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Abstract   In this paper, we study N-policy for a finite population Bernoulli feedback queuing model 
for machine repair problem with degraded failure. The running times of the machines between 
breakdowns have an exponential distribution. The repair times of the machines are independent and 
identically distributed random variables. If at any time a machine fails, it is sent to the repairman for 
repairing, the repairman restores the machine to the state as before failure. When the failed machine 
finds the repairman busy upon its failure, it has to wait until its turn as repairman stores only one 
machine at a time. When all the standby components are used, the failure of components occurs in a 
degraded fashion. To obtain the steady-state probabilities, the supplementary variable is introduced 
and a recursive method is employed. Some performance measures viz. expected number of down 
machines, expected number of machines waiting for repair in the queue, expected number of 
operating machines, expected number of spare machines, machine availability, etc. are established. 
Some special cases are deduced that match with the earlier existing results. To provide sensitivity 
analysis, numerical experiment is performed.  
 
Key Words   M/G/1 Queue, N-Policy, Machine Repair, Mixed Standby, Degraded Failure, 
Bernoulli Feedback 
 

 صف با جمعيتسيستم توسط  مساله تعمير ماشينی که خرابی آن در حال نقصان است ، مقاله   در اينچكيده
زمان کارکرد ماشين در فاصله بين دو خرابی . گيرد دارای برگشت با تابع برنولی، مورد بررسی قرار میدود مح

هر . تعمير ماشين، متغيرهای تصادفی مستقل با توزيع يک شکل هستندهای زمان . دارای توزيع نمايي است
شود، برای تعمير فرستاده شده و تعمير کار آن را تعمير نموده و به صورت قبل از  زمانی که ماشين خراب می

ون تعداد تعمير کار يک نفر است، اگر هنگام فرستادن ماشين، تعمير کار مشغول باشد، چ. آورد خرابی در می
برای به دست آوردن احتمالات در حالت پايدار، متغير های . بايد صبر کرد تا نوبت تعمير فرا رسد" اجبارا

ين های خراب چند معيار عملکرد مثل تعداد ماش. شود شوند و از روش برگشتی استفاده می کمکی تعريف می
ي ها نيهايی که برای تعمير در صف انتظار هستند، ميانگين تعداد ماشِ شده در حال انتظار، ميانگين تعداد ماشين

چند حالت خاص که با محاسبات موجود و .  محاسبه می شوند...در حال کار، دسترس پذيری ماشين ها و 
  .ليل حساسيت، محاسبات عددی نيز انجام شده استبرای تح. شود ست، استخراج میاانجام شده در تطابق 

 
 

1. INTRODUCTION 
 
In the production units, one of the commonly used 
objective functions is to minimize the expected 
total cost while maintaining the production up to a 
desired level. The other motto is to finish the repair 
of machines as early as possible so as to avoid the 
loss of production and increase the utilization of 
the resources. In this paper, we study M/G/1 
machine repair model consisting of M operating 
machines along with S cold standby and Y warm 

standby components. Whenever any operating 
machine fails, it is replaced by cold standby if 
available. When all the cold standbys are 
exhausted, then warm standbys are used to replace 
failed machines. There is provision of single 
repairman who turns on; when N failed machines 
are accumulated, to renew these machines in order 
of their breakdowns. 
     The supplementary variable technique to analyze 
M/G/1 queue was applied by Keilson and 
Kooharian [1], Takacs [2], Hokstad [3]. The 
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characterization and computation of optimal 
policies for operating an M/G/1 queuing system 
with removable server was also given by Bell 
[4]. Courtois and Georges [5] discussed a single-
server finite queuing model with state-dependent 
arrival and service processes. Herzog et al. [6] 
gave the solution of M/G/1 queuing problem by a 
recursive technique. Gupta and Srinivasa Rao [7] 
discussed a recursive method for M/G/1/K model 
to compute the steady-state probabilities. Zhang 
and Love [8] suggested the threshold policy for 
the M/G/1 queue with an exceptional first vacation. 
For optimal control of a removable and non-
reliable server, Wang et al. [9] developed M/H2/1 
queuing system. Lillo and Martin [10] developed 
optimal exhaustive policies for M/G/1 queue. 
Wang and Ke [11] suggested a recursive method 
for optimal control of an M/G/1 queuing system 
with finite capacity and infinite capacity.  
     The concept of N-Policy was introduced by 
Yadin and Naor [12].  According to this 
threshold policy, the repairman turns on when 
N failed machines are accumulated in the 
system and turns off if no failed machine is 
present there. M/Ek/1 queuing system, which 
is optimally controlled by removable service 
station, was suggested by Wang and Huang [13]. 
Recently, Jain [14] discussed N-policy for 
redundant repairable system with additional 
repairmen. Jain et al. [15] also studied degraded 
machining system with spares and server 
breakdowns by using N-policy. 
     A single-server queue with feedback was 
initially suggested by Takacs [16]. Optimal 
operating policies for M/G/1 queuing system were 
considered by Heyman [17]. Disney et al. [18] 
studied M/G/1 queue with instantaneous Bernoulli 
feedback. The sojourn time in M/G/1 queue with 
Bernoulli feedback was provided by Disney [19]. 
Fontana and Berzosa [20] gave stationary queue-
length distribution in an M/G/1 queue with two 
non-preemptive priorities and general feedback. 
Simon [21] studied priority queues with feedback. 
Takine et al. [22] considered sojourn times in 
vacation and polling systems with Bernoulli 
feedback. Gong et al. [23] suggested M/G/1 queue 
with queue-length dependent arrival rate. The 
response time in M/G/1 queue with service in 
random order and Bernoulli feedback was 
investigated by Takagi [24]. Boxma and Yechiali 

[25] considered an M/G/1 queue with multiple 
types of feedback and gated vacations. Medhi [26] 
discussed the response time for M/G/1 queuing 
system with Bernoulli feedback. 
     In previous studies, mixed standbys have been 
considered only for simple Markovian model (cf. 
Wang and Kuo [27]). In this paper, we introduce 
the concept of N-policy and Bernoulli feedback for 
degraded machine repair problem with the 
provision of mixed standbys. The concept of 
degraded components included in investigation 
makes our model closer to real time machining 
system in different frame-work of production, 
manufacturing, computer and communication 
system, etc. The rest of the paper is organized as 
follows: The model description along with 
underlying assumptions, notations and applications 
are described in section 2. In section 3, governing 
equations and their analysis by using recursive 
method is provided. Several performance measures 
are obtained in section 4. In section 5, we discuss 
some special cases. Numerical results to validate 
the analytical results are provided in section 6. In 
final section 7, the concluding remarks and future 
direction for research are given.  
 
 
 

2. MODEL DESCRIPTION AND 
APPLICATION 

 
The reliability and availability ratings of machining 
system with degraded components have necessitated 
the provision of mixed standbys due to cost and 
space constraints. In the operation of manufacturing, 
the failed components may return to get repair 
again because in some cases, the repair is not done 
successfully first time. Bernoulli feedback model 
based on queue theoretic approach may give 
proper insight to system manager to deal with such 
situation. In computer and communication system 
also, an interruption due to degradation in the 
components can be realized. The performance 
modeling of such systems based on optimal control 
policy pertaining to mixed standbys, threshold 
level and repair facility can play important role for 
the suitable choice of system parameter. The 
proper combination of warm and cold spares may 
be used to improve the productivity of the 
manufacturing industry. 
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     We consider M/G/1 degraded machine repair 
model having M operating machines along with S 
cold standby and Y warm standby components. A 
supplementary variable technique is developed to 
analyze the system. For modeling purpose, 
following assumptions are made: 
     In case of failed operating machine, it is 
replaced by a cold standby component when there 
are less than S failed machines. 
     The life times of operating and standby 
components are exponentially distributed with 
rates λ and α  respectively. 
     The failed machine is sent to the repairman for 
repair. If repairman is busy, it has to wait in the 
queue until the repair of previously failed 
machines is completed. 
     The repair times of the failed components are 
independent and identically distributed. For repair 
FIFO discipline is followed.   
     The switchover times from failure state to repair 
state, from repair state to standby state and from 
standby state to operating state are assumed to be 
negligible. 
     The repairman turns on when there are N failed 
components and turns off as soon as the system 
becomes empty. 
     When all standby (warm and cold) components 
are used, then due to stress, the components may 
fail in degraded manner with failure rate, YSn −−λ . 
     When the repair of the machine is 
unsatisfactory, it is again sent back to repair with 
probability (1-σ ) so that Bernoulli feedback 
mechanism is considered. 
     After the satisfactory repair, the machine again 
becomes as good as new one and joins the set of 
operating (standby) machines if all standbys are 
exhausted (not exhausted). 

     The following notations are also used to 
develop the mathematical model: 

P0,0(t) Probability that there is no failed 
machine in the system at time t. 

P0,n(t) Probability that there are n failed 
machines in the system at time t when 
repairman is in turned off state. 

P1,n(u,t) Probability of being n failed machines in 
the system at time t when repairman is 
turned on and working. 

U(t) Remaining service time for the machine 

under repair at time t. 
H Random variable denoting the service 

time for a super customer in Bernoulli 
feedback. 

H(u) Distribution function of H. 
h(u) Probability density function of H. 
H*(θ) Laplace Stieltjes transform of H. 
H*(1)(θ) 1st order derivative of H with respect to 

θ. 
B Random variable denoting service time. 
B(u) Distribution function of B. 
b(u) Probability density function of B. 
b1 Mean repair time. 
B*(θ) Laplace Stieltjes transform of B. 
B*(1)(θ) 1st order derivative of B* with respect to 

θ. 

P )(*
,1 θn  Laplace Stieltjes transform of P1,n(u). 

 

     In the next section, we formulate the 
mathematical model to obtain the steady-state 
probabilities that can be further employed to 
predict the various performance metrics. The 
modeling and analysis of the M/G/1 machining 
system under N-policy and Bernoulli feedback 
may be helpful to uncover the control issues so as 
to improve the grade of service (GoS) to desired 
extent subject to economic constraints. 
 
 
 

3. EQUATIONS AND ANALYSIS 
 

Constructing governing equations as follow does 
the system modeling: 
 

)t,0(P)t(PM)t(P
t 1,10,00,0 +λ−=

∂
∂  (1) 

 

)t(PM)t(PM)t(P
t 1n,0n,0n,0 −λ+λ−=

∂
∂ , 

1 ≤ n ≤ N-1 (2) 
 

)u(h)t,0(P)t,u(PM)t,u(P
ut 2,11,11,1 +λ−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂  
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)u(h)t,0(P

)t,u(PM)t,u(PM)t,u(P
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+
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1 ≤ n ≤ N-1 (4) 
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N<n<S (6) 
 

)u(h)t,0(P)t,u(PM

)t,u(P)YM()t,u(P
ut
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S,1S,1

+− +λ
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⎠
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⎝
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∂
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∂
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)u(h)t,0(P)t,u(P])1nYS(M[

)t,u(P])nYS(M[)t,u(P
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S<n<S+Y (8) 
 

)u(h)t,0(P)t,u(P)1nK(
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S+Y ≤ n< K (=M+S+Y) (9) 
 

)t,u(P)t,u(P
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     For steady-state we define 
 

)t(PlimP n,0tn,0 ∞→= , n = 0, 1, 2, …, N-1 

 
)t(PlimP n,1tn,1 ∞→= , n = 1, 2, …, K 

)t,u(Plim)u(P n,1tn,1 ∞→= , n = 1, 2, …, K 
 
Further define 
 

)u(hPlim)u(P 1N,0t1N,0 −∞→− = , (11) 
 
The steady-state equations are given as 
 

)0(PPM0 1,10,0 +λ−=  (12) 
 

)0(PPM0 1,10,0 +λ−=  ,                     1 ≤ n ≤ N-1 (13) 
 

)u(h)0(P)u(PM)u(P
du
d

2,11,11.1 +λ−=−  (14) 

 

)u(h)0(P)u(PM)u(PM)u(P
du
d

1n,11n,1n,1n.1 +− +λ+λ−=−

 
2 ≤ n ≤ N-1 (15) 
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d
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S+Y ≤ n<K (20) 
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)u(P)u(P
du
d

1K,11MK,1 −−λ=−  (21) 

 
Using Equations 12 and 13, we have 

n,01,1 PM)0(P λ=                 0 ≤ n ≤ N-1 (22) 

Further define 
 

∫∫
∞ θ−∞ θ− ==θ
0

u
0
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and ∫
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u

e n,1
*
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∂
∂

∫
∞ θ−  

 
Taking Laplace transform of Equations 14-21 and 
applying above definitions, it is found that 
 

)0(P)(H)0(P)(P)M( 1,1
*

2,1
*
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)0(P)(H)0(P)(PM)(P)M( n,1

*
1n,1

*
1n,1

*
n,1 −θ+θλ=θθ−λ +−

 
2 ≤ n ≤ N-1 (24) 
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S<n<S+Y (28) 
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*
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*
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*
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S+Y ≤ n<K (29) 

)0(P)(P)(P K,1
*

1K,11M
*
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Now Equation 25 becomes 
 

)0(P)(H)0(P
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*
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*
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*
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−θ
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Adding Equations 23-26, we have 
 

)0(P)(H)0(P)(H1)(P S,1

1S
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1S
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n,1 ∑∑

−

=

∗−

=

∗

θ
θ

+
⎭
⎬
⎫
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⎨
⎧

θ
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Taking limit θ → 0, Equation 32 yields 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

θ
θ

+
⎭
⎬
⎫

⎩
⎨
⎧

θ
θ−

=θ
∗

−

=

∗

→θ

−

=
→θ

∑
∑

)0(P)(H

)0(P)(H1

Lim)(PLim

S,1

1S

1n
n,1

0

1S

1n

*
n,10

 
or ∑

−

=
=

1S
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∗
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We know that  
 

)(B)1(1
)(B)(H *

*
*

θσ−−
θσ
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so that 
{ }2*

)1*(
)1(*

)θ(B)σ1(1
)θ(Bσ)θ(H
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and 
{ } σ

=
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σ
=
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)0(H
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2
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Now from Equation 33, we get 
 

∑∑∑
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=

−

=

−

= σ
=
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1S
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(34) 

 
where b1 = -B*(1) (0). 
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     Equations 27 and 28 give: 
 

[ ]

[ ]α−++λ

−θ

+θα+−++λ

=θ +

−

)nYS(M
)0(P)(H)0(P

)(P)1nYS(M

)(P n,1
*

1n,1

*
1n,1

*
n,1

 
 
S ≤ n<S+Y (35) 
 
Also from Equations 29 and 30, we obtain 
 

YSn

n,1
*

1n,1
*

1n,1YS1n*
n,1 )nK(

)0(P)(H)0(P)(P)1nK(
)(P

−−

+−−−−

λ−

−θ+θλ+−
=θ

S+Y ≤ n ≤ K (36) 
 
Now using θ = M λ in Equation 23, we have 
 

)M(H
)0(P

)0(P *
1,1

2,1 λ
=  

 
Setting θ= M λ in Equations 24, 25 and 26, we find 
 

)M(H

)M(PM)0(P
)0(P *

*
1n,1n,1

1n,1
λ

λλ−
= −

+  

 
1 ≤ n<N (37) 
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)M(H)0(P)M(HPM)0(P
)0(P *

*
1,1
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λ
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and 
)M(H
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)0(P

*

*
1n,1n,1

1n,1
λ

λλ−
= −

+  

 
N<n<S (38) 
 
Putting θ = M λ +Yα in (27), we have 
 

)YM(H

)M(P])1Y(M[)0(P
)0(P

*

*
1S,1S,1

1S,1
α+λ

λα−+λ−
= −

+  

 
On substituting θ = M λ +(S+Y-n) α in Equation 

28, we get 
 

])nYS(M[H
])nYS(M[P

])1nYS(M[)0(P

)0(P *

*
1n,1

n,1

1n,1 α−++λ

α−++λ

α+−++λ−

= −
+

 
S<n<S+Y (39) 
 
Now putting θ = (K-n) YSn −−λ  in Equation 29, we 
obtain 
 

])nK[(H

])nK[(P)1nK()0(P
)0(P

YSn
*

YSn
*

1K,1YS1nn,1
1n,1

−−

−−−−−−
+

λ−

λ−λ+−−
=

 
S+Y<n<K (40) 
On setting 0=θ  in (23), we have 
 

λ

−
=

λ

−
=

M
)0(P)0(P

M
)0(P)0(H)0(P

)0(P 1,12,11,1
*
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Similarly we obtain 

λ

−
=

λ

−
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M
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M
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Now substituting 0=θ  in (24)-(30), we find 
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N ≤ n<S…(44) 
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S ≤ n<S+Y (45) 
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=

 
S+Y ≤ n ≤ K (46) 
 
The normalizing condition is used to determine the 
steady-state probabilities 
 

( )∑ ∑
−

= =

∗ =+
1N

0n

K

1n
n,1n,0 10PP  (47) 

 
 
 

4. SOME PERFORMANCE MEASURES 
 
The steady state probability ( )0Pn

∗ , 0 ≤ n ≤ K-1 can 
be obtained from P1,n(0), 1 ≤ n ≤ K and given by 
 

( ) ( )
( )∑

=

+∗ = K

1n
n,1

1n
n

0P

0P
0P                 n = 0, 1, 2, …, K-1 (48) 

 
Various measures characterizing the system 
performance can also be obtained by using queue 
size distribution which is given as below: 
 
Probability of repairman being in idle state is given 
by 
 

0.0

1N

0n
n,0 NPP)I(P == ∑

−

=
 (49) 

 
The expected number of failed components in the 
system is obtained as 
 

( ) )0(Pn0Pn)N(E
K

1n

*
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1N

0n
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=

−

=
+=  (50) 

 
The expected number of failed machines waiting 
for repair in the queue 
 

( )0P)1n(P)1n()N(E
1N

0n

K

1n
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−

= =
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(51) 

 
The expected number of operating machines in the 
system is 

( )0P)YSn(M)O(E
K

YSn
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+=
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(52) 

 
The expected number of standby machines in the 
system 
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YS

Nn
n,1

1N

0n
n,0 ∑∑

+

=

∗
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(53) 

 
 
 

5. SPECIAL CASES 
 

Case I: M/G/1 model; When N →1, S = 0, Y = 0, 
H*(θ ) ≅ B*( θ ), our model reduces to M/G/1 
model with state-dependent arrival rates 
investigated by Gupta and Srinivasan Rao [28]. 
 
Case II: The M/G/1 model with cold standbys; If 
Y=0, N →1 and H*( θ ) ≅ B*( θ ) we get the results 
for M/G/1 machine interference model having only 
cold standby spares. 
 
Case III: The M/G/1 model with N-Policy; Setting 
S = 0, Y = 0 and H*( θ ) ≅ B*( θ ), our results match 
with N-Policy M/G/1 model with finite capacity 
developed by Wang and Ke [11]. 
 
 
 

6. NUMERICAL ILLUSTRATION 
 

In this section, numerical experiment is performed 
to validate the analytical result by using Matlab 
software. For illustration purpose, we consider the 
exponential service time distribution so that 

σµ+θσµ=θ∗ /)(H . Also we fix σ =.5. Table 1 
displays the effect of number of operating 
machines (M), warm standby components (Y) and 
cold standby components (S) on the expected 
number of failed components E(N), expected 
number of failed machines in the queue E(Nq) and 
probability of repairman being in idle state P(I), 
simultaneously. We note that if the number of 
operating machines (M) increases while Y and S 
are constant, the value of E(N) and E(Nq) increase 
while P(I) decreases. In the other situation wherein 
Y varies while M and S are constant, we observe 
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that as Y increases, the values of E(N) and E(Nq) 
decrease while P(I) increases. In another case in 
which S varies but M and S remain constant, we 
also see that E(N) and E(Nq) decrease while P(I) 
increases. Thus the provision of cold/warm 
standbys reduces the queue length as we expect. 
     The results for E(Nq) and P(I) are summarized 
in tables 2-5 with the variation in λ ,α, µ and K. 
We see that as K increases, E(Nq) increases while 
P(I) decreases, on the contrary, as µ increases, 
E(Nq) decreases while P(I) increases. Table 5 
displays the effect of K and N on E(Nq) and P(I). 
We have noted that as K and N increase, the value 
of E(Nq) increases while P(I) decreases. 
     From sensitivity analysis performed, overall we 
conclude that 
• As M increases, E(N) and E(Nq) increase while 

P(I) decreases. However when Y and S 
increase, E(N) and E(Nq) decrease while P(I) 
increases S. 

• As K, λ and α increase, the value of E(Nq) 
increases while P(I) decreases. 

• As µ increases, the value of E(Nq) decreases 
while P(I) increases. 

 
• As N increases, the value of both E(Nq) and 

P(I) increase. 
 
 
 

7. CONCLUSION 
 
In this paper, we have derived steady-state results 
for a finite M/G/1 model operating under N-policy. 
For computing the system state probabilities, a 
recursive method is employed which can be easily 
implementable. The degraded failure machining 
system not only affects the production while in 
operation but also increases the production cost. 
The quantitative assessment suggested for such 
systems may provide an insight in saving the huge 
cost due to blocking, delay and down time. The 
provision of mixed standby components along with 
Bernoulli feedback and degraded failure 
considered is helpful in achieving the desired 
output at minimum cost expenditure. Performance 
measures viz. expected number of down /operating 
machines, expected number of spare components, 
machine availability etc. may play crucial role for 
determining the management strategies in many 

TABLE 1. Performance Indices by Varying (M,Y,S) (N = 
3, λ = 0.06, α = 0.04, µ = 2). 
 

(M,Y,S) E (N) E (Nq) P (I) 
(10,5,3) 1.57 1.20 0.630449 
(12,5,3) 1.82 1.39 0.569960 
(14,5,3) 10.63 9.90 0.271430 
(16,5,3) 22.45 21.45 0.002391 
(18,5,3) 24.75 23.75 0.000006 
(20,5,3) 26.90 25.90 0.000000 
(15,5,5) 13.43 12.66 0.228898 
(15,6,5) 10.44 9.73 0.293817 
(15,7,5) 7.85 7.19 0.339551 
(15,8,5) 5.96 5.33 0.364287 
(15,9,5) 4.72 4.09 0.372640 
(15,10,5) 3.96 3.33 0.370250 
(15,9,5) 4.72 4.09 0.372640 
(15,9,6) 3.11 2.51 0.399579 
(15,9,7) 2.55 1.96 0.408548 
(15,9,8) 2.37 1.78 0.411352 
(15,9,9) 2.32 1.73 0.412212 
(15,9,10) 2.30 1.71 0.412473 

 
 
TABLE 2: Performance Indices by Varying (K) and (λ) (M 
= 7, Y = 5, S = 2, N = 3, α = 0.04, µ = 2). 

 
K λ E(Nq) P(I) 

0.10 1.64 0.3939 
0.20 3.68 0.1040 
0.30 6.18 0.0166 
0.40 7.68 0.0025 

12 

0.50 8.46 0.0004 
0.10 2.87 0.2334 
0.20 9.16 0.0100 
0.30 10.82 0.0004 
0.40 11.28 0.0000 

14 

0.50 11.51 0.0000 
 
 
TABLE 3: Performance Indices by Varying (K) and (α) 
(M = 7, Y = 5, S = 2, N = 3, λ = 0.1, µ = 1). 
 

K α E (Nq) P (I) 
0.00 1.53 0.4738 
0.02 1.65 0.4156 
0.04 1.76 0.3643 
0.06 1.87 0.3191 

 
 

12 

0.08 1.99 0.2794 
0.00 3.12 0.2681 
0.02 3.34 0.2288 
0.04 3.55 0.1957 
0.06 3.74 0.1677 

 
 

14 

0.08 3.92 0.1440 
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manufacturing environments encountered in computer, 
communication and production systems. 
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