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Abstract   A two dimensional numerical model of shallow water equations was developed to 
calculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady state 
equations were discretized based on control volume method. Collocated grid arrangement was applied 
with a SIMPLEC like algorithm for depth-velocity coupling. Power law scheme was used for 
discretization of convection and diffusion terms. Under relaxation factors were introduced in the 
model to prevent divergence. Momentum interpolation was used in calculating velocities on cell faces 
to avoid checker board water surface fluctuation in the collocated grid. The model was verified in 
different cases including complex water surface profiles and hydraulic jump. The results are 
compared with experimental and analytical data and the necessary values of under relaxation factors 
for a converged solution are discussed. No artificial viscosity was required, which is the advantage of 
the present model. 
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عمق قابل استفاده درجريانهاي  در مقاله حاضر يك مدل عددي براي حل معادلات آبهاي كم   چكيده
اين مدل ضمني بوده و معادلات را در حالت ماندگار و با استفاده از . است  شده  بحراني ارائه زيربحراني و فوق

 براي ارتباط عمق و سرعت در SIMPLECروشي مشابه . كند نشده حل مي  اي جابجا  يك روش ضمني در شبكه
مدل . مدل حاضر استفاده شده و روش قانون تواني نيز براي منفصل سازي عبارات انتقال بكارگرفته شده است

. جويد نشده از ميانيابي ممنتوم سود مي   آب در ارتباط با شبكه جابجا حاضر براي جلوگيري از نوسانات سطح
مدل توسعه يافته در شرايط مختلفي شامل . رفته است رائي در مدل بكارب زيرتخفيف براي ا يجاد همگيضرا

رفته و نتايج آن با اطلاعات  هاي فوق بحراني و زيربحراني در طول يك كانال و پرش هيدروليكي بكار پروفيل
 به با توجه. باشد دهنده صحت كار مدل حاضر مي  مقايسه نتايج نشان. آزمايشگاهي و تحليلي مقايسه شده است

اين در حاليست .  نيازي به استفاده از لزجت مصنوعي براي همگرائي نتايج وجود ندارد، بودن مدل حاضر ضمني
 .ي دارنديكه مدلهاي صريح نياز به اعمال لزجت مصنوعي براي همگرا

  

  

1. INTRODUCTION 
 
The rapid expansion in available computer power 
has led to increasingly use of computational fluid 
dynamics (CFD) in fluid-flow problems. Flows in 
the nature have three-dimensional structures and 
are usually turbulent. In many cases the geometry 
of the flow boundaries is also very complex. 
Solving the equations of motion in these conditions 
is very difficult. However, in rivers and open 
channels where the width of the flow is large 
compared with its depth, the vertical acceleration 
of water is negligible compared to the gravitational 

acceleration. In this condition the equations of 
motion can be integrated in depth to derive two 
dimensional depth averaged equations. Although 
this model may not be very accurate in regions 
with sharp gradients of water surface profile and 
strong secondary flows, but it is accurate enough 
for many practical purposes. 
     Kuipers and Vreugdenhil [1] developed one of 
the first mathematical models for solving the 2-D 
depth averaged equations. Since then several other 
research works have also been published, among 
all McGuirk and Rodi [2], Vreugdenhil and 
Wijbenga [3], Chapman and Kuo [4], Tingsanchali 
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and Mahesawaran [5], Molls and Chaudhry [6], Ye 
and McCorquodale [7], Klonidis and Soulis [8] and 
Weerakoon et al. [9] can be mentioned. 
     The difference in physical property of sub- and 
super-critical flows and consequently their 
different numerical treatment caused that most of 
the computer codes tackle only one of these two 
flow regimes. Development of a scheme which 
could simultaneously simulate both sub- and super-
critical flows at different parts of the channel is not 
easy [10]. Some numerical schemes have been 
developed to simulate such a mixed flow regimes 
using one or two dimensional models. In one 
dimensional models, shallow water equations have 
been used to simulate the mixed flows and 
hydraulic jump since the early works of Bidone 
[11]. A rather complete review of these models has 
been mentioned by Gharangik and Chaudhry [12]. 
These researchers applied MacCormack and 
Dissipative Two-Four explicit schemes with the 
aid of an artificial viscosity to simulate the 
hydraulic jump. Chaudhty [13] explained some 
other schemes for capturing such a mixed flow in 
one dimension, among them, Lambda, Gabutti and 
different forms of Beam and Warming can be 
listed here. Recently, Meselhe et al. [14] developed 
a numerical model by introducing adaptive 
artificial viscosity to Saint Venant equations too. In 
this method the artificial viscosity have effective 
influence on nodes with sharp depth gradient but is 
suppressed at moderate depth gradients. In two 
dimensional models, Younus and Chaudhry [15] 
and Molls and Chaudhry [6] simulated mixed 
flows, however in these works also artificial 
viscosity was necessary for convergence of the 
model. Therefore it can be seen that the use of 
artificial viscosity is necessary for the above 
mentioned models which introduces additional 
uncertainty and acts like a damping factor. Zhou 
and Stansby [16] developed a 2D shallow water 
model with an implicit scheme and staggered grid 
to simulate the hydraulic jump. They showed that 
no artificial viscosity is necessary in their model 
for calculating such a mixed flow. 
     The main objective of the present study is to 
develop a depth averaged model which is able to 
calculate combination of sub- and super-critical 
flows along a channel. The 2D depth averaged 
shallow water equations were solved by a 
collocated variable arrangement and depth 

correction scheme using a SIMPLEC like 
algorithm. The applicability of the model in 
simulation of mixed flows and necessary under 
relaxation factors is presented here with the aid of 
few examples. 
 
 
 

2. GOVERNING EQUATIONS 
 

Neglecting the wind shear stress, Coriolis 
acceleration, and using Boussinesq approximation 
for Reynolds stresses, the conservative form of 
shallow water equations in steady state can be 
written as [3]: 
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In which, u and v are depth averaged velocities in 
x and y directions respectively (Figure 1), h= water 
depth, ρ=water density, tν = depth averaged 
turbulent viscosity, g=gravitational acceleration, 
ζ=water surface elevation ( bZh +=ζ ), bZ =bed 
elevation, bxτ  and byτ =bed shear stresses in x and 
y directions. These stresses can be calculated from 
Manning’s equation as: 
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The depth averaged turbulent viscosity can be 
calculated by zero-equation models in the 
following form, especially if there is no re-
circulation zone [17]. 
 

hut *6
κν =  (6) 

 
in which *u = bed shear velocity and κ is the von 
Karman constant (= 0.4). 
 
 
 

3. NUMERICAL TREATMENT 
 

3.1. Discretization of the Governing 
Equations   Based on control volume method the 
momentum equation in x and y directions can be 
descritized following Patankar [18]. Using the 
power-law scheme for convection and diffusion 
terms and an under relaxation factor to avoid 
divergence, the u-momentum equations can be 
expressed as: 
 

u
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where the coefficients and linearized source terms 
are: 
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in which x∆ and y∆ are dimensions of control 
volume in x and y direction respectively, uα is the 

under-relaxation factor for u-momentum and *u is 
the value of velocity from the last iteration. By the 
same method, the equations for the v-momentum 
can be written in the following form: 
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in which vα is the under-relaxation factor for v-
momentum and the source term defines as: 
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Figure 1. Control volume in a collocated grid arrangement. 
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where *v is the value of velocity from the last 
iteration. 
     The values of u and v can, therefore, be 
calculated from (6) and (14). However the 
continuity equation can not be used directly for 
calculating the water surface elevation. Therefore, 
an equation should be derived for calculation of 
water surface elevation. 
 
3.2. Velocity-Water Surface Elevation 
Coupling   If the values of velocity components 
and water surface elevation found from the last 
iteration are shown by an asterisk sign, one can 
write: 
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where prime shows the correction required for 
obtaining the correct values. In the process of 
iteration, (7) is written as: 
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Subtracting (7) from (18) and neglecting the 
second order terms of 'ζ  [17,19] results: 
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Following the SIMPLEC algorithm [18] one can 
write: 
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Discretizing the continuity equation by the same 
method as momentum equation results in: 
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Combining (17) and (22), considering (20) and 
(21) yields: 
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where mp is the difference between the discharge 
getting out of each cell with what gets into it. At 
the converged solution mp should become zero and 
therefore it can be used as one of the criteria for 
the convergence. 
 
3.3. Momentum interpolation   To avoid 
unrealistic depth field, calculation of velocities at 
the cell faces needs special treatment when 
collocated grid is used. The momentum 
interpolation proposed by Rhie and Chow [20] is 
used here. Equations 7 and 15 can be written in the 
following forms: 
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     Calculating the u velocity at east face (Figure 1) 
by linear interpolation using the above equations 
gives: 
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Whilst the overbar means linear interpolation. On 
the other hand, the velocity on the east face can be 
calculated directly by writing (26) for the same 
position as: 
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Subtracting (28) from (29) and assuming 

ee KK 11 =  gives: 
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This value will be used in (25) as *

eu . A similar 
equation can be derived for other faces. 
     Majumdar [21] applied this scheme to a 2D 
model and found that the results are dependent on 
under relaxation factor α . To achieve results 
which are independent from α  the right hand 
sides of (26) and (27) should be divided by α  
[22,23]. So the following equations will apply for 
velocity correction. 
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3.4. Boundary conditions   Based on the 
characteristic method, the number of boundary 
conditions in a flow domain is equal to the 
number of characteristic lines, which comes into 
the flow domain from the boundaries. For inlet 
in a sub-critical flow regime, the discharge is 
given and the velocity is calculated by dividing 
the discharge to inlet cross sectional area. Zero 
gradient is assumed for water depth at the inlet. 
In a super critical flow both the flow depth and 
discharge should be introduced at the inlet. 
     At the outlet, water depth is fixed in sub-
critical flow and zero gradient is assumed for 
water depth in super-critical flow. Except other 
wise stated slip boundary condition is applied for 
the side walls, which implies zero velocity 
normal to the side walls and zero gradient for 
velocity parallel to the wall. At the beginning of 
each computation, the flow depth at the outlet or 
inlet was given as the initial value for the depth 
at all grid points for sub- or super-critical flows 
respectively. For simulating hydraulic jump, the 
depths at both inlet and outlet were introduced to 
the model and a linear interpolation was used for 
the initial depth at the other points. For test case 
with sub-critical flow at inlet and super-critical 
flow at outlet, an arbitrary depth was used for 
initial depth at all the flow domain. The initial 
velocity was then calculated based on flow 
discharge and depth. Water surface correction 
was set to zero at all flow boundaries. 
 
3.5. Solution procedure   The iterative 
solution procedure of the present model can be 
summarized as: 
 
1. Set the initial condition for u, v and water 

level in the whole flow domain. 
2. Solve (7) and calculate u velocities. 
3. Solve (15) and calculate v velocities. 
4. Calculate velocities on cell faces by (30). 
5. Solve (23) and calculate the correction of 

water surface elevation. 
6. Correct water surface elevations by 

ζαζζ ′+= p
* ( pα is under relaxation factor 
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for depth) and velocities by (20) and (21). 
7. Repeat steps 2-6 till convergence is 

achieved. 
 

The criterion for convergence is when sum of 
non-dimensionalized residuals of mass, u and v 
momentum over the entire flow domain is less 
than an acceptable tolerance. These residuals are 
defined as: 
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4. MODEL VERIFICATION 
 
The model was verified in different cases of sub- 
and super-critical flows as is described in this 

section. Test cases were considered in such a way 
that sharp water surface gradient occurred along 
the flow. 
     In the first case, formation of a sub-critical H2 
and a super-critical S2 profile along a channel was 
simulated by the model. Flow discharge of 1.2 

sm3 was assumed in a channel 3m wide with a 
manning roughness coefficient equal to 0.015. Bed 
slope of the steep channel was 0.05. Water surface 
profiles, calculated by the model for these profiles, 
conform well to the direct step method [25] as 
shown in Figure 2. It should be noted that in both 
of these profiles water surface gradient is very 
sharp where the flow approaches the critical depth. 
     In the next test case, water surface profile was 
calculated along a steep slope following a mild 
one. Theoretically, critical depth occurs at the 
junction of the two slopes with water surface 
gradient approach infinity at this point. Though an 
infinite water surface slope was not calculated at 
the junction of the two slopes, water surface 
elevation predicted by the model is very close to 
that calculated from the direct step method (Figure 
3). The critical depth is 0.294m in this problem in 
comparison with 0.284m calculated from the 
numerical model. The error of the model is 3.4% at 
the point with sharpest water surface gradient. 
     Formation of a hydraulic jump was simulated 
by the model in the next test case. Molls and 
Chaudhry [6] compared the results of their 
numerical model for calculation of a hydraulic 
jump with experimental data of Gharangik and 
Chaudhry [12]. The experimental channel was 
0.46m wide and with zero slope. Flow velocity and 
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Figure 2. H2 (left) and S2 (right) profiles in a rectangular straight channel. 
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depth upstream of the jump was 0.064m and 1.826 
m/s respectively (Fr = 2.3). To get convergence, 
artificial viscosity was introduced in the Molls and 
Chaudhry’s model. The present model was applied 
in this case and the results are shown in Figure 4. 

The results of Molls and Chaudhry [6] are also 
given in this Figure. Results show that the present 
model can predict the location of the jump 
accurately, without using any artificial viscosity. 
It should be noted that to find the minimum 
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Figure 3. Mixed sub- and super-critical flow along a channel with two slopes. 
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Figure 4. Calculation of a hydraulic jump in a channel with flat bed. 
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acceptable value for artificial viscosity trial and 
error is necessary [6]. 
     In the next test case, combination of different 
profiles and a hydraulic jump in channels with 

two different slopes was considered. The first 
channel was steep, 8.75m long, and the second 
channel was mild and 38.75m long. At the 
beginning of the steep channel (inlet section) the 
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Figure 5. Water surface profile along two channels with steep and mild slopes. 
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Figure 6. Velocity profile across a channel, x is the distance of the section from the channel entrance, h is flow depth. 
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flow depth is 0.15 m. Super critical flow in the 
steep channel forms a S2 profile. In the mild 
slope first a M3 profile is formed which is 
followed by a hydraulic jump. Since a low tail 
water depth (0.2 m) is assumed at outlet, a M2 
profile is formed immediately after the jump and 
this profile ends with the tail water depth at the 
channel outlet. This case was considered as a 
complex flow condition with combination of 
super- and sub-critical flows and a hydraulic jump. 
Calculation of water surface profile with direct 
step method in this case needs some effort to find 
the location of the hydraulic jump, and each profile 
needs to be calculated separately and then 
combined manually. However, the present model 
can calculate the water surface position along the 
whole length of the channels with the known 
boundary conditions only at the inlet and the 
outlet. The results are shown in Figure 5 and they 
indicate the accuracy of the model in this 
calculation. 
     In the above examples the side walls shear 
stresses were ignored. In the direct step method on 
the other hand the hydraulic radius was assumed to 
be equal to the flow depth which this also means 
no friction effect from the side walls. This 
assumption is acceptable if width to depth ratio is 
large. However wall shear stress has considerable 
effects on water surface profile if the channel is 
narrow. Molls et al. [25] used the hydraulic radius 

of the channel cross section and distributed it 
among all cells across the channel. In this way, 
water surface profile calculated by the numerical 
model conforms with the direct step method in 
which hydraulic radius is used instead of flow 
depth. However in this method a uniform velocity 
profile will be calculated across the channel and 
the advantage of the 2-D model will be lost. If it 
is assumed that shear stress at side walls can be 
calculated in the same way as at the channel bed, 
wall friction can be included in the numerical 
model by replacing (14) with the following 
equation only for cells adjacent to walls. 
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Alternatively the well known wall function [26] 
can be employed to take into account the wall 
shear stress. To implement this method the 
following term should be added to the source term 
of u-momentum for the wall along x direction. 
 

xhuuS wallwallp
wall

u ∆−= 2
*)sgn(  (37) 

 
in which 

pu  is the velocity at nearest node to the 

wall and wallu*  is wall shear velocity that is 
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Figure 7. Range of under-relaxation factors for the H2 profile. 
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calculated from wall function. For rough boundary 
this reads [26]: 
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in the above equation sk  is the effective height of 
wall roughness. 
     To check the numerical model for calculation of 
velocity profile across the channel, it is compared 
with the results of experimental data presented by 
Rodi [27] and two other numerical models 
presented by Rodi [27] and Younus and Chaudhry 
[15]. A depth averaged k-ε turbulence model is 
utilized in these two studies. The experimental data 
is for a channel with width to depth ratio equals to 
30 and n = 0.029. Here, a rectangular channel is 
assumed with a normal depth of 1 m and width of 
30 m. The slope of this channel is considered equal 
to 0.001. 
     The results of the model are compared with 
experimental data [27] and numerical models of 
Rodi [27] and Younus and Chaudhry [15] in Figure 
6. This Figure shows a generally satisfactory 
agreement between the predicted velocity profile 

and experimental data. The present model also 
agrees well with both numerical models of Rodi 
[27] and Younus and Chaudhry [15]. It should be 
noticed that both of these models use a two 
equation k-ε turbulence model whereas in the 
present study a zero equation model is used. Model 
of Rodi conforms better with experimental results 
since the channel specifications (that is width, 
depth and slope) as was in the experiments were 
used by him. In contrast only width to depth ratio 
and Manning’s roughness coefficient were 
available in the present study and therefore channel 
specifications were assumed so that to conform 
with these values. It also can be seen that both 
methods used for calculation of wall friction give 
similar results. 
 
 
 

5. THE ROLE OF UNDER-RELAXATION 
FACTORS 

 
Under-relaxation factors are necessary in the 
model to prevent divergence. Barron and Salehi 
[28] studied the range of under-relaxation factors 
which guarantees convergence for solution of 2D 
Navier-Stokes equations. Based on their experience 
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Figure 8. Comparison of the range of under-relaxation factors for H2 and S2 profiles. 
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2.01.0 ≤≤ pα  was safe, but a value of 0.2 was 
recommended for minimum number of iteration. 
For momentum equation they found a safe range 
between 0.1 and 0.9 and value 0.8-0.9 was 
recommended for fastest convergence. In the 
present study it was noticed that the safe range of 
under-relaxation factors is different for sub- and 
super-critical flows. It was also found that the safe 
range of vu ,α depends on pα and vice versa. 
     In the case of sub-critical H2 profile, a wide 
range of under-relaxation factors yielded 
converged solution. Minimum number of iteration 
was achieved with 55.0=pα  and 8.0=uα . 

Safe range of uα for the sub-critical H2 profile is 
given in Figure 7 for various values of pα . It can 

be seen that as pα  decreases, a wider range of uα  
gives a converged solution. However with 
reducing pα , number of iteration increases too. On 

the other hand with a constant pα , number of 

iteration decreases as uα  decreases. Wider range 
of pα was obtained for converged solution in the 
present study compared with Barron and Salehi 
[28]. 
     In the case of super-critical flow, i.e. S2 profile, 
converged solution was achieved when uα was 
close to unity. With this uα , a wide range of pα  
from close to 0.1 to about 0.6 could be used. 
Figure 8 compares number of iteration in sub-
critical H2 and super-critical S2 profiles for 
different pα  and 98.0=uα . 
     With mixed sub- and super-critical flows 
similar to a super-critical flow uα  close to unity is 
necessary for a converged solution. It should be 
noticed that the initial values assumed for the 
variables affect the safe range of under-relaxation 
factors. 
 
 
 

6. CONCLUSION 
 

The present paper deals with simulation of mixed 
sub- and super-critical flows in open channels with 

an implicit numerical scheme. Unlike many 
previous models, there is no need for artificial 
viscosity in the present model. The well known 
two dimensional shallow water equations were 
applied and descretized on collocated grid in which 
all the variables are stored at cell centers. For the 
steady state equations a SIMPLEC like algorithm 
was developed for depth-velocity coupling 
Convection and diffusion terms were discretized 
using Power law scheme. Under relaxation factor 
for momentum and depth correction equations 
were necessary to get convergence in the iterative 
solution as is common in the implicit schemes. To 
avoid checker board depth fluctuation, the 
momentum interpolation proposed by Rhie and 
Chow [20] was used in calculating velocities on 
cell faces. 
     The model was verified with different test cases 
including various water surface profiles, hydraulic 
jump and combination of sub- and super-critical 
profiles with sharp water surface gradient. Wide 
range of under-relaxation factors yielded 
converged solution for sub-critical flows. 
However, minimum number of iteration was found 
with 8.0=uα  and 55.0=pα . For super-critical 
or combination of sub- and super-critical flows 
converged solution is achieved with uα  close to 
unity. With this uα  a wide range of pα  from 0.1 
to about 0.6 can be used. It was also experienced 
that initial flow conditions affect the safe range of 
under-relaxation flows. In another test the 
numerical model was used to calculate velocity 
profile across a rectangular channel. Two different 
methods were used for including channel wall 
friction. The comparison of results with 
experimental data and two other numerical models 
showed good agreement. 
 
 
 

7. REFERENCES 
 
1. Kuipers, J. and Vreugdenhil, C. B., “Calculation of Two-

Dimensional Horizontal Flow”, Rep. S163, Part 1, Delft 
Hydraulics Lab., Delft, Netherlands, (1973). 

2. McGuirk, J. J. and Rodi, W. A., “Depth-Averaged 
Mathematical Model for the Near Field of Side 
Discharge into Open-Channel Flow”, J. Fluid Mech., 
Vol. 86(4), (1978), 761-781. 

3. Vregdenhill, C. B. and Wijbenga, J. H. A., “Computation 



38 - Vol. 18, No. 1, April 2005 IJE Transactions B: Applications 

of Flow Pattern in Rivers”, J. Hydr. Div., ASCE, Vol. 
108, (HY11), (1982), 1296-1310. 

4. Chapman, R. S. and Kuo, C. Y., “Application of the 
Two-Equation k-ε Turbulence Model to a Two-
Dimensional, Steady, Free Surface Flow Problem with 
Seperation”, Int. J. for Numer. Methods in Fluids, Vol. 
5, (1985), 257-268. 

5. Tingsanchali, T. and Maheswaran, S., “2-D Depth-
Averaged Computation Near Groyne. J. Hydr. Engrg., 
ASCE ,Vol. 116(1), (1990), 71-86. 

6. Molls, T. and Chaudhry, M. H., “Depth-Averaged Open-
Channel Flow Model”, J. Hydr. Engrg., ASCE, Vol. 
121(6), (1995), 453-465. 

7. Ye J. and McCorquodale J. A., “Depth-Averaged 
Hydrodynamic Model in Curvilinear Collocated Grid”, 
J. Hydr. Engrg., ASCE, Vol. 123(5), (1997), 380-388. 

8. Klonidis, A. J., Soulis, J. V., “An Implicit Scheme for 
Steady Two-dimensional Free-Surface Flow 
Calculation”, J. Hydr. Res., IAHR, Vol. 39(4), (2001), 
393-402. 

9. Weerakoon, S. B., Tamai, N. and Kavahara, Y., “Depth-
Averaged Flow Computation at a River Confluence”, 
Proc. Ins. Civil Engrg. Water & Maritime Engrg., Vol. 
156(1), (2003), 73-83. 

10. Fennema, R. and Chaudhry, M. H., “Explicit Methods 
for 2-D Transport Free-Surface Flows”, J. Hydr. Engrg., 
ASCE, Vol. 116(8), (1990), 1013-1034. 

11. Bidone, G., “Observation, Sur le Hauteur du Ressaut 
Hydraulique en 1818”, Report (in French), Royal 
Academy of Sciences, Turin, Italy, (1819). 

12. Gharangik, A. and Chaudhry, M. H., “Numerical 
Simulation of Hydraulic Jump”, J. Hydr. Engrg, ASCE, 
Vol. 117(9), (1989), 1195-1211. 

13. Chaudhry, M. H., “Open Channel Flow”, PRENTICE-
HALL, (1993). 

14. Meselhe, E. A., Sotiropoulos, F. and Holly, F. M., 
“Numerical Simulation of Transcritical Flow in Open 
Channels”, J. Hydr. Engrg., ASCE, Vol. 123(9), (1997), 
774-783. 

15. Younus, M., Chaudhry, M. H., A Depth-Averaged k-e 
Turbulence Model for the Computation of Free-Surface 
Flow”, J. Hydr. Res., IAHR, Vol. 326(3), (1994), 414-

436. 
16. Zhou, J. G. and Stansby, P. K., “2D Shallow Water Flow 

Model for the Hydraulic Jump”, Int. J. for Numer. 
Methods in Fluids , Vol. 29, (1999), 375-387. 

17. Zhou, J. G., “Velocity-Depth Coupling in Shallow-Water 
Flows”, J. Hydr. Engrg., ASCE, Vol. 121(10), (1995), 
717-724. 

18. Patankar, S. V., “Numerical Heat Transfer and Fluid 
Flow”, McGraw-Hill, (1980). 

19. Lai, C. J. and Yen, C. W., “Turbulent Free Surface Flow 
Simulation using a Multilayer Model”, Int. J. Numer. 
Meth. Fluids, Vol. 16, (1993), 1007-1025. 

20. Rhie, C. M. and Chow, W. L., “Numerical Study of 
the Turbulent Flow Past an Airfoil Trailing Edge 
Separation”, AIAA J., Vol. 21(11), (1983), 1525-
1532. 

21. Majumdar, S., “Role of Underrelaxation in Momentum 
Interpolation for Calculation of Flow with Nonstaggered 
Grids”, Numer. Heat Transfer, Vol. 13, (1988), 125-
132. 

22. Olsen, N. R. B., “CFD Algorithms for Hydraulic 
Engineering: Class Notes 2000”, Available on Internet at 
http://www.bygg.ntnu.no/~nilsol/cfd/cfdalgo.pdf. 

23. Wang, Y., Komori, S., “Comparison of Using Cartesian 
and Covariant Velocity Components on Non-orthogonal 
Collocated Grids”, Int. J. Numer. Meth. Fluids , Vol. 
31, (1999), 1265-1280. 

24. Chow, V. T., “Open-Channel Hydraulics”, McGRAW-
HILL, (1959). 

25. Molls, T., Zhao, G. and Molls, F., “Friction Slope in 
Depth-Averaged Flow”, J. Hydr. Engrg., ASCE, Vol. 
124(1), (1998), 81-85. 

26. Launder, B. E. and Spalding, D. B., “The Numerical 
Calculation of Turbulent Flows”, Comput. Methods 
Appl. Mech. Eng., Vol. 3, (1974), 264-287. 

27. Rodi, W., “Turbulence Models and Their Application in 
Hydraulics: A State of the Art Review”, Presented by 
IAHR Delft, The Netherland, (1980). 

28. Barron, R. M. and Salehi Neyshabouri, A., “Effects of 
Under-Relaxation Factors on Turbulent Flow 
Simulations”, Int. J. Numer. Meth. Fluids., Vol. 42, 
(2003), 923-928. 

 


