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Abstract   This study deals with a state dependent machining system having provision of mixed 
spares. The service facility of the system consists of permanent as well as removable additional 
repairmen. When all the spares are utilized, the system works in short mode. The steady state solution 
of the queue size distribution is derived using product type solution. Expressions for some 
performance measures are established. Some earlier models are deduced as special cases of the model 
for specific values of the parameters. 
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 به صورت مخلوط از ماشين رزروشرايطی که در باره سامانه ماشينکاری وابسته به به بحث    اين مقاله چکيده
تشکيل  تعمير کار دائمی و تعمير کار اضافی موقتاز تسهيلات خدمت گزاری . خته استپردا، دشو میاستفاده 

حل . کند در وضعيت کوتاه کار می، سامانه ندقرار گرفته ااستفاده مورد  رزرو ماشينهایوقتی تمام . استشده 
بيانهايي برای سنجش . آيد حالت ثبات مربوط به توزيع نوبت با استفاده از حل نوع محصول به دست می

 برای مقادير مشخصی از متغير ها، مدل های اوليه تحت عنوان حالات خاص. عملکرد ساخته شده است
 .نتيجه گيری شده است

 
 

1. INTRODUCTION 
 

Machines are an indispensable part of any 
manufacturing or production system. Therefore, 
the efficiency of machining system is critical to 
the overall competitiveness. Machine repair 
modeling is being used to predict the system 
performance of such systems. This may be fruitful 
to the system designer to determine the optimal 
combination of spare units and removable 
repairmen in order to increase the system 
efficiency. When the number of failed units 
exceeds the number of permanent repairmen, the 
provision of removable repairmen often ensures 
the desired reliability with a limited number of 
spares at a reasonable cost. 

     The machine repair problems have been an 
area of interest for many researchers. Sivazlian 
and Wang [1] considered M/M/R machine repair 
model with warm standby. Wang and Sivazlian 
[2] presented cost analysis of a M/M/R machine 
repair model having spares and operating units 
with variable service rates. The M/G/1 machine 
repair model with spares was investigated by 
Gupta and Rao [3]. 
     A transient analysis of the M/M/C machine 
repair problem with spares was provided by Jain 
and Dhyani [4]. Jain and Singh [5] studied a finite 
queuing model with random failures and delayed 
repairs. Shawky [6] considered M/M/C/K/N 
machine interference model with balking, reneging 
and cold spares. An optimal repair/replacement 
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policy for a general repair model was discussed 
by Jiang, et al. [7] and Grassmann, et al. [8]. 
Armstrong [9] suggested age-repair policies for 
machine repair problems addressing the problem 
of choosing the optimal service rate for a one-
server queue with state-dependent Poisson 
arrivals. 
     Some works have been reported in literature 
regarding provision of additional servers. Jain 
[10] analyzed M/M/R machine repair problem 
with spares and additional repairmen by using 
queue size distribution. Jain, et al. [11] extended 
the work of Shawky [12] by including one 
additional repairman in case of long queue of 
failed units. Jain, et al. [13] studied a machine 
repair problem with discouragement and 
additional servers. A multi-server queuing system 
with additional repairmen and discouragement 
was investigated by Jain and Sharma [14]. Jain 
and Singh [15] proposed a loss and delay 
Markovian queuing system having removable 
additional repairmen. 
     In this paper, we develop a M/M/C/K/N 
queuing model for a machining system with mixed 
spares, additional repairmen and variable failure 
and repair rates. Using birth-death process, the 
steady state queue size distribution is obtained to 
facilitate performance measures. The rest of the 
paper is organized as follows: Section 2 covers 
model description and governing equations. The 
steady state solution for queue size distribution is 
given in the next section. Some special cases are 
deduced in section 4. Section 5 establishes some 
system characteristics and cost function. We 
conclude our investigations in section 6 by 
highlighting the scope of the work done. 

 
 
 

2. DESCRIPTION OF THE MODEL AND 
GOVERNING EQUATIONS 

 
The basic assumptions governing the queuing 
model for multi-components repairable machining 
system are as follows: 
 

1. The machining system operates in normal 
mode with N operating units. 

2. There is a provision of mixed spares, of which 
Y are cold and S warm. 

3. The repair facility consists of a pool of C 
permanent and r removable repairmen. 

4. When a unit fails, a spare is immediately 
substituted for it. The switch over time from 
standby to operating state is negligible. 

5. As long as all the spares are not utilized i.e. 
system works in normal mode with N 
operating units, the life times of operating 
units are exponentially distributed with mean 
rate λ. The repair times of permanent repairmen 
are identical exponentially distributed random 
variables.  

6. Once all the spares are utilized, the system 
starts working in short mode as there are less 
than N operating units but more than or equal 
to m. In short mode, due to efficiency 
degradation, failure rate λ increases to λd. To 
cope up with this situation, the permanent 
repairmen work with faster rate so that the 
repair rate µ changes to µf (>µ). 

7. µi is the repair rate for ith (i = 1, 2, ..., r) 
removable repairman which provides repair 
according to exponential distribution and 
FIFO discipline.  

8. If the number of failed units is more T, the 
additional removable repairmen turn on one 
by one with additional load of T failed units so 
that jth (j = 1, 2, ..., r) additional repairman 
starts repairing when number of failed units is 
more than jT but less than or equal to (j+1)T 
and removes as number of failed units 
decreases to jT. 

9. When a failed unit is repaired, it joins the 
standby group if system is working in normal 
mode, otherwise works with other operating 
units. After repairing, the units are as good as 
a new one. 

 

     The failure rates and repair rates of the units are 
state dependent and given by 
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We consider two cases for formulating the 
problem. For both cases, Chapman-Kolmogorov 
equations governing the model are constructed for 
steady state. 
 
Case I:   C ≤ Y 
 

Using state dependent failure and repair rates given 
in (1) and (2), the steady state difference equations 
for this case are as follows: 
 
−(Nλ + Sα)P0 + µP1 = 0, (n = 0) (3a) 
 
−(Nλ + Sα + nµ)Pn + (Nλ + Sα)Pn-1 + (n + 1)µPn+1 
 

 = 0,(0 < n< C) (3b) 
 
−(Nλ + Sα + Cµ)Pn) + (Nλ + Sα)Pn-1 + CµPn+1 =0, 
 

(C ≤ n ≤ Y) (3c) 
 
−[Nλ + (S+Y-n)α + Cµ]Pn + [Nλ + (S+Y+1- n)α] 
 

Pn-1 + CµPn+1 = 0,(Y < n < Y+S) (3d) 
 
−(Nλd + Cµ)PY+S + (Nλ + α]PY+S-1 + CµfPY+S+1 = 0, 
 

(n = Y + S) (3e) 
 
−[(N+S+Y-n)λd + Cµf]Pn + (N+S+Y+1-n)λdPn-1 + 
 

CµfPn+1(t),(Y+S < n < T) (3f) 
 
−[(N+S+Y-T)λd + Cµf]PT + (N + S + Y + 1 – T) 
 

λdPT-1 + (Cµf + µ1)PT+1 = 0 (n = T)  (3g) 

−[(N+S+Y-jT)λd + Cµf  + ∑
=

1-j

1i
iµ ]PjT + (N + S + Y 

+ 1 – jT)λdPjT-1 + (Cµf + ∑
=

j

1i
iµ )PjT+1 = 0,(n = jT; 

j=1,2,…,r-1) (3h) 

−[(N+S+Y-n)λd + Cµf  + ∑
=

j

1i
iµ ]Pn + (N + S + Y + 

1 – n)λdPn-1 + (Cµf + ∑
=

j

1i
iµ )Pn+1 = 0,(jT < n < 

(j+1)T) (3i) 
 

−[(N+S+Y-rT)λd + Cµf  + ∑
=

1-r

1i
iµ ]PrT + (N + S + Y 

+ 1 – rT)λdPrT-1 + (Cµf + ∑
=

r

1i
iµ )PrT+1 = 0,(n = rT) 

 (3j) 
 

−[(N+S+Y-n)λd + Cµf  + ∑
=

r

1i
iµ ]Pn + (N + S + Y + 

1 – n)λdPn-1 + (Cµf + ∑
=

r

1i
iµ )Pn+1 = 0,(rT < n < N + 

S + Y – m ) (3k) 
 

−[Cµf  + ∑
=

r

1i
iµ ]PN+S+Y-m + (m+1)PN+S+Y-m-1 = 0 (n = 

L) (3l) 
 
Case II:   C > Y 
 
In this case, we also use (1) and (2) to obtain the 
steady state difference equations and obtain 
 
−(Nλ + Sα)P0 + µP1 = 0,(n = 0) (4a) 
 
−(Nλ + Sα + nµ)Pn + (Nλ + Sα)Pn-1 + (n + 1)µPn+1  
 
= 0,(0 < n ≤ Y) (4b) 
 
−[Nλ + (S+Y-n)α + nµ]Pn + [Nλ + (S+Y+1- n)α] 
 
Pn-1 + (n+1)µPn+1 = 0,(Y <  n < C) (4c) 
 
−[Nλ + (S+Y-n)α + Cµ]Pn + [Nλ + (S+Y+1- n)α] 
 
Pn-1 + CµPn+1 = 0, (C ≤ n < Y+S) (4d) 
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The rest of the equations for this case are identical 
to equations 3(e) – 3 (l) as obtained in the previous 
case. 
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The expected number of failed units in the system 
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is 
 

E(n) = ∑
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The machine availability i.e. rate of production per 
machine is obtained as  
 

M.A. = 1 - 
SYN

)N(E
++

 (8) 

 
Case II:  C > Y 
 

In this case, we also obtain product type solution 
for the steady state queue size distribution using 
equations 4(a) – 4(d) and 3(e) – 3(l) as 
Here, also we employ the normalizing condition  
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We can find the expected number of failed units in 
this machining system using Equation 7. Here also, 
the machine availability is computed by using 
Equation 8. 
 
 
 

3. SPECIAL CASES 
 
3.1 M/M/C/K/N Model with Additional 
Repairmen and Cold Spares   If  λ = λd, 
µ = µf and S = 0 then our model reduces to 
M/M/C/K/N with cold spares only and having 
additional repairmen. Now we obtain queue size 
distribution as indicated in Equation 11. 
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where 
 

ρ = λ/µ, δj = 
µ

j)λ - (N
 

 
3.2 M/M/C/K/N Model with Mixed Spares 
Setting r = 0, λ = λd and µ = µf, our model reduces 
to the usual M/M/C/K/N model with mixed 
spares. 
     Considering only the case C ≤ Y we have 
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If Y = 0 and S = 0, the present special case 
provides results for classical M/M/C/K/N machine 
repair problem as discussed in Kleinrock (1985). 
 
 
 

4. COST ANALYSIS 
 

Before presenting a cost analysis, we establish 
some system characteristics as follows 
Expected number of unused cold spare units in the 
system 
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     Expected number of unused warm standby units 
in the system 
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     Expected number of operating units in the 
system 
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     Expected number of idle permanent repairmen  
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Expected number of busy permanent repairmen 
 
E(B) = C – E(I) (17) 
 
Expected number of busy removable repairmen 
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Operating efficiency is obtained by 
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5. COST ANALYSIS 
 

We define various cost factors associated with 
different states as: 
 

CN =  Cost per unit time of an operating unit 
when system works in normal mode 

CSH =  Cost per unit time of an operating unit 
when system works in short mode  

CSC =  Cost per unit time for providing a cold 
spare unit 

CSW = Cost per unit time for providing a warm 
spare unit 

CI =  Cost per unit time per idle permanent 
repairman  

CB =  Cost per unit time per permanent 
repairman when he is busy in providing 
repair 

CBRi =  Cost per unit time of ith (i=1,2,…,r) 
removable repairman when he is busy in 
providing repair 

 
     We formulate the cost function as the expected 
total cost per unit time given below: 
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6. CONCLUSION 
 

In this paper we have obtained the product type 
solution for the state-dependent M/M/C/K/N 
machine repair model with mixed spares and 
removable repairmen. The space or cost constraints 
often restrict the number of spare units as well as 
the number of permanent repairmen in a machining 
system. 
     For such cases, the provision of mixed spares 
and removable repairmen may be invaluable for 
the system designer so as to reduce the backlog of 
failed units to ensure the smooth functioning of the 
machining system. The cost analysis might give an 
insight to determine the optimal combination of 
cold and warm standby units as well as number of 
permanent/ additional repairmen, which needs 
further investigation. 
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