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Abstract   A numerical approach called �SIMPLER� is used to investigate the flow and 
heat transfer characteristics in a square driven cavity. The two-dimensional incompressible 
Navier-Stokes equations were solved and the results are depicted as contour plots of stream 
function, vorticity, and total pressure for Reynolds numbers from 1 to 10000. At the higher 
values of Reynolds number, an inviscid core region develops, but secondary eddies are 
present in the bottom corners of the square at all Reynolds numbers. In addition, the energy 
equation was solved and isotherms and wall heat-flux distributions are graphically presented. The 
finding of the present numerical solutions with those given in the literature is in good 
agreement. 
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متحرك  براي بررسي جريان و انتقال حرارت در حفره ديواره         � سيمپلر�از يك روش عددي به نام           چكيدهچكيدهچكيدهچكيده

براي  استوكس حل گرديده كه نتايج        -معادلات دو بعدي تراكم ناپذير ناوير      . مربعي شكل استفاده شده است     
.  تراز خط جريان، چرخش و فشار كل نشان داده شده اند  به صورت منحني هاي هم١٠٠٠٠ تا ١اعداد رينولدز از 

ولي گردابه هاي ثانويه در     .مي گردد ايجاد غير لزج هسته يك ،رينولدز عدد بالاتر مقادير نتايج نشان مي دهند در   
 به علاوه معادله انرژي حل گرديده كه منحني هاي         . شوندمشاهده مي  رينولدز تمام اعداد  پاييني در  گوشه هاي

مقايسه نتايج روش عددي بكار رفته با       . صورت گرافيكي نمايش داده شده اند     دما و توزيع شار حرارتي به      هم
 .مي دهد نشان توافق خوبي را نتايج روش هاي ديگر

 
 

 
1. INTRODUCTION 

 
Wa l l  bounda r i e s  su r round ing  the  en t i r e  
computational region in the driven cavity 
problem is a classic problem. In this problem, 
the incompressible viscous flow in the cavity 
is driven by the uniform translation of the 
upper surface (lid). The driven cavity problem 
is an excellent test case for comparing 
methods that solve the incompressible Navier-
Stokes equations. Detailed computational results 
for the driven cavity problem can be found in 
Burggraf [1], Bozeman and Dalton [2], Rubin 
and Harris [3] and Ghia et al [4], while 
experimental data is available in Mills [5] and 
Pan and Acrivos [6]. 
     In the present treatise, the driven flow in a 

square cavity was used as the model problem. 
Numerical solutions were obtained for 
configurations with Reynolds number as high 
as 10,000, using the SIMPLER method and 
were compared with solutions available in the 
literature. 
 
 
 

2. MATHEMATICAL FORMULATION 
 
The cavity flow geometry and coordinates 

),( YX  are shown in Figure 1.  This is in 
accordance with the problem statement of 
Reference 7.  The full ,  t ime-dependent,  
incompressible Navier-Stokes equations, in 
properly non- dimensionalized form, can be 



302 - Vol. 17, No. 3, September 2004 IJE Transactions A: Basics 

written as [1, 7], 
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     The nondimensional variables are defined as: 
 

,
L
xX =  ,

L
yY =  ,

u
Lt

0

τ= ,
u
u

U
0

=  ,
u
vV

0

=  

 

,
u
pP 2

0ρ
=  ,

Cu
T

p
2

0

=Θ  ,LuRe 0
L ν
=  

α
ν=Pr  

 (5) 
 
      The boundary conditions are defined as no slip: 
on the stationary walls 0=U and 0=V ; on the 
sliding wall 1=U and 0=V . For the thermal 
problem, calculations were carried out for two 
cases, depending on the heat transfer at the 
stationary walls. In case A, characterized by a large 
temperature difference between stationary and 
sliding walls, the dissipation term is negligible. In 
this case, the boundary conditions are: 
 
Case A: ,0),1()0,(),0( =Θ=Θ=Θ YXY  
 

 ,1)1,( =Θ X  .0),( =Φ YX  
 
This case is referred as the �cold wall conditions�. 
The effect of the dissipation term is demonstrated 
in case B, for which the stationary walls are 
presumed to be adiabatic, while the temperature of 
the sliding wall is held constant. The boundary 
conditions are 
 
Case B:   ,0)1,( =Θ X  ,0)Y,X( ≠Φ  
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This case is referred as the �adiabatic wall 

 
 
Figure 1. Driven cavity problem. 
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condition�. In both cases, the Prandtl number was 
taken as unity for convenience [1]. 

 
 
 

3. NUMERICAL SCHEME 
 
In order to solve the above system of equations, the 
well-established SIMPLER numerical solution 
technique of Patankar [8] was employed. A 
combination of line-by-line and block-correction 
methods was used to solve the resulting algebraic 
equations [9 and 10]. Typically, 15000 iterations 
were required to achieve convergence, which took 
15-20 minutes of computational time on a 
Pentium-II processor and this increased drastically 
by mesh refinement. For each grid point, a residual 

R  can be calculated from the resulting 
discretization equation as: 
 

∑ φ−+φ= ,abaR PPnbnb  (6) 

 
where ∑ nbnba φ shows all neighbor terms. The 
convergence criterion adopted was that R  for 
each grid point, between two successive iterations 
were smaller than a pre-assigned value of 410− . 
The spatial grid was typically 5757×  in the 

YX −  computational domain. The sensitivity of 
calculated results to the grid interval, time step, 
and convergence criterion was checked in several 
sample calculations. The computational parameters 
that were selected for the present work were found 

 
 
 

Figure 2. Staggered computational grid. P points, solid circles; U points, open circles; V points, × . 
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to yield satisfactory results in the grid- and time 
step-convergence tests. 
     The staggered computational grid that is shown 
in Figure 2 was used. There are three systems of 
grid points shown in Figure 2; the solid points are 
where P  is calculated, the open points are where 
U is calculated, and the points denoted by ×  are 
where V is calculated. The use of a staggered grid 
requires careful attention to the indexing system 
that identifies each set of points, which somewhat 
complicates the coding of the computer program. 
There are various ways of setting up the logic 
dealing with the proper bookkeeping for a 
staggered grid. In Figure 2, each set of points has 
its own independent indexing. For example, the 
� P  points� run from 1 to 1L  in the X  direction 
and from 1 to 1M  in the Y  direction, the � U  
points� run from 2 to 1L  in the X  direction and 
from 1 to 1M  in the Y  direction, and the � V  
points� run from 1 to 1L  in the X  direction 
and from 2 to 1M  in the Y direction. 
 
 
 

4. RESULTS AND DISCUSSION 
 
To verify the computer code, results of the 
SIMPLER method have been compared with 
those reported in [4]. U -velocity along vertical 
line and V -velocity along horizontal line through 
geometric centre of the cavity are shown in Figures 
3 and 4 respectively. Figure 5 shows vorticity on 
the moving wall. 
     It is seen that the results obtained in the present 
work are in good agreement with those reported in 
[4] at all Reynolds numbers, especially at the lower 
ones. This indicates the validity of the numerical 
code that has been developed. It should be pointed 
out that the numerical results of [4] were obtained 
on a finer mesh of 129129×  grid nodes that can be 
the most likely reason for the differences seen at 
the higher Reynolds numbers. 
     The development of the flow with Reynolds 
number is shown in Figures 6 and 7 at different 
conditions. The streamline pattern is only slightly 
affected by Reynolds number; however, the shift of 
vortex centre with increasing Re  is clearly 
evident, first in the downstream direction (of the 

moving boundary) and then toward the centre of 
the square. 
     The vorticity distribution (Figure 7) provides a 
stronger measure of the effect of viscosity. The 
symmetric pattern at low Reynolds numbers is due 
to the vanishing of the convection effects. 
However, at higher Reynolds numbers, these 
effects would eventually dominate the flow, 
producing a core of nearly uniform vorticity. Note 
the strong variation of vorticity in the boundary 
layer, especially along the top and the right side of 
the cavity. The interaction of convection and 
viscous diffusion of vorticity in the viscous 
annulus is indicated by the �stretching� of the 
contours in the direction of the flow. 
     The non-dimensional total pressure is: 
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with reference to the pressure Bp  at the centre of 
the bottom wall of the cavity. The static and total 
pressure contours are shown in Figures 8 and 9. In 
the completely viscous limit, the static and total 
pressure become identical and shows no 
resemblance to the streamlines. Since the pressure 
is then a harmonic function, the contours cannot be 
closed but must end on the boundaries. 
Conversely, for the inviscid limit, total pressure is 
conserved on streamlines, so that the contours of 
total pressure would be identical to the streamlines. 
This development from fully viscous to inviscid 
flow is clearly depicted by Figure 9. 
     At Re = 100, a very small inviscid core has 
developed around the vortex center, while at Re = 
400, the inviscid core has grown to a diameter 
about 1/3 that of the cavity. From these plots, we 
conclude that the total pressure distribution is a 
good measure relating to the degree of viscous and 
inviscid flow. The interaction of convection and 
viscous diffusion of total pressure along the 
streamlines is indicated just as for vorticity. 
Actually, in steady flow, the total pressure obeys a 
diffusion equation with a �source� term 
representing a viscous loss proportional to the 
square of the vorticity. 
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Figure 3. Profiles of U- velocity along Vertical centerline. 
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Figure 4. Profiles of V- velocity along horizontal centerline. 
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Figure 5. Vorticity distribution along moving boundary. 
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Figure 6. Stream function contours. 
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Figure7. Vorticity contours. 
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Figure 8. Static pressure contours. 
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Figure 9. Total pressure contours. 
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     Hence, in regions of highly rotational flow, the 
total pressure �streamers� must be shorter than in 
those of small vorticity. This effect can be seen by 
comparing Figures 7 and 9. It is also interesting to 
note that in the upper corners, the static pressure 
retains its asymmetric singularities over the entire 
range of Reynolds number, even though taking on 
a symmetric distribution in the main body of the 
flow. 
     A striking feature of the flow field is the growth 
of the secondary eddies appearing in the bottom 
corners of the cavity (Figure 6). These triangular 
shaped eddies, present at all Reynolds numbers, 
have a diameter of about 10% that of the cavity at 
Re = 1. However, at Re = 400, the upstream eddy 
has grown to about 1/3 the diameter of the cavity, 
although the downstream eddy is relatively 
unaffected by Reynolds number. 
     The structure of the flow in the primary eddy 
is clearly shown by velocity graphs of Figure 3. 
Velocity profiles are shown for several values of 
Reynolds numbers. The trend from the rounded 
profile for Re = 1 to the flattened profiles at high 
Reynolds numbers is clear. Note in particular the 
thinning of the boundary layer with increasing 
Re and the velocity overshoot near the upper 
wall at high Reynolds numbers. It seems clear 
that growing the secondary eddy in the bottom 
of the square cavity prevent the vortex centre 
from approaching the geometric centre of the 
cavity. 
     The distribution of the thermal energy within 
the recirculating flow is closely analogous to 
that of vorticity. Owing to the different boundary 
conditions, the distributions of temperature 
and vorticity within the boundary layer must 
differ, but in the limit ∞→Re , both tend to 
become uniform as the inviscid core develops. 
Sample solutions are presented in Figures 10 
and 11 by means of plotted isotherms for 
different Reynolds numbers. For Stokes flow, 
the temperature distribution is symmetrical 
about the vertical centerline of the cavity, in 
the same way as the flow field. At Re=400 
and higher, the isotherms tend to be convected 
by the flow, forming a pocket of uniform 
temperature around the vortex centre. For 
condition B (adiabatic wall), where the region 
of nearly uniform temperature is much larger, 
significant variations occur only near the 

downstream corner of the moving wall. It is 
noteworthy that the bottom and upstream 
walls have nearly uniform temperatures, and 
that the maximum temperature occurs near the 
downstream corner of the moving wall. The 
temperature profiles on the vertical line through 
the vortex centre are shown in Figure 12 for 
different Reynolds numbers, with both cold 
and adiabatic wall conditions. The constancy 
of the temperature in the inviscid core, as well 
as the thin thermal boundary layer on the 
moving wall is clearly evident. 
     The dis t r ibut ion of  non-dimensional  
temperature  gradient (heat flux) along the 
wall is of considerable interest. Figure 13 
shows the Y∂Θ∂  on the moving wall for 
condition A (cold wall). The heat flux is 
distributed symmetrically for Stokes flow, but 
at the higher Reynolds numbers, a boundary-
layer type of distribution is evident, falling 
from the singularity at the upstream corner to 
a minimum value very near the downstream 
corner. Sufficiently near the corner, conduction 
dominates the heat-transfer mechanism and 
the asymptotic temperature distribution is 

( )πθ−=Θ 21 , where θ  is the angle measured 
from the moving wall. This behavior is 
clearly evident in Figure 10. 
     The heat flux to the stationary wall is presented 
in Figure 14 as N∂Θ∂  vs. running length ξ  for 
case A. (To interpret the figure, imagine the sides 
of the square unfolded to lie in the plane of the 
bottom wall.) The symmetric solution for Stokes 
flow is shown, with the temperature gradient 
increasing with increasing Reynolds number, 
except far downstream where the trend is reversed. 
This reversal is caused by conduction of heat 
upstream from the hot moving wall; the region 
affected by this upstream conduction must shrink 
with increasing Reynolds number. The boundary-
layer approximation is inadequate near the bottom 
of the square, especially near the corners, owing to 
the low flow velocities there. However, it is 
significant that the heating near the centre of the 
bottom wall is approaching the boundary-layer 
value. On the downstream sidewall X=1, the 
temperature gradient actually overshoots and 
then roughly parallels the boundary-layer curve 
before the final rise near the hot moving wall. The 
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Figure 10. Isotherms for Case A. 
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Figure 11. Isotherms for Case B. 
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Figure 12. Temperature profiles on vertical line through vortex center. 
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boundary-layer theory would be expected to cover 
most parts of both sidewalls, and this is verified by 
the results. 

 
 
 

5. CONCLUSION 
 
In the present treatise, viscous incompressible 
flow and heat transfer in a square driven cavity 
was examined using the SIMPLER algorithm. 
It is shown that flow in the cavity at low 
Reynolds numbers follows a symmetric pattern 
while at higher Reynolds numbers, a thin 
boundary layer formed on the walls and an 
inviscid core region develops. Secondary 
eddies are present in the bottom corners of the 
square at all Reynolds numbers. The distribution 
of thermal energy within the recirculating flow 
is closely analogous to that of vorticity. 
Comparison of the results obtained in this 
work with those reported in the literature 
showed that SIMPLER is an accurate and 
reliable method for computation of convective 
heat transfer problems. 
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7. NOMENCLATURE 
 
a oefficient in discretization equation 
b  source term in discretization equation 

PC  specific heat capacity of fluid 

L  cavity width 

1L  last grid point in X direction 

1M  last grid point in Y direction 
N  coordinate normal to the  surface 
p  pressure 
P  non-dimensional pressure 

TP  non-dimensional total pressure 
Pr  Prandtl number 
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Figure 13. Normalized heat flux on moving wall for Case A. 

ξ
H

EA
T

FL
U

X

1 2 3 4

10

20

30 Re=1
Re=100
Re=400
Re=1000

 
 
 
Figure 14. Normalized heat flux on stationary walls for Case 
B. 
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LRe  Reynolds number 
t  non-dimensional time 
T temperature 

U,u  velocity 

0u  velocity of moving wall 

Vv,  velocity 
Xx,  coordinates 
Yy,  coordinates 

 
Greek Symbols 
 

α  thermal diffusivity of fluid 
Θ  non-dimensional temperature 
µ  dynamic viscosity 
ν  kinematic viscosity 
ξ  length 
ρ  density 
τ  time 
φ general variable  
Φ  dissipation function 
 
Subscripts 
 

P  grid point 

8. REFERENCES 
 
1. Burggraf, O. R., �Analytical and Numerical Studies of the 

Structure of Steady Separated Flows�, J. Fluid Mech., 
Vol. 24, (1966), 113-151. 

2. Bozeman, J. D. and Dalton, C., �Numerical Study of 
Viscous Flow in a Cavity�, J. Comp. Phys., Vol. 12, 
(1973), 348-363. 

3. Rubin, S. G. and Harris, J. E., �Numerical Studies of 
Incompressible Viscous Flow in Driven Cavity�, NASA, 
(1975), SP-378. 

4. Ghia, U., Ghia, K. N. and Shin, C. T.,  �High-Re 
Solution for Incompressible Flow Using the 
N a v i e r - S t o k e s  E q u a t i o n s  a n d  a  M u l t i g r i d  
Method�, J. Comp. Phys. ,  Vol.  48, (1982), 387-
411. 

5. Mills, R. D., �Numerical Solutions of the Viscous Flow 
Equations for a Class of Closed Flows�, J. R. Aeronaut. 
Soc., Vol. 69, (1965), 714-718. 

6. Pan, F. and Acrivos, A., �Steady Flows in Rectangular 
Cavities�, J. Fluid. Mech., Vol. 28, (1967), 643-
655. 

7. Anderson, D. A., Tannehil, J. C. and Pletcher, R. H., 
�Computational Fluid Mechanics and Heat Transfer. 
Hemisphere�, New York, (1984). 

8. Patankar, S. V., �Numerical Heat Transfer and Fluid 
Flow�, Hemisphere, New York, (1980). 

9. Settari, A. and Aziz, K.,�A Generalization of the Additive 
Correction Methods for the Iterative Solution of Matrix 
Equations�, SIAM J. Numer, Anal., Vol. 10, (1973), 
506-521. 

10. Johnson, R. W., (Editor), �The Handbook of Fluid 
Dynamics�, Springer and CRC Press, New York, 
(1998). 

 


