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Abstract    A two dimensional numerical model of shallow water equations was developed 
to calculate sub and super-critical open channel flows. Utilizing an implicit scheme the 
steady state equations were discretized based on a control volume method. Collocated grid 
arrangement was applied with a SIMPLEC like algorithm for depth-velocity coupling. A 
power law scheme was used for discretization of convection and diffusion terms. Under- 
relaxation factors were introduced in the model to prevent divergence. Momentum 
interpolation was used in calculating velocities on cell faces to avoid checker board water 
surface fluctuation in the collocated grid. The model was verified in different cases 
including complex water surface profiles and hydraulic jumps. The results are compared 
with experimental and analytical data and the necessary values of under relaxation factors 
for a converged solution are discussed. No artificial viscosity was required, which is the 
advantage of the present model.  
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عمــق قابــل اســتفاده  در مقالــه حاضــر يــك مــدل عــددي بــراي حــل معــادلات آبهــاي آــم   هچكيــد
اين مدل ضمني بوده و معـادلات را در حالـت           . است  شده  بحراني ارائه   درجريانهاي زيربحراني و فوق   

روشـي مـشابه   . آند نشده حل مي اي جا به جا       بكهماندگار و با استفاده از يك روش ضمني در ش         
SIMPLEC                    براي ارتباط عمق و سرعت در مدل حاضر استفاده شده و روش قانون تـواني نيـز بـراي 

مـدل حاضـر بـراي جلـوگيري از نوسـانات           . منفصل سازي عبارات انتقـال بـه آارگرفتـه شـده اسـت            
ضرائب زيرتخفيـف   . جويد  بي ممنتوم سود مي    نشده از ميانيا     آب در ارتباط با شبكه جا به جا         سطح

مـدل توسـعه يافتـه در شـرايط مختلفـي شـامل             . براي ا يجاد همگرائي در مدل به آار رفته اسـت          
هاي فوق بحراني و زيربحراني در طول يك آانال و پرش هيدروليكي به آـار رفتـه و نتـايج آن        پروفيل

دهنـده صـحت آـار        قايسه نتـايج نـشان    م. با اطلاعات آزمايشگاهي و تحليلي مقايسه شده است       
 بودن مـدل حاضـر نيـازي بـه اسـتفاده از لزجـت مـصنوعي         با توجه به ضمني . باشد  مدل حاضر مي  

ايـن در حـالي اسـت آـه مـدلهاي صـريح نيـاز بـه اعمـال لزجـت                     . براي همگرائي نتايج وجود نـدارد     
  .مصنوعي براي همگرائي دارند

  
  
 

1. INTRODUCTION 
 

The rapid expansion in available computer power 
has led to an increasing use of computational fluid 
dynamics (CFD) in fluid-flow problems. Flows in 
the nature have three-dimensional structures and 
are usually turbulent. In many cases the geometry 
of the flow boundaries is also very complex. 
Solving the equations of motion in these conditions 

is very difficult. However, in rivers and open 
channels where the width of the flow is large 
compared with its depth, the vertical acceleration 
of water is negligible compared to the gravitational 
acceleration. In this condition the equations of 
motion can be integrated in depth to derive two 
dimensional depth averaged equations. Although 
this model may not be very accurate in regions 
with sharp gradients of water surface profile and 
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strong secondary flows, but it is accurate enough 
for many practical purposes. 
   Kuipers and Vreugdenhil [1] developed one of 
the first mathematical models for solving the 2-D 
depth averaged equations. Since then, several other 
research works have also been published, among 
all McGuirk and Rodi [2], Vreugdenhil and 
Wijbenga [3], Chapman and Kuo [4], Tingsanchali 
and Mahesawaran [5], Molls and Chaudhry [6], Ye 
and McCorquodale [7], Klonidis and Soulis [8] and 
Weerakoon et al. [9] can be mentioned.  
   The difference in physical property of sub- and 
super-critical flows and consequently their 
different numerical treatment caused most of the 
computer codes to tackle only one of these two 
flow regimes. Development of a scheme which 
could simultaneously simulate both sub- and super-
critical flows at different parts of the channel is not 
easy [10]. Some numerical schemes have been 
developed to simulate such mixed flow regimes 
using one or two dimensional models. In one of the 
dimensional models, shallow water equations have 
been used to simulate the mixed flows and 
hydraulic jump since the early works of Bidone 
[11]. A rather complete review of these models has 
been mentioned by Gharangik and Chaudhry [12]. 
These researchers applied MacCormack and 
Dissipative Two-Four explicit schemes with the 
aid of an artificial viscosity to simulate the 
hydraulic jump. Chaudhty [13] explained some 
other schemes for capturing such a mixed flow in 
one dimension, among them, Lambda, Gabutti and 
different forms of Beam and Warming can be 
listed here. Recently, Meselhe et al. [14] developed 
a numerical model by introducing adaptive 
artificial viscosity to Saint Venant equations too. In 
this method the artificial viscosity has an effective 
influence on nodes with sharp depth gradient, but 
is suppressed at moderate depth gradients. In two 
dimensional models, Younus and Chaudhry [15] 
and Molls and Chaudhry [6] simulated mixed 
flows, however in these works also artificial 
viscosity was necessary for convergence of the 
model. Therefore it can be seen that the use of 
artificial viscosity is necessary for the above 
mentioned models which introduces additional 
uncertainty and acts like a damping factor. Zhou 
and Stansby [16] developed a 2D shallow water 
model with an implicit scheme and staggered grid 
to simulate the hydraulic jump. They showed that 

no artificial viscosity is necessary in their model 
for calculating such a mixed flow.  
The main objective of the present study is to 
develop a depth averaged model which is able to 
calculate a combination of sub- and super-critical 
flows along a channel. The 2D depth averaged 
shallow water equations were solved by a 
collocated variable arrangement and depth 
correction scheme using a SIMPLEC like 
algorithm. The applicability of the model in 
simulation of mixed flows and necessary under 
relaxation factors is presented here with the aid of 
a few examples. 
  
 
 

2. GOVERNING EQUATIONS 
 

Neglecting the wind shear stress, Coriolis 
acceleration, and using Boussinesq approximation 
for Reynolds stresses, the conservative form of 
shallow water equations in steady state can be 
written as [3]: 
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in which, u and v are depth averaged velocities in x 
and y directions respectively (Figure 1), h= water 
depth, ρ=water density, tν = depth averaged 
turbulent viscosity, g=gravitational acceleration, 
ζ=water surface elevation ( bZh +=ζ ), bZ =bed 
elevation, bxτ  and byτ =bed shear stresses in x and 
y directions. These stresses can be calculated from 
Manning’s equation as: 

 

(1) 
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The depth averaged turbulent viscosity can be 
calculated by zero-equation models in the 
following form, especially if there is no re-
circulation zone [17]. 

 

hut *6
κν =

                                                            (6)  
in which *u = bed shear velocity and κ is the von 
Karman constant (=0.4). 

 
 

 
 

Figure 1. Control volume in a collocated grid 
arrangement. 

 
 

 
 

3. NUMERICAL TREATMENT 
 
3.1. Discretization of the governing equations 
Based on a control volume method the momentum 
equation in x and y directions can be descritized 
following Patankar [18]. Using the power-law 
scheme for convection and diffusion terms and an 
under relaxation factor to avoid divergence, the u-
momentum equations can be expressed as: 
 

u
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where the coefficients and linearized source terms 
are: 
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in which xΔ and yΔ are dimensions of control 
volume in x and y direction respectively, αu is the 
under-relaxation factor for u-momentum and *u is 
the value of velocity from the last iteration. By the 
same method, the equations for the v-momentum 
can be written in the following form: 

 
u
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in which αν is the under-relaxation factor for  

v-momentum and the source term defines as: 
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where ν٭ is the value of velocity from the last 
iteration. 
   u and v can therefore be calculated from (6) and 
(14), however the continuity equation can not be 
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used directly for calculating the water surface 
elevation. Therefore an equation should be derived 
for calculation of water surface elevation.  

 
3.2. Velocity-Water surface elevation coupling 
If the values of velocity components and water 
surface elevation found from the last iteration are 
shown by an asterisk sign, one can write: 
 

'and',' *** ζζζ +=+=+= vvvuuu                                                  
(17)  

  
where prime shows the correction required for 
obtaining the correct values. In the process of 
iteration, (7) is written as: 
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   Subtracting (7) from (18) and neglecting the 
second order terms of 'ζ  [17,19] results: 
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   Following the SIMPLEC algorithm [18] one can 
write: 
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   In the same way for v velocity, 
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Discretizing the continuity equation by the same 
method as momentum equation results in: 
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   Combining (17) and (22), considering (20) and 
(21) yields: 
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where mp  is the difference between the discharge 
getting out of each cell with what gets into it. At 
the converged solution mp should become zero and 
therefore it can be used as one of the criteria for 
the convergence. 
 
3.3. Momentum interpolation 
To avoid unrealistic depth field, calculation of 
velocities at the cell faces needs special treatment 
when a collocated grid is used. The momentum 
interpolation proposed by Rhie and Chow [20] is 
used here.  
 
(7) and (15) can be written in the following forms: 
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   Calculating the u velocity at east face (Figure 1) 
by linear interpolation using the above equations 
gives: 
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   Whilst the overbar means linear interpolation. On 
the other hand, the velocity on the east face can be 
calculated directly by writing (26) for the same 
position as: 
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   Subtracting (28) from (29) and assuming 

ee KK 11 =  gives: 
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   This value will be used in (25) as *
eu . A similar 

equation can be derived for other faces.  
Majumdar [21] applied this scheme to a 2D 

model and found that the results are dependent on 
under relaxation factor α . To achieve results 
which are independent from α  the right hand 
sides of (26) and (27) should be divided by α  
[22,23]. So the following equations will apply for 
velocity correction. 
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3.4. Boundary conditions 
Based on the characteristic method, the number of 
boundary conditions in a flow domain is equal to 
the number of characteristic lines, which comes 
into the flow domain from the boundaries. For inlet 
in a sub-critical flow regime, the discharge is given 
and the velocity is calculated by dividing the 

discharge to inlet cross sectional area Zero gradient 
is assumed for water depth at the inlet. In a super 
critical flow both the flow depth and discharge 
should be introduced at the inlet. 

At the outlet, water depth is fixed in sub-critical 
flow and zero gradient is assumed for water depth 
in super-critical flow. Except other wise stated slip 
boundary conditions are applied for the side walls, 
which implies zero velocity normal to the side 
walls and zero gradient for velocity parallel to the 
wall. At the beginning of each computation, the 
flow depth at the outlet or inlet was given as the 
initial value for the depth at all grid points for sub- 
or super-critical flows respectively. For simulating 
a hydraulic jump, the depths at both inlet and outlet 
were introduced to the model and a linear 
interpolation was used for the initial depth at the 
other points. For test case with sub-critical flow at 
inlet and super-critical flow at outlet, an arbitrary 
depth was used for initial depth in all the flow 
domain. The initial velocity was then calculated 
based on flow discharge and depth. Water surface 
correction was set to zero at all flow boundaries. 
 
3.5. Solution procedure 
The iterative solution procedure of the present 
model can be summarized as: 

1. Set the initial condition for u, v and water 
level in the whole flow domain. 

2. Solve (7)  and calculate u velocities.  
3. Solve (15) and calculate v velocities. 
4. Calculate velocities on cell faces by (30). 
5. Solve (23) and calculate the correction of  

water surface elevation. 
6. Correct water surface elevations by 

ζαζζ ′+= p
* ( pα is under relaxation factor for 

depth) and velocities by (20) and (21). 
7. Repeat steps 2-6 till convergence is 

achieved. 
The criterion for convergence is when the sum 

of non-dimensionalized residuals of mass, u and v 
momentum over the entire flow domain is less than 
an acceptable tolerance. These residuals are 
defined as: 
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4. MODEL VERIFICATION 

 
The model was verified in different cases of sub- 
and super-critical flows as is described in this 
section. Test cases were considered in such a way 
that sharp water surface gradient occurred along 
the flow. 

In the first case, formation of a sub-critical H2 
and a super-critical S2 profile along a channel was 
simulated by the model. Flow discharge of 1.2 
m3/S was assumed in a channel 3m wide with a 
Manning roughness coefficient equal to 0.015. Bed 
slope of the steep channel was 0.05. Water surface 
profiles, calculated by the model for these profiles, 
conform well to the direct step method [25] as 
shown in Figure 2. It should be noted that in both 
of these profiles, water surface gradient is very 
sharp where the flow approaches the critical depth.  

S2 Profile

0.1
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0.25
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de
pt
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Direct step method

Figure 2. H2 and S2 Profiles in a rectangular straight 
channel.  

In the next test case, the water surface profile 
was calculated along a steep slope following a mild 
one. Theoretically, critical depth occurs at the 
junction of the two slopes with water surface 
gradient approach infinity at this point. Though an 
infinite water surface slope was not calculated at 
the junction of the two slopes, water surface 
elevation predicted by the model is very close to 
that calculated from the direct step method 
(Figure 3). The critical depth is 0.294m in this 
problem in comparison with 0.284m calculated 
from the numerical model. The error of the model 
is 3.4% at the point with sharpest water surface 
gradient. 

Formation of a hydraulic jump was simulated 
by the model in the next test case. Molls and 
Chaudhry [6] compared the results of their 
numerical model for calculation of a hydraulic 
jump with experimental data of Gharangik and 
Chaudhry [12]. The experimental channel was 
0.46m wide and with zero slope. Flow velocity and 
depth upstream of the jump was 0.064m and 1.826 
m/s respectively (Fr=2.3).  To get convergence, 
artificial viscosity was introduced in the Molls and 
Chaudhry’s model. The present model was applied 
in this case and the results are shown in Figure 4. 
The results of Molls and Chaudhry [6] are also 
given in this figure. Results show that the present 
model can predict the location of the jump 
accurately, without using any artificial viscosity. It 
should be noted that to find the minimum 
acceptable value for artificial viscosity trial and 
error is necessary [6].  

In the next test case, the combination of 
different profiles and a hydraulic jump in channels 
with two different slopes was considered. The first 
channel was steep, 8.75m long, and the second 
channel was mild and 38.75m long. At the 
beginning of the steep channel (inlet section) the 
flow depth is 0.15 m. Super critical flow in the 
steep channel forms a S2 profile. In the mild slope 
first a M3 profile is formed which is followed by a 
hydraulic jump. Since a low tail water depth (0.2 
m) is assumed at the outlet, a M2 profile is formed 
immediately after the jump and this profile ends 
with the tail water depth at the channel outlet. This 
case was considered as a complex flow condition 
with a combination of super- and sub-critical flows 
and a hydraulic jump. Calculation of water surface 
profile with a  direct step method in this case needs 
some effort to find the location of the hydraulic 
jump, and each profile needs to be calculated 
separately and then combined manually. However, 
the present model can calculate the water surface 
position along the whole length of the channels 
with the known boundary conditions only at the 
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inlet and the outlet. The results are shown in  
Figure 5 and they indicate the accuracy of the 
model in this calculation.  

   In the above examples, the side walls shear' 
stresses were ignored. In the direct step method on 
the other hand the hydraulic radius was assumed to 
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Figure 3. Mixed sub- and super-critical flow along a channel with two slopes. 
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Figure 4. calculation of a hydraulic jump in a channel with flat bed. 
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Figure 5. Water surface profile along two channels with steep and mild slopes. 
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be equal to the flow depth which this also means 
no friction effect from the side walls. This 
assumption is acceptable if width to depth ratio is 
large. However wall shear stress has considerable 
effects on water surface profile if the channel is 
narrow. Molls et al. [25] used the hydraulic radius 
of the channel cross section and distributed it 
among all cells across the channel. In this way, 
water surface profile calculated by the numerical 
model conforms with the direct step method in 
which hydraulic radius is used instead of flow 
depth. However in this method a uniform velocity 
profile will be calculated across the channel and 
the advantage of the 2-D model will be lost. If it is 
assumed that shear stress at the side walls can be 
calculated in the same way as at the channel bed, 
wall friction can be included in the numerical 
model by replacing (14) with the following 
equation only for cells adjacent to walls. 
 

yx
y

h

h

vungS p ΔΔ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

+
+

−= 1
3
1

222

                    (36)  
 

Alternatively the well known wall function [26] 
can be employed to take into account the wall 
shear stress. To implement this method the 
following term should be added to the source term 
of u-momentum for the wall along x direction. 

 
xhuuS wallwallp

wall
u Δ−= 2

*)sgn(
                          

(37) 
in which pu  is the velocity at nearest node to the 

wall and wallu*  is wall shear velocity that is 
calculated from wall function. For rough boundary 
this reads [26]: 
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(38) 
In the above equation sk  is the effective height 

of wall roughness. 
To check the numerical model for calculation of 

velocity profile across the channel, it is compared 
with the results of experimental data presented by 
Rodi [27] and two other numerical  models 

presented by Rodi [27] and Younus and Chaudhry 
[15]. A depth averaged k-ε turbulence model is 
utilized in these two studies. The experimental data 
is for a channel with a width to depth ratio equal to 
30 and n=0.029. Here, a rectangular channel is 
assumed with a normal depth of 1 m and width of 
30 m. The slope of this channel is considered equal 
to 0.001.  

The results of the model are compared with 
experimental data [27] and numerical models of 
Rodi [27] and Younus and Chaudhry[15] in Figure 
6. This Figure shows a generally satisfactory 
agreement between the predicted velocity profile 
and experimental data. The present model also 
agrees well with both numerical models of 
Rodi[27] and Younus and Chaudhry[15]. It should 
be noticed that both of these models used a two 
equation k-ε turbulence model whereas in the 
present study a zero equation model is used. Rodi's 
model conforms better with experimental results 
since the channel specifications (that is width, 
depth and slope) as was in the experiments were 
used by him. In contrast, only width to depth ratio 
and Manning’s roughness coefficient were 
available in the present study and therefore channel 
specifications were assumed so that to conform 
with these values. It also can be seen that both 
methods used for calculation of wall friction give 
similar results. 

 
 
 

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0
y/(B/2)

U
/U

m

equation 36
wall function
younus&Chaudhry[15]
Rodi [27]
exp. x/h=60
exp. x/h=150
exp. x/h=100
exp. x/h=100

y

B

CL

 
Figure 6. Velocity profile across a channel, x is the 

distance of the section from the channel entrance, h is 
flow depth. 
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5. THE ROLE OF UNDER-RELAXATION 
FACTORS 

Under-relaxation factors are necessary in the 
model to prevent divergence. Barron and Salehi 
[28] studied the range of under-relaxation factors 
which guarantees convergence for solution of 2D 
Navier-Stokes equations. Based on their 
experience 2.01.0 ≤≤ pα  was safe , but a value 
of 0.2 was recommended for minimum number of 
iteration. For momentum equation they found a 
safe range between 0.1 and 0.9 and value 0.8-0.9 
was recommended for fastest convergence. In the 
present study it was noticed that the safe range of 
under-relaxation factors is different for sub- and 
super-critical flows. It was also found that the safe 
range of vu ,α depends on pα and vice versa.  

In the case of sub-critical H2 profile, a wide 
range of under-relaxation factors yielded 
converged solution. Minimum number of iteration 
was achieved with 55.0=pα  and 8.0=uα . 

Safe range of uα for the sub-critical H2 profile is 
given in Figure 7 for various values of pα . It can 

be seen that as pα  decreases, a wider range of uα  
gives a converged solution. However with 
reducing pα , the number of iteration increases too.  

On the other hand with a constant pα , number of 

iteration decreases as uα  decreases. A wider range 
of pα was obtained for the converged solution in 
the present study compared with Barron and Salehi 
[28].  
 

Figure 7. Rang of under-relaxation factors for the H2 
profile 

 

In the case of super-critical flow, i.e. S2 profile, 
converged solution was achieved when uα was 
close to unity. With this uα , a wide range of pα  
from close to 0.1 to about 0.6 could be used. 
Figure 8 compares number of iteration in sub-
critical H2 and super-critical S2 profiles for 
different pα  and 98.0=uα . 

With mixed sub- and super-critical flows 
similar to a super-critical flow uα  close to unity is 
necessary for a converged solution. It should be 
noticed that the initial values assumed for the 
variables affect the safe range of under-relaxation 
factors. 

Figure 8. Comparison of the range of under-relaxation 
factors for H2 and S2 profiles. 

 
 
 

6. CONCLUSION 
 

The present paper deals with the simulation of 
mixed sub- and super-critical flows in open 
channels with an implicit numerical scheme. 
Unlike many previous models, there is no need for 
artificial viscosity in the present model. The well 
known two dimensional shallow water equations 
were applied and descretized on a collocated grid 
in which all the variables are stored at cell centers. 
For the steady state equations a SIMPLEC like 
algorithm was developed for depth-velocity 
coupling convection and diffusion terms were 
discretized using the Power law scheme. Under a 
relaxation factor for momentum and depth 
correction equations were necessary to get 
convergence in the iterative solution as is common 
in the implicit schemes. To avoid checker board 
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depth fluctuation, the momentum interpolation 
proposed by Rhie and Chow [20] was used in 
calculating velocities on cell faces. 
The model was verified with different test cases 
including various water surface profiles, hydraulic 
jump and combination of sub- and super-critical 
profiles with sharp water surface gradient. A wide 
range of under-relaxation factors yielded 
converged solution for sub-critical flows. 
However, minimum number of iteration was found 
with 8.0=uα  and 55.0=pα . For super-critical 
or combination of sub- and super-critical flows 
converged solution is achieved with uα  close to 
unity.  With this uα , a wide range of pα  from 0.1 
to about 0.6 can be used. It was also experienced 
that initial flow conditions affect the safe range of 
under-relaxation flows. In another test the 
numerical model was used to calculate velocity 
profile across a rectangular channel. Two different 
methods were used to include channel wall 
friction. The comparison of results with 
experimental data and two other numerical models 
showed good agreement.  
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