 18, No. 2, June 2005 International Journal of Engineering 4

Elitist Real GA,
Weight

Optimization

Nonlinear System

--

∑
Input

output

Er
ro

r

+
ANN Model

Elitist Binary GA,
Structure

Optimization

Figure 1. Co. Co. GA for optimization of
Neural Networks models

Elitist Real GA,
Weight

Optimization

Nonlinear System

--

∑
Input

output

Er
ro

r

+
ANN Model

Elitist Binary GA,
Structure

Optimization

Elitist Real GA,
Weight

Optimization

Nonlinear System

--

∑
Input

output

Er
ro

r

+
ANN Model

Elitist Binary GA,
Structure

Optimization

Figure 1. Co. Co. GA for optimization of
Neural Networks models

This paper is organized as follows. Section II discusses
the evolutionary process in species 1, which searches
for optimized weights. Section III discusses the
evolutionary process in species 2, which searches for
optimized structure of perceptron. Section IV illustrates
the co-evolutionary strategies executed for
calculating
 bonding matrix of fitness. In Section V, the
algorithm is simulated and used for learning the
“ball interception” skill in soccer playing robots.
Statistical analysis of results is then provided in
section VI.

2. FIRST SPECIES: EVOLUTIONARY
SEARCH FOR DETERMINING THE

WEIGHTS

Conventionally, binary-valued GA is applied to
parameter optimization for problems even if the
parameter space is real itself. However, such
approach lacks adequate precision when it is used
for determining weights of ANNs [23], while
increasing the number of significant bits causes
delayed convergence. Therefore, a real-valued
genetic algorithm is proposed here for optimizing
the first species (weights) in this co-evolutionary
algorithm. In the following, chromosome
representation and standard GA operators are
discussed. Since fitness is a function of both

weight parameters and network structure, fitness
evaluation is discussed later in section IV.

2.1. Chromosome representation
The connection weights among neurons in each
layer of a FPNN are considered as parameters of
the real-valued GA. The structure of the ANN, i.e.
the number of hidden layers and the number of
neurons in each layer, is assumed to be either
known a priori or determined by some other
mechanism as discussed in next section. For the
purposes of simulations in this paper, the transfer
function of neurons in the hidden layer is
sigmoidal and the output neuron is linear.
However, the methodologies are general and can
be utilized with an array of possible alternatives.
Each chromosome consists of elements of the

neuron i

bias
neuron j

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

b

b
B

ww
w

ww
W

k

n

k

k

k

mn

k

m

k

ij

k

n

k

K

ij nm
.
.

,

..

...

....
..

),(

1

1

111

.. 1

1

11

11111 bwwbbwww Kk

ij

kk

n

kk

mn

k

ij

k +++Chromosome
representation

Figure 2. The chromosome representation in first GA algorithm(species 1)

International Journal of Engineering Vol. 18, No. 2, June 2005 -5

weight matrices and biases. Figure 2 shows how
one chromosome is represented. In this figure each
weight is expressed as k

ijW in which i and j
indicate the connected neurons and k indicates
the layer number. Generally speaking, having a
multilayer perceptron with n hidden layers, one
input and output layer, the length L of each
individual in the search space is calculated as,

()∑
−

=
++=

1

0
11

n

k
kk nnL (1)

where kn is the number of nodes at kth layer,

nk ,...,0= with k=0 being input layer. The initial
population is generated randomly between
parametric bounds of connection weights and
biases.

2.2. Genetic operators
Reproduction, crossover and mutation are the three
main operators in a real-valued genetic search as
defined below.
Reproduction: Individuals duplicate themselves
into an intermediate generation. Thus, higher fit
individuals stand a better chance of reproducing
while lower fit individuals are more likely to
disappear. For reproduction, here, roulette wheel is
used in which selection probability is assigned
to each individual according to its fitness based on
the following probability,
[]

∑
−

=

= sizepop

k

kf

ifiP

1

)(

)(selected being individualth

Where f(i) is fitness of ith individual and pop-size is
the population size. Roulette wheel reproduction
has a disadvantage, i.e. highly fit individuals may
not be selected for reproduction and may be lost in
this process. To improve this weakness, the
roulette wheel algorithm is combined with
“elitism,” such that a certain percentage %P ,
usually between 3% to 5%, of the best individuals
in each generation are allowed to be directly
transferred to its future generation, bypassing
selection and other genetic operators.
Crossover: Two or more individuals combine to
generate new individuals. Crossover enables the

evolutionary process to exploit promising regions
of the search space, and converge. In this paper, a
one-point crossover is used, in which one section
of the parent’s chromosomes are exchanged at
randomly selected points.
Mutation: Mutation is introduced to prevent
premature convergence to locally optimal solutions
by exploring new points in the search space. By
mutation, each real-coded allele in a chromosome
may be modified by a random value within its
predefined parametric bounds.

3. SECOND SPECIES: EVOLUTIONARY
SEARCH FOR DETERMINING THE

STRUCTURE

While the Real GA in Section II seems to be an
adequate framework for optimizing weights, it
does not provide an adequate mechanism for
optimizing the structure. Since the number of rules
is discrete, binary GA is advocated as a more
efficient evolutionary approach for species 2
(FPNN structure). This algorithm is general and
can be used for all other structural optimization
purposes of neural networks. It also can be
combined with any weight optimization method
such as BP in order to optimize both weights and
structure of an ANN [25]. Chromosome
representation and genetic operators in species 2 of
the co-evolutionary algorithm are discussed below.
Similar to previous section, fitness evaluation is
discussed separately in section IV.

3.1. Chromosome representation
An elitist binary GA determines the number of
neurons in each of the (two, in this simulation)
hidden layers, while also allowing for possible
representation of solutions with only one hidden
layer. Considering the fact that perceptrons can
learn nonlinear continuous training patterns with
only one hidden layer [1], two hidden layers
should provide for a sufficiently diverse
optimization landscape. Hereafter, by the term
“layer” we simply mean the number of hidden
layers. Obviously, the network has one input and
one output layer, and number of neurons in these
two layers is determined by the specific learning
problem. Figure 3 shows the process of making
search population. The maximum number of

(2)

 - Vol. 18, No. 2, June 2005 International Journal of Engineering 6

neurons iM in each layer i is determined by
considering the features of the problem such as the
number of training data or the desired minimum
error. The transfer function of each neuron is
defined a priori.

3.2. Genetic operators
Standard genetic operators, crossover, mutation
and reproduction, are used here, as in real GA
algorithm. These processes were also briefly
discussed in section II.

4. COOPERATION IN EVOLUTION

Even though the algorithms in section II and III
take advantage of GA search, either of search
routines only provide partial solutions for ANN
and need to cooperate with the other search routine
for their fitness evaluation and composing
complete solutions. Here, we focus on how the two
algorithms cooperate in forming a whole individual
and in evaluating their own individual fitness as
shown in Figure 4.

4.1. Fitness evaluation
Cooperation among the individuals of the two
genetic algorithms is necessary in order to
determine each individual’s fitness level from their
joint fitness functions. In the proposed cooperative
genetic algorithm, ith individual in one population
(of potential weight solutions) bonds with jth
individual of the other population (of potential
ANN structures) to compute their
joint fitness, ijf . The resulting joint fitness
comprises elements of a bonding fitness matrix F,
with number of rows and columns equal to the
number of individuals in the two populations. As
shown in Figure 4, fitness of each weight
individual is determined by the average of its
bonding with individuals of the other
subpopulation, similarly the mean fitness value in
each row represents fitness of each structure
individual. The population size of species 1 and 2,
in this example, are set at 30 and 100 respectively.
Since there are different numbers of neurons in
different structures, the length of the weight
individuals is also variable.

To solve this problem, a maximum length is
determined for the weight population. For instance,
assuming 10=iM , the maximum length L will be
161 from Equation 1 (In this example we have
assumed 3 inputs at the input later, 1 output at the
output later, and two hidden layers
with variable length). Individuals, usually, do not
fully utilize this allowed space. For example, the
weight individuals use 73 parameters of the
maximum length when coevolving with the
structure (8,4) and with the structure (4,0) use 21
parameters of the maximum length. Figure 5 shows
the flowchart of the hybrid GA/BP algorithm.

5. LEARNING SOCCER PLAYING
SKILLS IN A MULTI AGENT

ENVIRONMENT

The test bench in this research is a robotic soccer
simulation environment, provided by “Soccer
Server” simulator version 7.9. RoboSoccer
simulation is a popular multi-agent environment
for testing various paradigms of intelligence and
particularly addressing various issues of multi-
agent systems. The simulator is based on a client-
server model in which the server models the real
world and reports the state of the world while the
clients control the individual agents. The simulator
describes the current state of the world to the
clients (agents). The clients periodically send their
commands to the simulator indicating how the
agents should play.
The goal of using the proposed algorithms here in
RoboSoccer environment is learning “ball
interception skill”. The “ball interception skill” is a

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ff
f

ff

ji

F

100,301,30

,

100,11,1

....

.....

......
....

 1 2 100

30

30

1
,∑

===> j
ji

th
f

weightifitness

100

100

1
,∑

===> i
jith

f
structurejfitness

1
2
.
.
.

30

Figure 4. Bonding Matrix in Co.Co. GA

International Journal of Engineering Vol. 18, No. 2, June 2005 -7

basic individual behavior which all players should
possess. This is while receiving moving balls in
soccer server simulator is not trivial because of
different noise sources in
the environment such as wind velocity,
uncertainties regarding the ball and noise in

behavior of the players affecting the ball and
changing its direction. The RoboSoccer simulator
therefore adds a certain amount of noise to the
movement of each mobile component, i.e. both the
ball and the soccer players, the amount of which is
determined by different parameters in soccer server

simulator. Here, the SoccerServer’s default values
as used in the RoboCup competition are used, as

follows:
Player-rand (the noise coefficient which affects

Generation=0

Species 1:
Initialpopulation,Gm,Pc,Pm

Species 2: Initial
population,Gm,Pc,Pm

Evaluate Fitness
Matrix F

population
species1

Evaluate Fitness Matrix F

Generation>
Gm

Selection

population
species2

Generation=Generation+1
GA Algorithm
Species2

GA Algorithm
Species1

end

start

Mate

Crossover

Mutation

Selection

Mate

Crossover

Mutation

Figure 5. Shows the flowchart of Co.Co. GA algorithm .

 - Vol. 18, No. 2, June 2005 International Journal of Engineering 8

the player’s motions) = 0.1
Ball-rand (the noise coefficient which effects the
ball motion) = 0.05
Kickable-margin (the area in which the ball is
caught by player) = 1.
With the above randomness, environmental noise
is so extreme that if a player moves directly
towards the ball in order to intercept it, he will be
able to intercept it only 30% of the times [26,27].
Hence, in order to catch the ball successfully,
players must learn to predict the path of the ball
using proper decision parameters and turn to the
predicted direction, as shown in Figure 6.
In order to train the co-evolutionary FPNN as
proposed in this paper, Stone’s algorithm [27] is
used to create a training set of successful instances
of ball interception. In Stone’s algorithm, ANN has
three inputs as follows,
1. The ball’s distance at time k)(kdB=
2. The ball’s distance at time k-1)1(−= kdB
3. The ball’s relative angle at time k)(kBPθ=
The parameter k is the time the agent should

decide, turn and move towards the
ball. And the ANN output)(ˆ kTθ is

the angle by which the robot should turn at time k
in order to intercept the ball successfully. In this
algorithm there is a shooter agent who shoots the
ball, a defender agent who tries to catch the ball
and a trainer who saves the results and sends
commands. Using Stone’s proposed algorithm and
running the algorithm in virtual situation, 1000
successful interceptions are collected for training
purposes. Each successful interception try consists
of 3 inputs for neural network (as discussed above)
and the suitable angle by which the agent has
turned to intercept the ball successfully as the
network output. The training set is gathered by
trainer and saved in a file in order to be used for
training our network. This number of training data
was quite sufficient for proper training. As will be
shown in the simulation results, using too many

data points can lead to over-training and impede
performance.
Simulations in the following section will test
learning performance under various training
patterns.

6. SIMULATION AND RESULTS

Once training is completed, in order to test the
proposed NN training algorithm, the success of the
trained agents in intercepting the ball are evaluated
for 3000 trials in the RoboSoccer virtual
environment. Here the receiver predicts its proper
turn angle using the output of ANN. Table 1 shows
the results of the cooperative GA simulation. The
second row displays the proposed structure and the
third row represents the success rate. In this
simulation different sizes of training sets are used
and the results are presented in Table 1. As this
table illustrates, the highest success rate is obtained
by 700 training patterns. In cases of using less than
300 training patterns, results are not as good
because there are still many unseen situations for
the network whereas employing more than 700
training patterns reduces the success rate because
of “overtraining.” Figure 7 shows the average and
maximum fitness functions of populations in the
proposed algorithm.
Table 2 illustrates a comparison of the proposed
algorithm with three other algorithms, by
enumerating the percentage of success of their best
solution. Column 2 shows the results of Hybrid
GA/BP simulation that searches for optimal
structures using evolution and determines the
weights using BP algorithm [24]. Column 3 shows
the result of an elitist real GA which optimizes
ANN weights using evolution considering a fixed
structure [25]. Column 4 displays the result of
training the network with BP as reported by Stone
using a static ANN with 4 neurons in hidden layer
[27]. Column 5 displays the behavior of receiving
agent when he has not been trained and simply

 Table 1. Percentage of Successful Interceptions (with 700 training data pairs & different solutions)

)(kd B

Range of shooter’s start
position

shooter

defender

Figure 6. A robot soccer field with a shooter and a defender

Ball
T?̂

BP?ˆ
)(kd B

Range of shooter’s start
position

shooter

defender

Figure 6. A robot soccer field with a shooter and a defender

Ball
T?̂

BP?ˆ
)(kd B

Range of shooter’s start
position

shooter

defender

Figure 6. A robot soccer field with a shooter and a defender

Ball
T?̂

BP?ˆ

International Journal of Engineering Vol. 18, No. 2, June 2005 -9

Input

Data

Proposed Structure

layer1 layer2

Percentage of

Success(%)

100 5 3 82.5

300 6 3 85.5

500 6 4 87

700 6 4 89.5

800 8 3 86.4

Table 2. Percentage of Successful Interceptions (with 700 training data pairs) during testing

Proposed

Cooperative
GA

Hybrid
GA/BP

Elitist Real
GA Backpropagation Without

training

Percentage of
Success(%) 89.5 88 86.2 86 32

0 50 100 150 200 250 300
40

45

50

55

60

65

70

75

80

85

90

Maximum F itness

Average F itness

Figure 7. Co.Co.GA Fitness Performance

Pop-Size=100, Generation=250

moves towards the ball. In order to compare
consistency, computational intensity and final
performance of the three evolutionary algorithms

during training, simulations are repeated ten times.
Table 3 displays the final fitness of best individuals
in the ten trials of the algorithms (to show final

GA parameter:
Pop1-Size=40 , Num_Generation1=30 , Pc1=0.8 , Pm1=0.08

Pop2-Size=100 , Num_Generation2=250 , Pc2=0.4 , Pm2=0.08

 - Vol. 18, No. 2, June 2005 International Journal of Engineering 10

performance), standard deviation of the best
individuals (to show consistency), and number of
floating point operations (FLOPS) performed
during the ten algorithms (to show their
computational intensiveness). FLOPS are a
reasonable measure of comparing computational
intensiveness as it is independent of the processor,
hence it will make future comparisons easier. As
indicated in Table 3, Cooperative GA finds better
optimal solutions more consistently among the
three algorithms, i.e. it determines the best solution
(comprising of both structure and weights) more
consistently. Because of random nature of

evolution, it is guaranteed that globally optimal
solutions will ultimately be found, given enough
generations and sufficiently inclusive search space.
However, as Table 3 also indicates, the only
disadvantage with the proposed Cooperative GA is
that the algorithm is computationally intensive, as
simultaneous execution of two GAs is considerably
time consuming. Figure 8 shows the performance
of Cooperative GA in comparison with three other
algorithms. In this figure the MSE error is shown
with respect to generation. Cooperative GA has
reached the least MSE.

Table 3. Fitness Comparison During Training (obtained by 10 independent runs)

0 50 100 150 200 250
0.012

0.014

0.016

0.018

0.02

0.022

0.024

Figure 8. Performance comparison versus generation

 Best Worst Average Standard
Deviation FLOPS

Co.Co. GA 88 79 84.05 2.99 1790025750
Hybrid GA/BP 68 48 53.8 3.1 150262895
Elitist Real GA 52.4 40 50.3 3.64 13152123

International Journal of Engineering Vol. 18, No. 2, June 2005 -11

7. CONCLUSION

In this paper, a novel cooperative GA is proposed
for optimizing ANNs, both parametrically and
structurally. For testing purposes, the algorithm is
applied to learning ball interception skill in a
simulated multi-agent RoboSoccer environment.
The algorithm is compared with three other
algorithms used for optimizing the ANN and also
with an untrained agent. Simulation results indicate
that there is a trade off between finding globally
optimal solutions and computational intensity. The
ten simulation runs that are performed showed that
the proposed Cooperative GA consistently finds
better solutions (with a lower standard deviation),
but is significantly more time consuming. If a
problem, such as the one solved in this paper, can
be optimized offline, and small amount of
improvement in performance and accuracy is
significant, then Cooperative GA is a method of
choice.

8. NOMENCLATURE

f(i) Fitness of ith individual
P(i) Probability selection of ith individual

iM Maximum number of neurons in ith layer

ijf Joint fitness of individuals i and j

Pc1 crossover probability of species1
Pc2 crossover probability of species2
Pm1 mutation probability of species1
Pm2 mutation probability of species2
Pop1-Size population size of species1
Pop2-Size population size of species2

9. KNOWLEDGMENT

The cooperation of RoboCup simulation team of
Ferdowsi University of Mashhad, and in particular
Mr. Moghaadszadeh and Mr. Bagheri, is gratefully
acknowledged.

10. REFERENCES

1.Simon Haykin, Neural Network: A
Comprehensive Foundation, Prentice Hall, New
Jersey, 1999.

2. C. Lu & B. Shi and L. Chen, “Hybrid BP-GA
for multilayer feedforward neural networks,”
Proceedings of the 7th IEEE International
Conference on Electronics, Circuits and
Systems, 2000. ICECS 2000, Volume: 2 , 17-20
Dec. 2000, Page(s): 958 -961 vol.2

3. Y. Liu & X. Yao, “Evolving artificial neural
networks for medical applications,”
Proceedings of first Korea-Australia Joint
Workshop on Evolutionary Computation,
Korea, pp. 1-16, 27-29 September, 1995.

4. L. Davis, “Mapping neural networks into
classifier systems”, Proceeding of the 3rd Int.
Conf. On Genetic Algorithms (ICGA,89),
George Mason University, pp. 375-378,1989.

5. D. Whiteley, “Applying genetic algorithms to
neural networks learning,” Proceeding of 7th
Conference of the society of Artificial
Intelligence and Simulation of Behavior,
Sussex, England: Pitman Publishing, pp. 137-
144, 1986.

6. L.C.Jang, Evolutionary Computing in NN.
Design, pre-published copy, 1997.

7. D. Whiteley, T. Starkweather & C. Bogart,
“Genetic algorithms and neural networks:
optimizing connections and connectivity,”
Parallel Computing, Vol. 4, pp. 374-361, 1990.

8. D. Montana & L. Davis, “Training feedforward
neural network using genetic algorithms,”
Proceeding of 11th of Int. Joint Conf. On
Artificial Intelligence, San Mateo, CA, pp.
762-767, 1989.

9. X. Yao, “A review of evolutionary artificial
neural networks,” International Journal of
Intelligent Systems, Vol. 8, pp. 539-567, 1990.

10. J.D. Schaffer & D. Whiteley and L.j. Eshelman,
“Combinations of genetic algorithms and neural
networks: A survey of the state of the art,”
International Workshop on Combination of
Genetic algorithms and neural networks,
Baltimore, Maryland, June 6, 1992.

11. T. Ash, “Dynamic node creation in
backpropagation networks,” Proceeding of Int.
Conf. On Neural Networks, San Diego, 1989.

12. K. Peng & S. Ge and C. Wen, “An algorithm to

 - Vol. 18, No. 2, June 2005 International Journal of Engineering 12

determine neural network hidden layer size and
weight coefficients,” Proceeding of the 15th
IEEE Int. Symposium on Intelligent Control,
July 17-19, 2000.

13. Z. Liu & M. Sugisaka, “A genetic algorithm
approach used to generate the neural network
structures,” Proceeding of the Int. Conf. On
Intelligent Robotics and Systems (RSJ), IEEE,
pp.763-768, 1999.

14. J. Paredis, “Coevolutionaty computation”,
Artificial Life, Vol. 2, pp. 355-375, 1995.

15. C. Andres Pena-Reyes and M. Sipper, “Fuzzy
CoCo: A cooperative coevolutionary approach
to fuzzy modeling,” IEEE Transaction on Fuzzy
Systems, Vol. 9, No. 5, pp. 727-737, 2001.

16. Jonghyeok jeong and Se-Young Oh,
“Automatic rule generation for fuzzy logic
controllers using rule-level co-evolution of sub
populations,” In Proceedings of the Congress
on Evolutionary Computation, Washington,
DC, July 1999

17. Mitchell A. Potter and Kenneth A. De Jong, “A
cooperative coevolutionary approach to
function optimization,” In Proceedings of the
Third Conference on Parallel Problem Solving
from Nature, pp. 249-257. Springer-Verlag,
1994.

18. Kenneth A. De Jong and Mitchell A. Potter,
“Evolving complex structures via cooperative
coevolution,” In Proceedings of the Fourth
Annual Conference on Evolutionary
Programming, pp. 307-317, MIT Press, 1995.

19. M.-R Akbarzadeh-T, E. Tunstel, and M.
Jamshidi, “Genetic algorithms and genetic
programming: combining strengths in one
evolutionary strategy,” In Proceedings of the
1997 Joint Conference on the Environment,
PP.373-377, Albuquerque, New Mexico, April
22-24, 1997

20. M.-R. Akbarzadeh-T., I. Mosavat, and S.
Abbasi, “Friendship modeling for cooperative
co-evolutionary fuzzy systems: a hybrid GA-
GP algorithm,” In Proceedings of the 22nd
International Conference of North American
Fuzzy Information Processing Society, pp.61-
66, Chicago, Illinois, 2003.

21. M. Torabi-M, M.-R. Akbarzadeh-T., M.
Khademi, “Learning ball interception skill :
genetic algorithm vs. backpropagation,” In
Proceedings of the National Computer

Conference, Ferdowsi University of Mashad,
December 2002.

22. M. A. Potter & K. A. DeJong, “Cooperative
coevolution: an architecture for evolving
coadapted subcomponents,” Evolutionary
Computation, Vol. 8, No. 1, pp. 1-29, spring
2000.

23. D.E. Moriarty, “Symbolic evolution of neural
networks in sequential decision tasks,” The
University of Texas at Austin, Jan 1997.

24. M. A. Potter, “The design and analysis of a
computational model of cooperative
coevolution,” PhD Dissertation, George Mason
University, Dept. of Computer Science, 1997.

25. M.N.H. Siddique and M.O. Tokhi, “Training
neural networks: Backpropagation vs. Genetic
algorithms,” IEEE Proceeding of Int. Conf. On
Neural Networks, Vol. 4, pp. 2673-2978, 2001.

26. M. Torabi-M, M.-R. Akbarzadeh-T., M.
Khademi, “ Structural Optimization of
Perceptron Using Hybrid GA/BP Algorithem,”
In Proceedings of the National Artificial
Intelligence Conference, Ferdowsi University
of Mashad, October 2003.

27. S. Andre, E .Corten, K. Dorer, P.
Qgugenberger, M. Joldos, J. Kummeneje, P. A.
Navaratil, I. Noda, P. Riley, P. Stone, T.
Takahashi & T. Yeap, “ Soccer server
manual,” version 7.9 , Jan. 22, 2000.

28. P. Stone, M. Veloso & P. Riely, “A layered
approach to learning client behaviors in
Robocup Soccer Server,” Applied Artificial
Intelligence, No. 12, 1998.

