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Abstract This study deals with a state dependent machining system having provision of mixed
spares. The service facility of the system consists of permanent as well as removable additional
repairmen. When all the spares are utilized, the system works in short mode. The steady state solution
of the queue size distribution is derived using product type solution. Expressions for some
performance measures are established. Some earlier models are deduced as special cases of the model
for specific values of the parameters.
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1. INTRODUCTION

Machines are an indispensable part of any
manufacturing or production system. Therefore,
the efficiency of machining system is critical to
the overall competitiveness. Machine repair
modeling is being used to predict the system
performance of such systems. This may be fruitful
to the system designer to determine the optimal
combination of spare units and removable
repairmen in order to increase the system
efficiency. When the number of failed units
exceeds the number of permanent repairmen, the
provision of removable repairmen often ensures
the desired reliability with a limited number of
spares at a reasonable cost.
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The machine repair problems have been an
area of interest for many researchers. Sivazlian
and Wang [1] considered M/M/R machine repair
model with warm standby. Wang and Sivazlian
[2] presented cost analysis of a M/M/R machine
repair model having spares and operating units
with variable service rates. The M/G/1 machine
repair model with spares was investigated by
Gupta and Rao [3].

A transient analysis of the M/M/C machine
repair problem with spares was provided by Jain
and Dhyani [4]. Jain and Singh [5] studied a finite
queuing model with random failures and delayed
repairs. Shawky [6] considered M/M/C/K/N
machine interference model with balking, reneging
and cold spares. An optimal repair/replacement

Vol. 18, No. 1, February 2005 - 21



policy for a general repair model was discussed
by Jiang, et al. [7] and Grassmann, et al. [8].
Armstrong [9] suggested age-repair policies for
machine repair problems addressing the problem
of choosing the optimal service rate for a one-
server queue with state-dependent Poisson
arrivals.

Some works have been reported in literature
regarding provision of additional servers. Jain
[10] analyzed M/M/R machine repair problem
with spares and additional repairmen by using
queue size distribution. Jain, et al. [11] extended
the work of Shawky [12] by including one
additional repairman in case of long queue of
failed units. Jain, et al. [13] studied a machine
repair problem with discouragement and
additional servers. A multi-server queuing system
with additional repairmen and discouragement
was investigated by Jain and Sharma [14]. Jain
and Singh [15] proposed a loss and delay
Markovian queuing system having removable
additional repairmen.

In this paper, we develop a M/M/C/K/N
queuing model for a machining system with mixed
spares, additional repairmen and variable failure
and repair rates. Using birth-death process, the
steady state queue size distribution is obtained to
facilitate performance measures. The rest of the
paper is organized as follows: Section 2 covers
model description and governing equations. The
steady state solution for queue size distribution is
given in the next section. Some special cases are
deduced in section 4. Section 5 establishes some
system characteristics and cost function. We
conclude our investigations in section 6 by
highlighting the scope of the work done.

2. DESCRIPTION OF THE MODEL AND
GOVERNING EQUATIONS

The basic assumptions governing the queuing
model for multi-components repairable machining
system are as follows:

1. The machining system operates in normal
mode with N operating units.

2. There is a provision of mixed spares, of which
Y are cold and S warm.
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3. The repair facility consists of a pool of C
permanent and r removable repairmen.

4. When a unit fails, a spare is immediately
substituted for it. The switch over time from
standby to operating state is negligible.

5. As long as all the spares are not utilized i.e.
system works in normal mode with N
operating units, the life times of operating
units are exponentially distributed with mean
rate A. The repair times of permanent repairmen
are identical exponentially distributed random
variables.

6. Once all the spares are utilized, the system
starts working in short mode as there are less
than N operating units but more than or equal
to m. In short mode, due to efficiency
degradation, failure rate A increases to Aq. To
cope up with this situation, the permanent
repairmen work with faster rate so that the
repair rate 1 changes to pr (>p).

7. W is the repair rate for i i=1,2,..,1)
removable repairman which provides repair
according to exponential distribution and
FIFO discipline.

8. If the number of failed units is more T, the
additional removable repairmen turn on one
by one with additional load of T failed units so
that j* (j = 1, 2, ..., r) additional repairman
starts repairing when number of failed units is
more than jT but less than or equal to (j+1)T
and removes as number of failed units
decreases to jT.

9. When a failed unit is repaired, it joins the
standby group if system is working in normal
mode, otherwise works with other operating
units. After repairing, the units are as good as
anew one.

The failure rates and repair rates of the units are
state dependent and given by

NA+ Sa o<n<Y

Ip=s N +(S+Y-n) a Y<n<Y+S

Y+S<n<N+Y+S—-m

(N+S+Y-n) Ad

(1)

IJE Transactions A: Basics



ny 0<n<C

Cu C<n<Y+S
Cyf Y+S+1<n<T

Hn = J
CM“‘ZM JT<n<(j+1)T

i=1

J

Cuyf + E Ui rT<n<N+S+Y-m

i=1

2)

We consider two cases for formulating the
problem. For both cases, Chapman-Kolmogorov
equations governing the model are constructed for
steady state.

Casel: CLY

Using state dependent failure and repair rates given
in (1) and (2), the steady state difference equations
for this case are as follows:

—(NA + Sa)Py + uP; =0, (n =0) (3a)
—(NA + Sa + np)P, + (NA + So)P,,.; + (n + 1)pP,y
=0,(0<n<C) (3b)
—(NA + Sa. + Cw)P,)) + (NA + Sa)P,,; + CuPyyy =0,
(C<n<Y) (3¢)
—[NA + (S+Y-n)a + CuJP, + [NA + (S+Y+1- n)a]
Poy + CuPpy = 0,(Y <n <Y+S) (3d)
—(NAg + Cu)Pyis + (NA + 0]Pyis. + CuPyigi =0,
n=Y+S) (3e)
—[(N+S+Y-n)Aq + Cps]P, + (N+S+Y+1-n)A4P,; +
CHanﬂ(t),(Y‘FS <n< T) (3f)
—[(N+S+Y-T)Aq + CugPr+(N+S+Y +1-T)
AdPr1 + (Cpe+ pi)Priy =0 (n=T) (3g)

1JE Transactions A: Basics

j-1
~[(N+S+YT)hg + Cpte + D P+ (N +S+Y

i=1

+ 1= JDAPir1 + (Cre+ 37y, Piras = 0,(n = jT;
i=1

i=1,2,...,1-1) (3h)

i
~[(NFS+Y-n)hg + Cpp + D p; P+ (N+ S+ Y +

i=1
J
I = mAgPot + (Cpe + D p Pun = 0,GT < n <

i=1

g+nH1) (3i)

r-1
[(N+S+Y-1T)hg + Cpg + > PPr + (N+S+Y

i=1
+ 1= 1T)APrr + (Cpe+ D1 )Prrg = 0,(n =1T)

i=1
(39

~[(NFS+Y-n)ig + Cpp + Dt TPy + (N + S+ Y +

i=l
1 —n)A4P,y + (Cue+ z;li P =0,T<n<N+

i=1

S+Y-m) (3k)

_[C}«lf + z W, 1PN+s+yom T (m+1)PN+S+Y-m-1 =0 (Il =
i=1

L) (3D

Casell: C>Y

In this case, we also use (1) and (2) to obtain the
steady state difference equations and obtain

—(NA + Sa)Py + puP, = 0,(n=0) (4a)
—(NA + Sa + np)P, + (NA + Sa)Py,; + (n + 1Py
=0,0<n<Y) (4b)
—[NA + (S+Y-n)a + nu]P, + [NA + (S+Y+1- n)a]
Py + (n+1)pPy =0,(Y < n<C) (4c)
—[NA + (S+Y-n)a + Cpu]P, + [NA + (S+Y+1- n)a]

P, + CuPyiy = 0, (C <n < Y+S) (4d)
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The rest of the equations for this case are identical
to equations 3(e) — 3 (1) as obtained in the previous

case.
(N+Sa)
Py 0<n<C
nlp
n
N+ Sa 1
Py Cn<y
U C/(C)n—C
n B
i Py Y+I<n<Y+S
j=Y=2 (C) n-C
n- (Y+S+1) Y+S
Py
[ =Y= 2 (C)
Y+S8<n<T
n-1 T-(Y+S+1) Y+S
pod | TIvsS+Y-h)3, nos; | Ms;
VS =0 i=r=2 |
. Py
T n—jT -C
j-1 l i\ «of
I1 (llf+ 24 Cyf+ 24
=1 i=1 i=1
JT<n<(j+1)T
1<j<r
n-1 T-(Y+S+l) Y+S
[T(N+S+Y-k)7; I1 S; I1s;
k=T =0 i=Y=2 B
T r . rc '
r-1 ! r " 0
[T Cup + Zpy Gy + X 1
1=l i=1 i=1
rT<n<N+Y+S-m
(5)
where
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g - NA+(Y+S+1-i)a o _ 1 NA+Sa)
i = B = I
K al u
N-jr
8j=( DAy
g

We determine Py, using the normalizing condition
N+S+Y-m

> P =1

n=0

which gives

N
Ik
(NSa )" s | ==
1 C (NS ) Y +HhB Y | —
Py = Z—n+ > n/ﬂn(c)n—c Nt (Qn—C
n=0  nlu n=CH
¥ T n(aSH) J s
S Ig) = IT &5 +A  T1S;
C
Y= INgprs=l\ IO o™ \i=m2
nl
[1(VSH)A,
T(ytstl) 1 A GHT k=T
n s z X
0 o Cotins i Y ;YT
I1 Cyf+2yi C/Uf"'zﬂi
I= i=l i=l
S | Tvst)
i=r=2 J=0
n-1
TT(NeS+Y-+h) A,
] MSHm =T

f Cmret (f Y s
C/l f+ Zyi Cﬂ f+ by H
= i= i=l
(6)

The expected number of failed units in the system
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is
N+S+Y-m

Em)= > nP, (7)
n=1

The machine availability i.e. rate of production per
machine is obtained as

MA.=1-_EN) (8)
N+Y+S
Case IlI: C>Y

In this case, we also obtain product type solution
for the steady state queue size distribution using
equations 4(a) — 4(d) and 3(e) — 3(1) as

Here, also we employ the normalizing condition

N+S+Y-m
ZPn =1 to yield
n=0
[ Ni+Sa ]n i
— |"—Py. 0<n<Y
U n!
n BC!
Im S; |—Pyo. Y+I<n <C
i=Y=2 n!
Y+S B
[1S; Py, C<n<Y+S
i=Y=211)(C) n-C
n-(Y+S+1) Y+S B
I19; I1S; Py,
j=0 i=y=2 )Jc)" €
Y+S<n<T
P, =
n-1 T-(Y+S+1) Y+S
I1 (N+S+Y=k)A g4 I1 5j T1S;
k=T j=0" Jli=r=2 B
-1 ! J o oTfc
[H[Cﬂf+ S }TMC#]H > 4 ]" T
=1 i=1 i=l
JT<n< (j+IT
I<j<r
n-1 T-(Y+S+1)\( Y+S
I1 (N+S+Y—k )A g s || 1S
k=T j=0 " \i=y=2 Y]
r-1 / - ()T
il [Cuf+ Zﬂi]T ][Cﬂ_ﬁ Zﬂi] nert
I=1 i=] i=1
rT<n<N+Y+S-m

)
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pl_ § (NAi+Sa )N

0 n=0 nlu”
C n ]
pC T | TS |
n=Y+1i=y=2 "
y+S n 1
5 X [18 -
n—c+1[i=Y:5 (Cc)n-¢
Y+S T n-(Y+S+1) )i
+60 IS )y [1 9y —
i=Y=2 |N=Y1S+l| J=0 (C)
5 Y+SS T-(Y+S+I)§ ]
£ 113 IT J =
i=y=2'l  J=0 (c)T-¢
" NS Yk )2
+S+Y—
r—1(j+1T miny Vd
2z 2
J=In=jT+l| j T -
J / Lo \nejr
[T |Cup+ Tui Cup+ YHi
1=1 i=1 =
5 Y+SS T—(Y+S+1)(S )i
+6) 11 8 I1 J =
i=Y+2' J=0 (ci-C
o (N+S+Y—k )2
+S+Y—
N+S+Y-m kl;[T d
n=rT+l | ,_j ! T p n—rT
[T | Cupt Yu; Cup+ Yu;
I=1 i=1 =y
(10)

We can find the expected number of failed units in
this machining system using Equation 7. Here also,
the machine availability is computed by using
Equation 8.

3. SPECIAL CASES

3.1 M/M/C/K/IN Model with Additional
Repairmen and Cold Spares If X = A4
p = pe and S = 0 then our model reduces to
M/M/C/K/N with cold spares only and having
additional repairmen. Now we obtain queue size
distribution as indicated in Equation 11.
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P, =
. u
(N, )7y 0 0<n<cC
n!
(NoO n
7/)) Py, C <n<Y
cilc)n-¢€
n—(Y+l) Np) Y+1
H‘ij (Np) Py, Y<n <T
j=0 cr(c)n-¢
n-1 T-(Y+1)
(N+Y—k)2 m; | (Np) Y+l
k=T j=0
Py
j-1 ! Jj )
M| Cu+ sui |T|| cur su;| "I Tcrc)T-C
=1 i=1 i=1
JT <n<(j+1)T, 1< j <r
(n-1 (T-(Y+1)
0 (N+Y-k )2 Mme; |[(Np) ¥ +1
k=T j=0
Py,
ol ! T B n—-rT
M| Cp+ Su; Cu+ S uj crec) T-¢€
=1 i=1 i=1
rT<n < N+Y-m
(11)
where
p =AMy, &= —"—

3.2 M/M/C/K/N Model with Mixed Spares
Setting r = 0, A = A4 and =y, our model reduces
to the usual M/M/C/K/N model with mixed
spares.

Considering only the case C <Y we have

7 n!
0<n<C
[N/1+Sa ]” 1
)2 C/(C)nC
C<n<S
Py = n (12)
Y
i C 0
. ©"
i=Y=2
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where

_ NA+ (Y +S+1-1)a

S,
v
o L(NtSa)”
C! v
5, (N-K

n

If Y =0 and S = 0, the present special case
provides results for classical M/M/C/K/N machine
repair problem as discussed in Kleinrock (1985).

4. COST ANALYSIS

Before presenting a cost analysis, we establish
some system characteristics as follows

Expected number of unused cold spare units in the
system

Y
n=0

Expected number of unused warm standby units
in the system

S Y+S
E(UYS)=YY'P + > (Y+S-n)P,
n=0 n=Y+l

(14)

Expected number of operating units in the
system

EO)=N- S [n-(Y+S)P, (1)

n=Y+S+1

Expected number of idle permanent repairmen

EM =S (C-n)P, (16)
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Expected number of busy permanent repairmen
E(B)=C — E(I) (17)

Expected number of busy removable repairmen

r-1 (G+DT N+Y+S-m
EBR)=> > jP. +r > P, (18)
j=1 n=jT+1 n=rT+1

Operating efficiency is obtained by

_EB)
R+t

O.E. (19)

5. COST ANALYSIS

We define various cost factors associated with
different states as:

Cn=  Cost per unit time of an operating unit
when system works in normal mode

Csy=  Cost per unit time of an operating unit
when system works in short mode

Csc=  Cost per unit time for providing a cold
spare unit

Csw= Cost per unit time for providing a warm
spare unit

C= Cost per unit time per idle permanent
repairman

Cg=  Cost per unit time per permanent
repairman when he is busy in providing
repair

CBRi= Cost per unit time of i (i=1,2,...,1)

removable repairman when he is busy in
providing repair

We formulate the cost function as the expected
total cost per unit time given below:

Y+S N+Y+S—m
E(C):CNZNPn +Cspy Z[N+Y+S-n)]Pn +
n=0

n=Y+S+1

CsCEUCS)+ Csy E(UYS)+ CJE(D)+ CRE(B)
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r-1 (j+)r N+Y+S—-m
+ CBRJ- jPy + ”-CBRr Z P, (20)
j=1 n=jT+1 n=rT +1

6. CONCLUSION

In this paper we have obtained the product type
solution for the state-dependent M/M/C/K/N
machine repair model with mixed spares and
removable repairmen. The space or cost constraints
often restrict the number of spare units as well as
the number of permanent repairmen in a machining
system.

For such cases, the provision of mixed spares
and removable repairmen may be invaluable for
the system designer so as to reduce the backlog of
failed units to ensure the smooth functioning of the
machining system. The cost analysis might give an
insight to determine the optimal combination of
cold and warm standby units as well as number of
permanent/ additional repairmen, which needs
further investigation.
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