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Abstract  In this paper, it is shown that group method of data handling (GMDH)-type 
neural networks and their application can be effectively used to acquire the inverse 
kinematic equations of a Puma760 robot manipulator based on the numerical data of its 
motion. The aim of such modeling is to show the accuracy of GMDH-type neural networks. 
For evaluating the accuracy of the obtained equations, a new trajectory is employed to 
demonstrate whether the models are still valid or not. Finally, the best results are used to 
define the inverse kinematic equations. 
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 براي شناسايي مشخصات سينماتيكي GMDHاز شبكه هاي عصبي از نوع در اين مقاله به چگونگي استفاده      هچكيد
، كه با استفاده از داده هاي GMDHپس از مدلسازي و ايجاد ساختار شبكه هاي عصبي از نوع . رباتها اشاره شده است

 حركتهاي ديگر توانايي پيش بيني برايبه انجام رسيده و عددي بدست آمده از حركت ربات ارائه مي شود، شناسايي دقيق 
تائيد اعتبار شناسايي انجام شده، از بهترين نتايج براي ارائه معادلات با توجه به . ربات مورد ارزيابي قرار گرفته است

   . استفاده شده استPUMA 760 سينماتيك معكوس يك ربات 
  
  
  
 

1. INTRODUCTION 
 
The inverse kinematic equations of robotic 
manipulators are used to identify the angular 
positions of the links, when the Cartesian 
coordinate of end-effector is known   (Craig 1989). 
Since identification and modeling of such 
equations using input-output data is one of the 
time-consuming and complicated problems in the 
control of robotic manipulators, several system 
identification techniques are applied to model the 
inverse kinematics of robotic manipulators. 

Neural networks, which is one of the main 
components of soft-computing and has shown 
great ability in solving complex non-linear system 
identification and control problems, could be 
effectively used for this purpose.  
Among several methodologies that have been 
expanded, group method of data handling 
(GMDH) algorithm is a self-organizing approach 
by which gradually complicated models are 
generated based on the evaluation of their 
performances on a set of multi-input single-output 
data pairs. In this way, GMDH was used to  
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overcome the difficulty of knowing a priori 
knowledge of mathematical model of the system. 
The main idea of GMDH is to build an analytical 
function in a feedforward network based on a 
quadratic node transfer function whose coefficients 
are obtained using regression technique. 
 
 
 

2. KINEMATICS OF A PUMA760 ROBOT 
 
PUMA760 is a spatial 6 DOF robotic manipulator 
with all revolute joints (Fu et al. 1990).  
A schematic diagram of this robot is shown in 
Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to obtain the kinematic equations, the 
Denavit-Hartenberg  parameters of this robot are 
shown in Table 1. Using such parameters, 
appropriate transfer matrices of links and also the 
kinematic equations can be found. 
 
 

Table 1. The Denavit-Hartenberg Parameters 

Di ai αi θi Joint i 

0 0 -90 90 1 
300 700 0 0 2 
0 -33 90 90 3 

915.1 0 -90 0 4 
0 0 90 0 5 

170 0 0 0 6 

The considered trajectory of a Puma760 is shown 
in   Figure 2. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. USING GMDH TYPE NEURAL NETWORKS IN 

MODELING 
 
The classical GMDH algorithm can be represented 
as a set of neurons in which different pairs of them 
in each layer are connected through a quadratic 
polynomial and thus produce new neurons in the 
next layer. Such representation can be used to 
model the mapping inputs to outputs. The formal 
definition of the identification problem is to find a 
function ˆf so that can be approximately used 
instead of actual one, f  , in order to predict output 
ŷ  for a given input vector ( , , ,..., )1 2 3X x x x x n= as 
close as possible to its actual output .y  Therefore, 
given M samples of multi-input single-output data 
pairs define the following equations: 
 

( , ,..., ),1, 2 3y f x x x xi i i i in=     1, 2, ..., .i M=               (1) 
 
It is now possible to train a GMDH-type neural 
network to predict the output values ŷ i , for any 
given input vector ( , , ,..., )1 2 3X x x x xi i i in= . It means, 
 

ˆˆ ( , , ,... )1 2 3y f x x x xi i i i in=        1, 2, ..., .i M=          (2) 

Figure 1. A Schematic Diagram of a Puma760 Robot 

Figure 2. The Considered Trajectory 
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The problem is now to determine a GMDH-type 
neural network so that the square of difference 
between the predicted output and the actual  one to 
be minimized,  
 

2ˆ( ( , , ,..., ) )1 2 3
1

M
f x x x x y Mini i i in i

k
⎡ ⎤− →∑ ⎢ ⎥⎣ ⎦=

.               (3) 

 
General connection between inputs and output 
variables can be expressed by a complicated 
polynomial of the form 

                      

ˆ ...0
1 1 1 1 1 1

m m m m m m
y a a x a x x a x x xi i ij i j ijk i j k

i i j i j k
= + + + +∑ ∑ ∑ ∑ ∑ ∑

= = = = = =

(4) 
 
which is known as the Ivakhnenko polynomial          
(Farlow 1984). However, for most applications, the 
quadratic form of only two variables is used in the 
form of 
 

2 2ˆ ( , ) 0 1 2 3 4 5y G x x a a x a x a x a x a x xi j i j i ji j= = + + + + +           (5) 

 
to predict the output .y  The coefficients ai  in 
equation (5) are calculated using regression 
techniques (Ivakhnenko 1981; Iba et al. 1986) so 
that the difference between actual output, y , and 
the calculated one, ŷ , for each pairs of ( , )x xi j as 

input variables to be minimized. Indeed, it can be 
seen that a tree of polynomials is constructed using 
the quadratic form given in equation (5), whose 
coefficients are obtained in a least-squares sense. 
In this way, the coefficients of each quadratic 
function Gi  are obtained to optimally fit the output 
in the whole set of input-output data pair, 
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1
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                         (6) 

 
In basic form of the GMDH algorithm, all the 
possibilities of two independent variables out of 
total n input variables are taken in order to 

construct the regression polynomial in the form of 
equation (5) that best fits the dependent samples 
( , 1, 2, ... )iy i M= in a least-squares sense. 

Consequently, ( ) ( 1) / 22
n n n= −  neurons will be 

built up in the second layer of the feedforward 
network from the samples 
{ }( , , ),( 1,2,..., )y x x i Mi ip iq = for different 

, {1,2,..., }p q M∈  (Farlow 1984). In other words, it is 
now possible to construct M data triples 
{ }( , , ),( 1,2,..., )y x x i Mi ip iq = from samples using such 

, {1,2,..., }p q M∈  in the following form: 
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Using the quadratic sub-expression in the form of 
equation (5) for each row of M data triples, the 
following matrix equation can be readily obtained 
as  
Aa Y=                                                           (7) 

  
where a is the vector of unknown coefficients of 
the quadratic polynomial in equation (5): 

1 2 3 4 5{ , , , , , }oa a a a a a a=                                         (8) 
 
and 
 

1 2 3{ , , , ... }T

MY y y y y=                                         (9) 
 
is the vector of output values from samples. It can 
also be readily seen that 
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The least-squares technique from multiple-
regression analysis leads to the solution of the 
normal equations in the form of 
 

1( )T Ta A A A Y−=                                                 (11) 
  
which determines the vector of the best 
coefficients of the quadratic equation (5) for the 
whole set of M data triples. However, such 
solution directly from normal equations is rather 
susceptible to round off error and, more 
importantly, to the singularity of these equations. 
 
 
 

4. STRUCTUAL IDENTIFICATION OF 
GMDH TYPE NEURAL NETWORKS 

 
Three different approaches for structural 
identification of GMDH-type networks are 
presented as follows (Nariman-Zadeh et al. 2002): 
Method I:  Increasing Selection Pressure 
Approach (ISP) 
In this approach, only one parameter, called 
selection pressure, is sequentially increased in 
different layers in order to determine the number of 
neurons in each layer and also the number of layers 
in network. The main steps of this approach are 
described as follows: 
Method II: Pre-specified Structural Design 
Approach (PSD) 
In this approach, the number of layers in the 
network and also the number of neurons in each 
layer is pre-specified.  
Method III: Error Driven Structural Approach 
(EDS) 
In this approach, the numbers of layers as well as 
the number of neurons in each layer are determined 
according to a threshold error for equation (6). In 
addition, unlike two  previous approaches, some of 
input variables or generated neurons in different 
layers can be included in subsequent layers. It is, 
therefore, evident that the structure of such 
network may be more complicated than those 
generated in previous methods.  

5. GMDH TYPE NEURAL NETWORKS 
MODELING OF THE INVERSE KINEMATIC 

EQUATIONS OF A PUMA760 ROBOT 
 
Three methods discussed previously are used to 
design GMDH-type network systems for a set of 
actual input–output data in a series of Puma760 
trajectory obtained from Roboworks 
(www.newtonium.com).  
Selected parameters of interest in this multi-input 
six-output system, which affect the main and local 
coordinates of gripper, are , , , , ,X Y Z T A O .The X, 
Y and Z are defined as the hand coordinates of the 
gripper and also T, A and O are defined as the 
Tool, Altitude and Orientation angles of the 
gripper respectively (Fu et al. 1987). 
The complete data set consists of a total number of 
25 input–output actual data considering different 
value of inputs and six output parameters. 
In order to model these six-input six-output set of 
data, each of the three methods previously 
mentioned was used separately in conjunction with 
singular value decomposition (SVD) approach for 
the coefficient of the quadratic polynomials. The 
actual data obtained from the Roboworks 
constitute six sets of 25 six-input single-output 
data used independently by these three methods.  
Figures 3-8 show the modeling behaviour of 
identified networks. Accordingly, figures 9-14 
show the structure of identified networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Variation of joint 1 angle with input data 
samples: comparison of actual values with computed 

values by method II (PSD) – 2 layers 
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Figure 4. Variation of joint 2 angle with input data 
samples: comparison of actual values with computed 

values by method I (ISP) – 2 layers 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Variation of joint 3 angle with input data 
samples: comparison of experimental values with 

computed values by method I (ISP) – 2 layers 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 6. Variation of joint 4 angle with input data 
samples: comparison of experimental values with 
computed values by method III (EDS) – 4 layers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Variation of joint 5 angle with input data 
samples: comparison of experimental values with 
computed values by method III (EDS) – 4 layers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Variation of joint 6 angle with input data 
samples: comparison of experimental values with 
computed values by method III (EDS) – 4 layers 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. GMDH-type network obtained  
by method II (PSD) for Joint 1 

 

-2
-1
0
1
2
3
4
5
6
7
8

1 3 5 7 9 11 13 15 17 19 21 23 25

Input Vector Index

Ra
d

Actual Values Computed by ISP

5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

1 3 5 7 9 11 13 15 17 19 21 23 25
Input Vector Index

R
ad

Actual Values Computed by ISP

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 3 5 7 9 11 13 15 17 19 21 23 25
Input Vector Index

Ra
d

Actual Values Computed by EDS

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

1 3 5 7 9 11 13 15 17 19 21 23 25
Input Vector Index

R
ad

Actual Values Computed by EDS

3

3.5

4

4.5

5

5.5

6

6.5

1 3 5 7 9 11 13 15 17 19 21 23 25
Input Vector Index

D
eg

re
e

Actual Values Computed by EDS



      - Vol. 18, No. 2, May 2005                                                                  International Journal of Engineering 140 

 
Figure 10. GMDH-type network obtained 

 by method I (ISP) for Joint 2 
 
 
 
 
 

 
 

Figure 11. GMDH-type network obtained 
by method I (ISP) for Joint 3 

 
 
 
 

 
 

 
Figure 12. GMDH-type network obtained  

by method III (EDS) for Joint 4 
 
 

 
Figure 13. GMDH-type network obtained 

 by method III (EDS) for Joint 5 
 
 
 

 
Figure 14. GMDH-type network obtained 

by method III (EDS) for Joint 6 
 
 
In order to demonstrate the accuracy of such 
modeling,       a new trajectory is employed to 
demonstrate whether the models are still valid or 
not. 
The new trajectory is shown in Figure 15. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.  The new trajectory of a Puma760 Robot 
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In this way, Figures 16-21 show the validation of 
the obtained GMDH-type networks by contrast of 
three different approaches. The best obtained 
network for each joint is used to define the inverse 
kinematic equations which are indicated in 
Equations 12-17. 
 
 
 

Figure 16. Validation of Joint 2 inverse kinematic 
equations obtained by PSD – 2 Layers  

 
 
 
By comparison of graphs in three different 
approaches, it is evident that the PSD method 
reveals the best result. Therefore, the inverse 
kinematic equations of joint 1 are concluded as 
follows: 
 
 
 
 

(12) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Validation of Joint 2 inverse kinematic 
equations obtained by ISP and PSD – 2 Layers  

 
 
 

By comparison of graphs in three different 
approaches, it is evident that the both ISP and PSD 
methods reveal the best result. Therefore, the 
inverse kinematic equations of joint 2 are shown as 
follows: 

(13) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. Validation of Joint 3 inverse kinematic 
equations obtained by ISP – 2 Layers  

 
 

By comparison of graphs in three different 
approaches, it is evident that the ISP method 
reveals the best result. Therefore, the inverse 
kinematic equations of joint 3 are shown as 
follows: 
 

 (14) 
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Figure 19. Validation of Joint 4 inverse kinematic 
 equations obtained by EDS – 4 Layers  
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By comparison of graphs in three different 
approaches, it is evident that the EDS method 
reveals the best result. Therefore, the inverse 
kinematic equations of joint 4 are shown as 
follows: 
 

(15) 
 
 

 
Figure 20. Validation of Joint 5 inverse kinematic 

equations obtained by EDS – 4 Layers  
 
 
By comparison of graphs in three different approaches, 
it is evident that the EDS method reveals the best result. 
Therefore, the inverse kinematic equations of joint 5 are 
shown as follows: 
 
 
 
 
 
 

(16) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

(17) 
 
It can be seen clearly that the performance of 
method III in the GMDH-type neural network 
modeling of the inverse kinematic equations in 
most cases is superior to those of both methods I 
and II. 
 
 
 

6. CONCLUSION 
 
The effectiveness of GMDH-type of neural 
networks which could model the complex systems 
without having specific knowledge of the systems, 
is shown in this paper. 
The results presented in this paper clarified that 
GMDH-type networks can precisely model the 
inverse kinematic equations of a Puma760 robot 
manipulator. 
In addition, it is clear that this approach can be 
used for identifying the inverse kinematic 
equations of the n DOF robotic manipulators. 
Moreover, it has been shown that SVD can 
effectively improve the accuracy of such GMDH-
type networks which can be constructed by each of 
the three methods. 
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