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Abstract   A pressure-based implicit procedure to solve the Euler and Navier-Stokes equations on a 
nonorthogonal mesh with collocated finite volume formulation is described. The boundedness criteria 
for this procedure are determained from Normalized Variable diagram (NVD) scheme.  The 
procedure incorporates the ε−k  eddy-viscosity turbulence model. The algorithm is tested for 
inviscid and turbulent transonic aerodynamic flows around airfoils for different Mach number and 
angle of attack where the results are compared with other existing numerical solutions for inviscid 
flow and with experiment and another numerical solution for the turbulent case. The comparisons 
show that the resolution quality of the NVD scheme is considerable. 
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در اين مقاله يک روند عددی حجم محدود بر مبنای الگوريتم فشار مبنا برای حـل معـادلات اويلـر و                        چکيده

معيـار محدودکننـدگی در رونـد    . وکس بر روی يک شبکه غير متعامد و هم مکان تـشريح شـده اسـت    ناوير است 
بـرای  . عددی فوق برای کنترل شاره در سطوح سلولها بر مبنای تکنيک دياگرام متغيرهای بی بعد شده می باشـد                  

وسط اين روند، جريان آيروديناميک گـذر    ت. استفاده شده است   ε−kمدل کردن ويسکوزيته توربولانس از مدل       
صوتی آشفته و بدون لزجت در روی مقاطع آيروديناميکی برای اعداد ماخ متفاوت و تعدادی زاويه حملـه شـبيه    

ايـن  . سازی شده و نتايج استخراج شده با نتايج عددی منتشر شده و داده هـای تجربـی مقايـسه گرديـده اسـت                  
توسط تکنيک متغييرهای بی بعد شده برای کنترل شاره هـا قابـل ملاحظـه               مقايسه نشان می دهد که کيفيت حل        

 .می باشد
 
 
 

1. INTRODUCTION 
 

Traditionally most transonic flow simulations are 
carried out by using density-based methods in 
which density is used as a primary variable in the 
continuity equation while pressure is extracted 
from the equation of state. There are a few 
successful computations obtained from the 
pressure–based method, which use pressure as the 
dependent variable, like Zhou & Davidson [1], 
Zhou et al [2], Patankar [3], Rhie [4], Shyy & 
Chen [5]. The advantage of the pressure-based 
schemes is that they are efficient for both 
compressible and incompressible flows, therefore 
they are often argued to be an algorithm for all 
speed flows. Almost all of the pressure-based 

methods use a dissipation model, which applies an 
artificial dissipation to prevent the unphysical 
behavior. An important problem in discretization 
of flow equations is estimating of convective terms 
on cell faces using neighboring nodes. High order 
schemes tend to provoke oscillations in the 
solution when the local Peclet number is high in 
combination with steep gradients of the flow 
properties. To suppress oscillations associated with 
higher–order schemes, many techniques have been 
advertised. 
     Recently, several authors have implemented the 
total variation diminishing (TVD), essentially 
nonoscillating (ENO) and normalized Variable 
diagram (NVD) techniques in pressure-based 
algorithm. Lien and Leschziner [6] introduced a 



300 - Vol. 17, No. 3, October 2004 IJE Transactions B: Applications 

MUSCL (Van Leer [7]) type of TVD Scheme into 
their pressure-based procedure; the flux limiter in 
their work relies on the gradients of the solved 
dependent variable. There is also the work of Shyy 
and Thakur [8] who developed what they call the 
controlled variation scheme (CVS), which is based 
on the formalism of the TVD concept. Their CVS 
scheme was generalized to compressible flows 
containing shocks as well as incompressible flows 
by Thakur et al. [9]. Issa and Javareshkian [10] 
implemented a high resolution TVD scheme with 
characteristic-variable-based flux limiters into a 
pressure-based finite volume method. Kobayashi 
and Pereira [11] and Batten et al. [12] where 
characteristic-based flux computations were 
introduced into pressure-correction solution 
procedures. Kobayashi and Pereira use the 
essentially nonoscillating scheme for the flux 
calculation. Leonard [13] has generalized the 
formulation of the high–resolution flux limiter 
schemes using what is called the normalized 
variable formulation (NVF). The NVF 
methodology has provided a good framework for 
development of high – resolution schemes that 
combine simplicity of implementation with high 
accuracy and boundedness. Most of NVD methods 
use different differencing schemes through the 
solution domain. This procedure includes some 
kind of switching between the differencing 
schemes. 
     Switching introduces additional instability into 
the computation. The worst case is that instead of a 
single solution for steady state problem, the 
differencing scheme creates two or more 
unconverged solution with the cyclic switching 
between them. In that case it is impossible to 
obtain a converged solution and the convergence 
stalls at some level. Javareshkian [14] has recently 
developed the Second and Blending Interpolation 
Combine (SBIC) scheme with the minimum 
number of adjustable parameters in the pressure 
based algorithm. One advantage of this scheme in 
comparison with all other differencing NVD 
schemes is some kind of switching only two 
differencing schemes, central differencing and 
blending between upwind and central differencing 
are included that blending factor is determined 
automatically. Another advantage of this scheme in 
comparison with TVD and ENO schemes is the 
simplicity of implementation with high accuracy 

and boundedness. This scheme has been used to 
the computation of steady subsonic, transonic and 
supersonic internal as well as to the transient 
problem [14]. Djavareshkian and Baheri Islami 
[15] developed this scheme for simulation of flow 
around the airfoil. 
     The contribution of the present paper is to 
extend this scheme and apply it to new cases for 
which the results are compared against available 
experimental data and other numerical solutions; 
these include transonic  turbulent airfoil flow 
simulation and the calculaiton of  the aerodynamic 
coefficients for many inviscid/turbulent test cases. 

 
 
 

2. GOVERNING EQUATIONS 
 

The basic equations, which describe conservation 
of mass, momentum and scalar quantities, can be 
expressed in Cartesian tensor form as 
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     The stress tensor and scalar flux vector are 
usually expressed in terms of basic dependent 
variable. The stress tensor for a Newtonian fluid is 
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     The scalar flux vector usually given by the 
Fourier-type law: 
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     Turbulence is accounted for by adopting the 

ε−k  turbulence model. The governing equations 
for these quantities are [16] 
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The turbulent viscosity and diffusivity coefficients 
are defined by  
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and the generation term G in Equations 6 and 7 is 
defined by 
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     The terms compD  and diffΘ  are additional 
contributions to the standard ε−k  model often 
introduced to account for the effects of 
compressibility [16]. In this work, the models 
proposed by Yang et al. [16] are adopted, namely, 
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0diff =Θ  (12) 
 
     The latter being appropriate for high-Reynolds-
number flows, as is the case here. The values of the 
turbulence model coefficients used in the present 
work are given in Table 1. 
 
 
 

3. DISCRETIZATION 
 
The discretization of the above differential 

equations is carried out using a finite-volume 
approach. First, the solution domain is divided into 
a finite number of discrete volumes or cells, where 
all variables are stored at their geometric centers 
(see e.g. Figure 1). The equations are then 
integrated over all the control volumes by using the 
Gaussian theorem. The discrete expressions are 
presented affected with reference to only one face 
of the control volume, namely, e , for the sake of 
brevity. 
     For any variable φ  (which may also stand for 
the velocity components), the result of the 
integration yields 
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where I ’s are the combined cell-face convection 

cI  and diffusion DI  fluxes. The diffusion flux is 
approximated by central differences and can be 
written for cell-face e  of the control volume in 
Figure 1 as: 
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D
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where φ
eS  stands for cross derivative arising from 

mesh nonorthogonality. The discretization of the 
convective flux, however, requires special 
attention and is the subject of the various schemes 
developed. A representation of the convective flux 
for cell-face e  is: 
 

eeee
c
e F).V.(I φ=φΑρ=  (15) 

TABLE 1. Values of Empirical Coefficients in the 
Standard ε−k  Turbulence Model.  

 

1C  2C  µC  kσ  εσ  
1.44 1.92 0.09 1.0 1.3 

 

 
Figure 1. Node values in the normalized variable approach. 
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the value of eφ  is not known and should be 
estimated by interpolation, from the values at 
neighboring grid points. The expression for the eφ  
is determined by the SBIC scheme, that is based on 
the NVD technique, used for interpolation from the 
nodes E, P and W. The expression can be written 
as 
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the functional relationship used in SBIC [14] 
scheme for e
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φ  is illustrated in Figure 2 and is 

given by: 
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the limits on the selection of K  could be 
determined in the following way. Obviously the 
lower limit is 0K = , which would represent 
switching between upwind and central 
differencing. This is not favorable because; it is 
essential to avoid the abrupt switching between the 
schemes in order to achieve the converged 
solution. The value of K  should be kept as low as 
possible in order to achieve the maximum 
resolution of the scheme. 
     With higher-order schemes, the evaluation of 

eφ  may involve a large number of neighboring 
grid points. Therefore, in order to simplify the 
solution of the resulting system of algebraic 
equations, a compacting procedure is usually used. 
The deferred correction procedure of Rubin and 
Khosla [17] adapted in this work, is based on 
replacing the convective flux at control volume 
face by an equivalent flux given by 
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where the superscript U  denotes values obtained 
by the first-order upwind scheme, and eφ  represents 
cell face value computed by SBIC scheme. With 
the preceding assumption, each discretized equation 
contains five unknowns (in two dimensions), and 
the matrix of coefficients of the resulting system of 
equations is pentadiagonal and always diagonally 
dominates since it is formed using the first order 
upwind scheme. The final form of the discretized 
equation from each approximation is given as: 
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where 'A s are the convection-diffusion coefficients. 

The term 'Sφ  in Equation 18 contains quantities 
arising from non-orthogonality, numerical 
dissipation terms and external sources, and 

P)t/( φδρδυ  of the old time-step/iteration level 
(for time dependent equation). For the momentum 
equations it is easy to separate out the pressure-
gradient source from the convected momentum 
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Figure 2. Normalized variable diagram (NVD) 
for SBIC scheme. 
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fluxes. dcS  is the contribution due to the adapted 
deferred correction procedure. 
 
 
 

4. SOLUTION ALGORITHM 
 
The set of Equation 18 is solved for the primitive 
variable (velocity components and energy) together 
with continuity utilizing pressure-based implicit 
sequential solution methods. The technique used is 
the SIMPLE scheme presented herein. In this 
technique, the methodology has to be adapted to 
handle the way in which the fluxes are computed 
in Equations 15-17. The adapted SIMPLE scheme 
consists of a predictor and corrector sequence of 
steps at every iteration. The predictor step solves 
the implicit momentum equation using the old 
pressure field. Thus, for example, for the u  
component, the momentum predictor stage can be 
written as 
 

'
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where H  contains all terms relating to the 
surrounding nodes and superscripts * and o denote 
intermediate and previous iteration values, 
respectively. Note that the pressure-gradient term 
is now written out explicitly; it is extruded from 
the total momentum flux by simple subtraction and 
addition. The corrector-step equation can be 
written as 
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     Hence, from Equations 19 and 20 
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     Now the continuity equation demands that 
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for steady-state flows. For compressible flows it is 
essential to account for the effect of change of 
density on the mass flux as the pressure changes. 

This is accounted for by linearizing the mass fluxes 
as flows [18] 
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where Equation 21 is invoked to eliminate uδ , and 
δρ  is related to pδ  by the appropriate equation of 
state. Substitution of Equation 24 into Equation 22 
yields a pressure-correction equation of the form  
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where PS  is the finite difference analog of 

)u( *oρ∇ , which vanishes when the solution is 
converged. The A  coefficients in Equation 25 take 
the form (the expression for EA  is given as an 
example) 
 

ee
*

ee
o

E )
dp
d.()ua~()Da~(A ρ

λ−ρ=  (26) 

 
where λ  is a factor whose significance is 
explained subsequently. The mass flux at a cell 
face is computed from nodal values of density and 
velocity, the cell-face values of o

eρ and *
eu in 

Equation 26 are not readily available. To compute 
those values, assumptions concerning the variations 
of ρ  need to be made. In upwinding 1=λ  when 
u  is positive; otherwise it would be zero. 
Alternatively, in central difference formula 2/1=λ . 
     Such assumptions have no influence whatsoever 
on the final solution because they affect only the 
pressure-correction coefficients, and as pδ  goes to 
zero at convergence, the solution is, therefore, 
independent of how those coefficients are 
formulated; however, they do influence the 
convergence behavior [19]. 
     The structure of the coefficients in Equation 25 
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Figure 3. Part of the grid used for the NACA 0012 airfoil. 

simulates the hyperbolic nature of the equation 
system. Indeed, a closer inspection of expression 
(26) would reveal an upstream bias of the 
coefficients ( A  decreases as u  increases), and this 
bias is proportional to the square of the Mach 
number. Also note that the coefficients reduce 
identically to their incompressible form in the limit 
of zero Mach number. 
     The overall solution procedure follows the same 
steps as in the standard SIMPLE algorithm, with 
the exception of solving the hyperbolic-like 
pressure-correction (25). To ensure convergence of 
the iteration process, under relaxation factors 
between 0.1 and 0.2 for pressure correction and 
between 0.2 and 0.5 for the other variables are 
employed. 
 
 
 

5. BOUNDARY CONDITIONS 
 
At the inlet, only three of the four variable need to 
be prescribed: the total temperature, the angle of 
attack, and the total pressure. The pressure is 
obtained by zeroth order extrapolation from 
interior points. At outlet, the pressure is fixed when 
the outlet is subsonic. Slip boundary conditions are 
used for far field. Slip boundary conditions are also 
used on the lower and upper walls of the airfoil in 
the inviscid flow test cases. In the case of viscous 

flow, the non-slip condition is applied at the solid 
surfaces. To account for the steep variations in 
turbulent boundary layers near solid walls, wall 
functions, which define the velocity profile in the 
vicinity of no-slip boundaries, are employed [20]. 
 
 
 

6. RESULTS 
 
6.1. Inviscid Part   In the first part, the inviscid 
flow calculations are presented and the second part 
turbulent flow is considered. Computational results 
are shown in several figures for a baseline series of 
test cases. The results are compared with existing 
numerical or experimental solutions obtained by 
others. In this paper H grid is used (Figure 3). Grid 
independence studies were performed for inviscid 
cases on grids of 116× 149, 150× 149 and 
301× 155 [21]. The far-field boundary placed at 17 
chord lengths away from the airfoil surface and 20 
chord lengths away from the leading and trailing 
edges. The value of K  in SBIC method for all 
cases is 0.4. 
     The first case which considered is transonic 
flow around an NACA 0012 airfoil at 85.0M =∞ , 
α=0º and a 116× 149 grid. The distribution of 
pressure coefficient on the upper and lower 
surfaces of airfoil are shown in Figure 4. The 
results are compared with those of presented in 
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Figure 4. Surface pressure coefficient distribution α =0 and 
M=0.85. 
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[22]. It can be seen that the computed results 
show good agreement. A sharp discontinuity is 
achieved successfully for both shock strength and 
location. Also aerodynamic coefficients for this 
case are presented in Table 2. Accuracy of these 
coefficients is good. 
     The second case is transonic flow around 
NACA0012 airfoil at 85.0M =∞ , α = 1º and a 
150× 149 grid. For this case distribution of 

pressure coefficient on the upper and lower surface 
of airfoil are shown in Figure 5. The results are 
compared with those of Zhou and Davidson [23]. 
The results of the SBIC scheme show that the 
upper and lower surface shocks are captured well. 
Aerodynamic coefficients are presented in Table 3 
and compared with available results. Agreement 
between results is presented. 
     Third case is for 8.0M =∞ , α  = 1.25º and a 
150× 149 grid. The distribution of pressure 
coefficient on the upper and lower surfaces of 
airfoil are shown in Figure 6. It can be seen that 

TABLE 2. Aerodynamic coefficients NACA0012: M = 0.85, 
α  = 0. 
 

CM CD CL    Method 

0 0.0471 0    Rizzi [22] 

0 0.0559 0    Zhou & Davidson [23] 

0 0.049 0    Current Method 

 
 
TABLE 3. Aerodynamic Coefficients NACA0012: M = 0.85, 
α  = 1. 

 

CM CD CL    Method 

-0.1393 0.0604 0.3938    Pulliam [30] 

-0.1282 0.0662 0.3890    Zhou & Davidson [23] 

- 0.0418 0.3520    Dervieux & Debiez [31] 

- 0.0582 0.3861    Jameson & Martinelli [32] 

-0.119 0.0584 0.331    Present Method 

 
 
TABLE 4. Aerodynamic Coefficients NACA0012 M = 0.8, 
α= 1.25. 
 

CM CD CL    Method 

-0.0377 0.023 0.3513    Rizzi [22] 

-0.0432 0.0237 0.3695    Caughey [33] 

-0.0411 0.0236 0.3618    Pulliam [30] 

-0.0375 0.022 0.3575    Zhou & Davidson [23] 

- 0.0232 0.3654 Jameson & Martinelli [32] 

0.04123 0.0248 0.334559    Present Method 
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Figure 5. Surface pressure coefficient distribution α = 1 and 
M = 0.85. 
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Figure 6. Surface pressure coefficient distribution α = 1.25 
and M = 0.8. 



306 - Vol. 17, No. 3, October 2004 IJE Transactions B: Applications 

these results (especially shock gradients) are nearly 
the same for two methods. In this case, results are 
compared with those of Anderson and James [24]. 
Comparison between aerodynamic coefficients is 
performed in Table 4. 
 
6.2. Viscous Part   For turbulent flow, the ε−k  
turbulence model has been used. Grid independence 
studies were performed for these cases on grids of 
301× 155, 494× 153, 544× 153 and 700× 250 [21]. 
The first case is transonic flow around NACA 
0012 airfoil at 7.0M =∞ , α=1.49º, 6109Re ×=∞  

and a 494× 153 grid. 762 nodes are located on the 
total surface of the airfoil. Distribution of pressure 
coefficient, contours of pressure coefficient and 
Mach number are shown in Figures 7(a), 7(b) and 
7(c). The results are compared with those of Harris 

[25]. Aerodynamic coefficients are compared with 
those of presented in [26]. Agreement between 
contours and lift coefficient is very good. 
     Another case is turbulent flow around an 
RAE 2822 airfoil at 734.0M =∞ , α = 2.54º, 

6105.6Re ×=∞  and a 544× 153 grid. 728 nodes 
are located on the total surface of the airfoil. 
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(c) 
 

Figure 7. (a) Surface pressure coefficient, Distribution α = 1.49 and M = 0.7, CL = 0.257 (SBIC), CL = 0.2562 (Anderson); 
(b) Pressure coefficient contours, α = 1.49 and M = 0.7; (c) Much number contours α = 1.49 and M = 0.7. 
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Figure 8. (a) Surface pressure coefficient distribution α = 2.54 and M = 0.734, CL = 0.7513 (SBIC), CL = 0.794 (Hellström); 
(b) Pressure coefficient contours α = 2.54 and M = 0.734; (c) Much number contours α = 2.54 and M = 0.734; 

(d) Convergence histories for α = 2.54 and M = 0.734.
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     Related figures for this case are 8(a), 8(b) and 
8(c). Pressure coefficient distribution is compared 
with experimental results of Cook et al., which is 
resented in [27]. Aerodynamic coefficients are 
compared with those of moHellstr &&  and Davidson 

[28]. Convergence histories for the six equations 
are shown in Figure 8(d). In the start of the 
running, the value of K in SBIC scheme is chosen 
with high value, 0.8, for better convergence, after 
much iteration, in order to achieve the maximum 
resolution of the scheme, K is changed from 0.8 to 
0.4. As you can see, when the K is changed after 

2400 iteration, the convergence histories are 
suddenly changed. 
     Third case is turbulent flow around an RAE 
2822 airfoil at 754.0M =∞ , α=2.57º and 6105.6Re ×=∞ . 
Grid, number of nodes and comparison reference 
are similar to previous case. Distribution of pressure 
coefficient, contours of pressure coefficient and 
Mach number are shown in Figures 9(a), 9(b) and 
9(c). It is obvious from Figure 9(a) that the shock 
location is predicted too late, because the flow 
separates at the shock. The amount of separation 
and the position of the shock are very dependent 
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Figure 9. (a) Surface pressure coefficient distribution α = 2.57 and M = 0.754, CL = 0.784 (SBIC),CL = 0.783 (Hellström); 
(b) Pressure coefficient contours α = 2.57 and M = 0.754; (c) Mach number contours, α = 2.57 and M = 0.754. 
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on the turbulence model used [28,29]. The 
influence of turbulence models on lift and drag 
coefficients are presented in Table 5 [28]. 
Agreement between aerodynamic coefficient of 
present study and those of Table 5, which obtained 
by ε−k  turbulence model, is considerable. 
 
 
 

7. CONCLUSION 
 
A pressure–based implicit procedure has been 
described, that incorporates a new NVD scheme. 
The SBIC scheme is applied to calculate external 
inviscid and turbulent transonic flow and the 
results are compared with experiment and other 
existing numerical solutions. This scheme is able 
to accurately predict the shock locations and 
aerodynamic coefficients. The main findings can 
be summarized as follows: 
 
1. The agreement between the results of the SBIC 

scheme with experimental and other numerical 
results is excellent. 

2. The simplicity of implementation is one of the 
advantages of the SBIC scheme. 

3. The grid dependence test of the inviscid test 
case indicates that an acceptable solution can 
be obtained even on fairly coarse meshes, 
verifying the practicability of the method for 
engineering applications. 

4. Application of the method to turbulent flow 

validates the implementation in frictional flow. 
5. Since the flow separates at the shock, the 

shock location for turbulent flow is predicted 
too late by ε−k  turbulent model. 

 
 
 

8. NOMENCLATURE 
 

D,A  = finite difference coefficients 
a~  = cell face area 

21 C,C,Cµ  = empirical coefficients 
F  = mass flux 
I  = flux 
k  = kinetic energy of turbulence 
K  = a factor in SBIC scheme to 

determine a special scheme 
∞M  = a free stream Mach number 

q  = scalar flux vector 

∞R  = a free stream Reynolds number 
T  = stress tensor 

v,u  = mean (time-average) velocity 
components in x and y directions, 
respectively 

α  = angle of attack 
Γ  = diffusivity coefficient 

tΓ  = turbulent diffusivity coefficient 
δυ  = cell volume 
ε  = volumetric rate of dissipation 
µ  = dynamic viscosity 

tµ  = turbulent viscosity   
ρ  = density 

kσ  = turbulent prandtl number for 
turbulent kinetic energy 

εσ  = turbulent prandtl number for 
dissipation rate 

φ  = scalar quantity 
φ
~  = normalized scalar quantity 
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