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Abstract   Optimum design of structures is achieved while the design variables are continuous and 
discrete. To reduce the computational work involved in the optimization process, all the functions that 
are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic 
function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are 
estimated from the first derivatives that are available from the previous iterations. The second order 
approximation is obtained for both direct and reciprocal approximations. In addition, a hybrid form of 
the approximation is introduced. With the help of this approximation, the continuous optimization is 
obtained. The results are used as the starting point for the discrete optimization. A new penalty 
function is introduced for discrete optimum design and the discrete variables are obtained in 
conjunction with the same function approximation. Examples are given and the numerical results are 
discussed. 
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براي كاهش . در اين مقاله طرح بهينة سازه ها با استفاده از متغيرهاي پيوسته و گسسته مورد نظر است             چكـيده       چكـيده       چكـيده       چكـيده       
براي تقريب  . محاسبات در پروسة بهينه سازي تمامي توابعي كه محاسبة آنها وقت گير است، تقريب زده مي شوند                

جملات قطري ماتريس هسيان استفاده شده و با  تنها  . ايـن توابـع، از يـك تـابع شـبه درجـه دو استفاده  مي شود                 
با . يك تابع تركيبي تقريب نيز ساخته مي شود       . استفاده از مشتق اول كه از تكرار قبل بدست آمده ساخته مي شود            

اسـتفاده از ايـن تقريـب هـا طـرح بهيـنة پيوسته بدست  آمده و نتايج بدست آمده بعنوان نقطة شروع بهينه سازي                    
تابع پنالتي جديدي براي طرح بهينة گسسته ايجاد شده و مقادير بهينة گسسته    . فـته مـي شود    گسسـته در نظـر گر     

 .نتايج عددي چند مثال  بيان مي شود. همانند قبل با استفاده از روش تقريبي محاسبه مي شود

1. INTRODUCTION 

The idea of approximation concepts is now well 
established in numerical optimization techniques. 
The optimum design procedure requires the 
evaluation of the objective function and the 
constraints at a number of design points. The 
evaluation of some of the functions such as 
member forces, displacements, frequencies are 
time consuming. These functions are approximated 
and an approximate design problem is solved with 
move limits. The results are employed as a starting 
point for the next design iteration. The process is 
continued until the optimum design process 

converges. The use of function approximation was 
first introduced by implementing a first order 
Taylor series expansion for design constraints [1]. 
To increase the quality of approximation, the cross 
sectional properties were employed as the 
intermediate variables [2]. These variables for 
frame structures are taken as cross sectional areas 
and moments of inertia. The idea of force 
approximation was later introduced in order to 
enhance further the quality of stress approximation 
[3]. In this case, first the element forces are 
approximated with respect to cross sectional 
properties and then the stresses are recovered from 
the approximate forces. The numerical results 
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indicate that the number of design iterations is 
decreased when member forces are taken as the 
intermediate responses. This is basically due to the 
fact that the variation of forces is not very sensitive 
to the cross sectional properties. 
     Some midrange approximations were proposed 
by using two-point approximation [4]. The 
approximate functions were considered linear or 
quadratic by considering some non-linearity 
indices. The indices were selected from the data 
available in the previous iterations. A three-point 
function approximation was introduced by using 
the information of three consecutive design points 
[5]. In all the multi-point approximation, the 
unknown coefficients should be evaluated by 
solving some algebraic equations and in some 
cases numerical errors may encounter. 
     A quadratic function approximation was 
outlined in which all the elements of the Hessian 
matrix were estimated from the existing data [6]. 
In fact, an approximate Hessian matrix was 
developed based on the first derivatives. This 
approach is effective for design optimization as it 
reduces the design cycles. However, for all the 
constraints under consideration, the Hessian 
matrices must be created and stored. For further 
discussion of the approximation concepts Ref. [7] 
can be consulted. 
     As far as the discrete variable optimization is 
concerned, less research work has been carried out. 
Practical and efficient methods of optimum design 
of structures is based on choosing the design 
variables from a set of available values, while the 
computational work involved in the design process 
is reduced as much as possible. There are several 
methods for optimum design of structures with 
discrete variables such as branch and bound, 
duality theory, penalty functions,  genetic 
algorithms, simulated annealing, etc. Each of the 
methods has some limitations and difficulties [8]. 
Among these methods, penalty functions are easy 
to implement and if they are combined with 
approximation concepts, efficient methods for both 
continuous and discrete optimization can be 
achieved. There are various techniques for 
employing the penalty functions for continuous 
optimization. However, a few penalty functions 
exist for the solution of problems with discrete 
variables. In the literature, a sine-function [9] and a 
quadratic function [10] have been introduced in 

this regard. These methods have been combined 
with approximation of structural responses to 
enhance the efficiency of the methods [11-13]. 
     In the present work, a semi quadratic function is 
developed in which only the diagonal elements of 
the Hessian matrix are estimated. The diagonal 
elements are evaluated by matching the first 
derivatives of the function with those of the 
previous iteration. Explicit relations are obtained to 
find the necessary unknowns, thus numerical 
procedures are not necessary to evaluate the 
second derivatives. The function is expressed in 
terms of the direct variables as well as the 
reciprocal variables. The necessary criteria are 
established to create a hybrid form of the direct 
and reciprocal approximations. In addition, a new 
penalty function is proposed for discrete 
optimization. The process of discrete variable 
optimum design is also combined with the function 
approximation in order to reduce the number of 
iterations. 

2. FUNCTION APPROXIMATION 

Given a function G(X), the quadratic approximation 
with the diagonal elements of the Hessian matrix is 
expressed as 
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where X=[x1, x2, …, xi, …, xn] is the vector of 
design variables with n variables and X1 is the 
current design point. x1i is the ith element of X1. 
The notations G,i and G,ii represent the first and 
second derivatives, respectively. The subscript Q 
reflects the quadratic approximation. The quadratic 
reciprocal approximation with the use of 
intermediate variables 
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is arranged as follows by substituting Equation 2 
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into Equation 1 
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First subtracting Equation 1 from Equation 3 
establishes the conservative approximation, which 
is a hybrid form of Equations 1 and 3 
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     After some mathematical manipulation 
Equation 4 can be expressed as 
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     Equation 5 can be shown as 
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     It can be seen that the sign of (GQ-GQR) depends 
only on αi. Suppose that G(X) represents a 
constraint of the form G(X)≤0, then 

If αi ≤0 implies GQ≤GQR 

Thus GQR is more conservative (less negative) than 
GQ. In this case GQR is more effective. On the other 
hand, if αi >0, then the use of GQ will be more 
conservative. Thus the criteria for the conservative 

(hybrid) approximation can be stated as 

If αi ≤0 use GQR 

Otherwise use GQ. 

3. ESTIMATION OF SECOND ORDER 
DERIVATIVES 

The evaluation of the exact second order derivatives 
is time consuming. The approximate values of G,ii 
are found from the condition that the first 
derivatives of G(X) match those of GQ or GQR at 
the previous design point X0. Therefore depending 
on the sign of αi the first derivatives of Equation 1 
or Equation 3 is matched with that of the previous 
point as follows: 
(a) If αi >0, by using Equation 1, 
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(b) if αi ≤0, by using Equation 3 after the necessary 
manipulation 
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     It can be seen from Equations 9 and 10 that for 
the evaluation of the second derivatives, only the 
first derivatives of the function under consideration 
are required at two design points. It is to be 
mentioned that in the first iteration a linear 
function approximation must be used. 

4. CONTINUOUS OPTIMIZATION 

Suppose a constrained optimization problem with 
m inequality constraints is expressed as 

Minimize F(X), subject to gj(X)≤0,  j=1, m (7) 

where F(X) is the objective function and gj(X), 
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j=1,m represent the constraints. Penalty function 
methods are employed to solve the optimization 
problem. This can be achieved by solving the 
following unconstrained problems 

.... ,r ,rr   rP(X)F(X)r)X,(Minimize 21=+=φ  (12) 

where φ is an auxiliary function, r is the penalty 
multiplier and P(X) is the imposed penalty 
function which is the function of the constraints. 
Any appropriate penalty function can be used for 
continuous optimization. In this work a quadratic 
extended interior penalty function has been 
employed [14]. By changing the value of r the 
minimum of φ approaches the minimum of F. The 
main steps for the solution of this problem in 
conjunction with approximation concepts can be 
summarized as follows: 

(a) Perform a finite element analysis of the 
structure and evaluate all the structural 
responses such as element forces, nodal 
displacements, etc. 

(b) Find the first derivatives of the necessary 
responses with respect to the intermediate 
variables and establish the approximate 
relations for the responses under consideration. 

(c) Formulate the approximate optimization 
problem and evaluate the initial value of 
multiplier r. By gradually reducing the value of 
r, solve the approximate problems until the 
continuous problem converges. 

(d) If the overall design optimization has not 
converged then update the analysis model and 
go to step (a).  

5. DISCRETE OPTIMIZATION 

The results of the continuous optimization are used 
as the starting point for the discrete variable 
optimization. To perform the discrete optimization, 
now the following problem is considered: 
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in which Q(X) is the imposed penalty function for 

discrete variables for which the following new 
function is presented: 
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and l
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id  are lower and upper discrete values 
for xi. The value of γ can be taken as either of 0, 1 
and 2, depending on the space of discrete values. A 
suitable value of γ can be considered as 2. 
Equation 14 can be scaled such that the value of 
Q(X) at midpoint becomes unity, i.e. 
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which yields β = 2.7726 for γ = 2. The numerical 
results indicate that this form of scaling produces a 
smooth function and thus makes the discrete 
variable optimization easier. In addition, the 
proposed function is parameter independent. 
In this step the multiplier r is kept constant and by 
changing s, the discrete variable optimization is 
achieved for one design cycle. The numerical 
results show that the performance of the function is 
better than the existing functions. The nature of the 
function is such that it changes smoothly at the 
discrete points. The main steps in the discrete 
optimization are as follows: 

(a) Repeat similar Steps a and b in the process of 
continuous optimization to establish the 
approximate discrete design problems. 

(b) Freeze the multiplier r and find the initial value 
of the multiplier s. Solve the approximate 
design problems by gradually increasing 
the multiplier s, until the discrete problems 
converge. Check if the solution is feasible and 
discrete, if it is not feasible, increase r and 
reinitialize s and go to Step a. 

(c) Check the overall convergence. If converged 
terminate, otherwise update the discrete 
problem and go to Step a. 
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6. INITIAL VALUES OF MULTIPLIERS 
r AND s 

The multiplier r is only used for the continuous 
optimization. The necessary condition for φ(X, r) 
represented by Equation 12 to be minimized is that 
the first partial derivatives must vanish. Therefore 
a suitable choice for the initial value of r would be 
given by the r that minimizes the magnitude of the 
squire of the gradient of φ (X, r) at the starting 
point X0, that is 
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where 
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0, r),(Xφ denotes the Euclidean norm of 

φ,(X0,r) and φ,(X0,r) is the gradient of φ(X0,r). Then 
the value of r can be obtained from Equation 16 as 
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     Equation 17 can be used providing it yields r>0. 
Because of the initial value of X0, it may happen 
that r < 0. In such a case either X0 may be changed 
or the initial value of r can be chosen in such a way 
that at X0, the two terms F(X) and r P(X) do not 
differ greatly in value. Hence, a reasonable value 
of r can be obtained when 
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     The same approach can be argued to estimate 

the initial value of s [11]. Thus 
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provided s>0, otherwise s=F(X0)/Q(X0). 

7. NUMERICAL RESULTS 

A computer program has been developed based on 
the preceding discussion. In this study the results 
of four examples are presented. To compare the 
results, the examples are solved by the following 
methods: 

1. Linear Approximation (LA): In this method 
only the first two terms of the Taylor series are 
chosen. For stress constraints, the direct 
approximation and for displacement constraints 
the reciprocal approximations are employed. 

2. Quadratic Approximation (QA): In this method 
the first three terms of the Taylor series 
expansion with diagonal Hessian matrix are 
used. Again for stress constraints the direct 
quadratic approximation (Equation 1) and for 
displacements the reciprocal quadratic 
approximation (Equation 3) are considered. 

3. Hybrid Linear Approximation (HLA): The 
hybrid approximation presented in Ref. [15] is 
employed. In this method, based on the sign of 
the first derivatives, the direct or reciprocal 
approximation is used. 

4. Hybrid Quadratic Approximation (HQA): The 
method outlined in the present study. 

     In all cases, the member forces are first 
approximated and then the approximate stress 
constraints are established [16]. The initial move 
limit is considered as 90% and is gradually reduced 
by 10% in each iteration. 

7.1. Problem 1. Ten-Bar Truss   The standard 
test problem shown in Figure 1 is solved with 
stress and displacement constraints. The material 
properties are given as Young’s modulus, 
E = 6.9×1010 N/m2, weight density, ρ = 2.77×103 

Kg/m3 and allowable stresses, σa = ± 1.72×108 

 
Figure 1. Ten-bar truss. 
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N/m2 for all members. One load case is considered 
as P2y=P4y=-4.45×105 N. In addition to the stress 
constraints, displacement limits of ±5.08×10-2 m 
are imposed on the vertical direction of each joint. 
The cross-sectional areas of members are 
considered as design variables. The initial value 
and minimum size limits are 6.45×10-3 m2 and 

6.45×10-5 m2, respectively. The set of available 
discrete values for the cross-sectional areas is 

{ } )(cm      ...  25,  20,  15,  10,  5,  1,  0.645,A 2
i ∈  

     Iteration histories of the above mentioned four 

TABLE 1. Iteration Histories of 10-bar Truss for Continuous Variables (Weight: Kg). 

Iteration No. LA QA HLA HQA 
0 1904.1 1904.1 1904.1 1904.1 
1 2016.9 2016.9 1537.2 2016.9 
2 2202.5 1033.0 1735.2 2022.1 
3 2160.4 1328.5 1729.3 2119.6 
4 2160.4 2071.8 1595.7 2119.6 
5 2294.2 2243.6 1831.8 3352.9 
6 2305.5 2243.0 1911.8 2298.2 
7 2310.6 2317.5 2137.6 2298.2 
8 2318.6 2294.4 2203.8  
9 2315.6 2294.8 2286.2  
10 2315.6  2286.3  

 
 
 

TABLE 2. Iteration Histories of 10-bar Truss for Discrete Variables (Weight: Kg). 

Iteration No. LA QA HLA HQA 
1 2315.8 2318.9 2293.6 2334.5 
2 2326.6 2322.8 2303.8 2335.1 
3 2322.2 2332.7 2310.8 2335.1 
4 2319.3 2342.4 2321.8  
5 2317.2 2344.3 2328.6  
6 2317.2 2344.3 2328.6  

 
 
 

TABLE 3. Optimum Design for 10-bar Truss (Continuous): cm2. 

Member LA QA HLA HQA 
1 181.89 180.59 180.37 189.02 
2 15.08 2.85 3.47 9.10 
3 161.20 154.39 153.18 158.38 
4 82.84 86.55 95.79 87.32 
5 9.30 2.84 2.47 4.90 
6 0.645 1.04 1.43 0.766 
7 73.23 67.22 54.28 59.33 
8 116.60 132.54 136.91 129.69 
9 116.73 133.31 133.98 126.25 
10 21.28 4.99 4.43 8.74 
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Figure 2. 25-bar space truss. 

approximation methods are presented in Tables 1 
and 2 for continuous and discrete optimization, 
respectively. In these tables the weight of the 
structure is given in Kg. Iteration number 0 
indicates the initial design point. The optimal 
continuous and discrete design variables are given 
in Tables 3 and 4, respectively. Comparison of the 
methods in terms of the number of analyses, 
weight, execution time (wall-clock time) and 
maximum constraints for continuous optimization 
is presented in Table 5. From the numerical results, 
it can be seen that the number of required iterations 
in the proposed method is less than other methods. 
The execution time in all the methods is near, 
however, this is a small structure and the time can 
not be considered as a major factor. 

7.2. Problem 2. 25-Bar Space Truss   The 
structure is shown in Figure 2 and the material 
properties are given as Young’s modulus, 
E = 6.9×1010 N/m2, weight density, ρ = 2.77×103 

Kg/m3 and allowable stresses, σt = + 2.76×108 

N/m2 for all tensile members [17]. Compression 

stress limits and linking variables are given in 
Table 6. The structure is subjected to two load 
cases as shown in Table 7. The displacement limit 

TABLE 4. Optimum Design for 10-bar Truss (Discrete): cm2. 

Member LA QA HLA HQA 
1 180 180 180 190 
2 15 1 5 10 
3 165 155 155 160 
4 85 85 100 90 
5 10 5 5 5 
6 0.645 5 1 0.645 
7 75 70 55 60 
8 115 140 140 130 
9 115 135 135 130 
10 20 5 5 10 

 
 
 
 

TABLE 5. Comparison of the Results for 10-bar Truss. 

 No. conti.  anal. No. discr. anal. Cont./discr. Weig. Execution time (sec.) Max. constraint 
LA 9 5 2315/2317 4.0 0.066 
QA 8 5 2294/2344 6.0 0.003 
HLA 9 5 2286/2328 6.0 0.026 
HQA 6 2 2298/2335 5.0 0.003 
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is ±8.89×10-3 m. the initial value and minimum 
size limits are 6.45×10-3 m2 and 6.45×10-5 m2, 
respectively. The set of available discrete values 
for the cross-sectional areas is 

{ } )(cm        ...  5,  4,  3,  2,  1,  0.645,A 2
i ∈  

     The results of this problem are given in Tables 

8-12. In both continuous and discrete optimization, 
the number of required analyses in the present 
method is less than other methods. 

7.3. Problem 3. 132-Bar Grid Dome   The 132 
bar grid dome shown in Figure 3 chosen from 
Reference 16 is designed to support four 
independent load conditions and subjected to stress 

TABLE 6. Variable Linking and Allowable Stresses for 25-bar Truss. 

Variable Compression stress limit, N/m2 Linking members 
1 -2.42×108 1-2 
2 -7.99×107 1-4; 2-3; 1-5; 2-6 
3 -1.19×108 2-4; 2-5; 1-6; 1-3 
4 -2.42×108 4-5; 3-6 
5 -2.42×108 3-4; 5-6 
6 -4.66×107 3-10; 6-7; 5-8; 4-9 
7 -4.80×107 4-7; 3-8; 5-10; 6-9 
8 -7.64×107 6-10; 3-7; 4-8; 5-9 

 
 
 

TABLE 7. Load Condition for 25-bar Truss (N). 

Load case Joint X dir. Y dir. Z dir. 
1 1 4450 44500 -22250 
 2 0 44500 -22250 
 3 2225 0 0 
 6 2225 0 0 
2 5 0 89000 -22250 
 6 0 -89000 -22250 

 
 
 

TABLE 8. Iteration Histories of 25-bar Truss for Continuous Variables. 

Iteration No. LA QA HLA HQA 
0 1500 1500 1500 1500 
1 951 951 951 951 
2 309 459 278 493 
3 270 318 267 270 
4 261 235 254 252 
5 258 269 255 252 
6 255 252 255  
7 253 256   
8 252 256   
9 252    
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and displacements constraints. The allowable 
member stresses are taken as  

1,4j & 1,36i ,kg/cm 1723.75σ1723.75 2
ij ==− pp  

where the subscripts i and j represent the member 
number and load condition, respectively. Minimum 
area constraints of 0.6452 cm2 are imposed on all 
members and displacement constraints of ±0.254 
cm are prescribed at all joints in each coordinate 
direction. The structure is supported at all exterior 
joints. Young’s modules is taken as, 6.895 ×105 
Kg/cm2 and the material density as, 0.002768 

Kg/cm3 for all members. Loads of 444.8 Kg are 
applied in the negative Z-direction for four 
independent load conditions given in Table 13. An 
initial area of 6.452 cm2 is prescribed for all 
members. 
     The structure is assumed to be symmetric about 
a vertical plane through joints 1, 40 and 52 and 
about a vertical plane through joints 1, 46 and 58. 
Thus the problem has 36 independent design 
variables, which are the areas of the members, Ai. 
All the design variables are allowed to take the 
following discrete values: 

{ } )(cm        ... 5,  4,  3,  2,  1,A 2
i ∈  

TABLE 9. Iteration Histories of 25-bar Truss for Discrete Variables. 

Iteration No. LA QA HLA HQA 
1 252 259 256 255 
2 254 259 259 255 
3 254 262 259  
4  262   
3 19.39 20.29 17.42 19.03 
4 9.13 13.40 6.55 8.13 
5 6.61 5.51 4.16 5.14 
6 12.83 12.25 13.19 12.65 
7 4.00 4.25 4.69 4.84 
8 21.10 21.85 20.95 20.75 

 
 
 

TABLE 10. Optimum Design for 25-bar Truss (Continuous): cm2. 

Variable LA QA HLA HQA 
1 0.645 2.04 0.712 12.20 
2 3.37 2.34 5.86 2.22 

 
 
 

TABLE 11. Optimum Design for 25-bar Truss (Discrete): cm2. 

Variable LA QA HLA HQA 
1 0.645 2 0.645 12 
2 4 3 7 2 
3 19 20 17 19 
4 9 14 7 8 
5 7 6 4 5 
6 13 12 13 13 
7 4 5 5 5 
8 21 22 21 21 
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     The continuous optimization is achieved with 
five analyses of the structure. One extra analysis 
is required to complete the discrete solution. 
The results are presented in Tables 14-18. For 
comparison, the problem is also solved by LA, QA 
and HLA methods. The performance of the present 
approach in both continuous and discrete 
optimization is better than other techniques. 
However, the execution time in LA and HLA is 
less, indicating that in this problem, the time 
required by the analysis is not significant.  

7.4. Problem 4.  Double-Layer Grid   A 
double-layer grid of the type shown in Figure 4 
with a span of 21 m and height of 1.5 m is chosen 
from Ref. [3]. The structure is simply supported at 
every other boundary joint of the bottom layer. The 

TABLE 12. Comparison of the Results for 25-bar Truss. 

 No. conti. anal. No. discr. anal. Cont./discr. weig. Execution time (sec.) Max. constraint 
LA 8 2 252/254 4.0 0.007 
QA 7 3 256/262 7.0 0.001 
HLA 5 2 255/259 3.0 0.030 
HQA 4 1 252/255 6.0 0.038 

 

TABLE 13. Load Condition for Dome. 

Load cond. Loaded joints 
1 1 
2 1,2,3,4,7,8,9,10,11,12,13,19,20,21,22,23,24,25,26,27,28,37 
3 All joints are loaded 
4 1,4,5,6,7,13,14,15,16,17,18,19,28,29,30,31,32,33,34,35,36,37 

 

TABLE 14. Iteration Histories of 132-bar Dome for Continuous Variables. 

Iteration No. LA QA HLA HQA 
0 197.7 197.7 197.7 197.7 
1 203.3 200.3 203.2 200.3 
2 104.5 181.6 57.56 152.5 
3 86.23 87.35 75.38 96.35 
4 83.33 85.01 80.41 80.13 
5 82.56 86.68 84.10 79.76 
6 83.47 84.62 83.64 79.79 
7 79.97 84.68 81.53 79.76 
8 78.93 84.55 81.53 79.77 
9 78.93 84.55 81.53 79.77 

 

 
 
 
Figure 3. 132-bar grid dome. 
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loading is assumed a uniformly distributed load on the top layer of intensity of 155.5 Kg/m2 and it is 

TABLE 15. Iteration Histories of 132-bar Dome for Discrete Variables. 

Iteration No. LA QA HLA HQA 
1 81.92 85.85 82.57 81.70 
2 81.69 86.63 83.08 81.04 
3 82.37 87.23 83.87 81.04 
4 82.98 88.03 84.70  
5 82.98 88.03 84.70  

 
 

TABLE 16. Optimum Design for 132-bar Dome (Continuous): cm2. 

Var. Member LA QA HLA HQA 
1 3 6.44 6.70 5.97 5.58 
2 4 6.42 5.59 6.53 6.96 
3 9 5.66 5.57 5.40 5.37 
4 10 5.61 6.90 5.25 5.61 
5 19 2.43 4.95 3.62 2.36 
6 20 3.06 2.86 3.19 3.47 
7 21 2.83 3.55 3.02 2.96 
8 22 3.41 3.21 3.25 3.43 
9 23 3.14 3.00 3.31 3.33 
10 35 2.56 2.85 2.59 2.68 
11 36 2.82 3.26 2.82 2.90 
12 37 2.55 2.74 2.70 2.58 
13 53 2.08 3.78 3.20 2.44 
14 54 2.30 1.68 1.85 1.97 
15 55 2.56 2.75 2.83 2.92 
16 56 2.80 2.19 2.67 2.65 
17 57 2.29 2.30 2.38 2.08 
18 58 3.24 3.36 3.29 3.20 
19 59 2.51 1.78 2.21 2.47 
20 60 3.01 3.31 3.36 3.38 
21 79 1.26 1.27 1.26 0.98 
22 80 1.08 1.20 1.15 1.62 
23 81 1.62 1.74 1.56 1.60 
24 82 1.11 1.08 1.10 0.91 
25 83 0.698 5.14 3.36 1.00 
26 105 1.92 2.07 2.17 2.45 
27 106 1.35 1.02 0.862 0.99 
28 107 2.41 2.67 2.52 2.71 
29 108 2.67 2.63 2.99 2.41 
30 109 1.90 2.40 2.28 1.98 
31 110 2.93 2.74 2.46 2.72 
32 111 1.51 1.37 1.51 1.70 
33 112 0.835 1.39 0.658 0.669 
34 113 2.16 2.40 2.38 2.12 
35 114 2.29 2.12 2.16 2.01 
36 115 2.28 3.41 2.95 2.65 

 



238 - Vol. 17, No. 3, September 2004 IJE Transactions A: Basics 

transmitted to the joints acting as concentrated vertical loads only. The structure is assumed pin 

TABLE 17. Optimum Design for 132-bar Dome (Discrete): cm2. 

Var. Member LA QA HLA HQA 
1 3 6 7 6 6 
2 4 6 6 7 7 
3 9 6 6 5 5 
4 10 6 7 5 6 
5 19 2 5 4 2 
6 20 3 3 3 3 
7 21 3 4 3 3 
8 22 3 3 3 3 
9 23 3 3 3 3 
10 35 3 3 3 3 
11 36 3 3 3 3 
12 37 3 3 3 3 
13 53 2 4 3 2 
14 54 2 2 2 2 
15 55 3 3 3 3 
16 56 3 2 3 3 
17 57 2 3 2 2 
18 58 3 3 3 3 
19 59 3 2 2 2 
20 60 3 3 3 3 
21 79 1 1 2 1 
22 80 1 2 2 2 
23 81 2 2 2 2 
24 82 2 1 2 1 
25 83 1 5 3 1 
26 105 2 2 2 2 
27 106 2 1 1 1 
28 107 3 3 3 3 
29 108 3 3 3 2 
30 109 2 2 2 2 
31 110 3 3 2 3 
32 111 2 2 2 2 
33 112 1 2 2 1 
34 113 2 3 2 2 
35 114 3 2 2 2 
36 115 2 3 3 4 

 
 
 

TABLE 18. Comparison of the results for 132-bar dome. 

 No. con. No. dis. Con./discr. weig. Execution time (sec.) Max. constraint 
LA 8 4 78.9/82.9 45.0 0.000001 
QA 6 4 84.6/88.0 80.0 0.00033 
HLA 7 4 81.5/84.7 40.0 0.00014 
HQA 5 2 79.7/81.0 70.0 0.00046 
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jointed with Young’s modules, 2.1 ×106 Kg/cm2 
and material density, 0.008 Kg/cm3 for all 
members. Member areas are linked to maintain 
symmetry about the four lines of symmetry in the 
plane of the grid. Thus the problem has 47 design 
variables. The initial areas are considered 20 cm2 
with a lower limit of 0.1 cm2. The available 

discrete values are 

{ } )(cm      ... 5,  4,  3,  2,  1,  0.5,  0.3,  0.1,A 2
i ∈  

Stress, Euler buckling and displacement constraints 
are considered in this problem. All the elements 
are subjected to the following stress constraints: 

1,47i   ,kg/cm 4001σ0001 2
i =− pp  

where i is the element number. Tubular members 
are considered with a diameter to thickness ratio of 
10. Thus Euler buckling is considered as 

1,47i       ,/8L10.1EAσσ 2
iibii =−=≥  

where Ai and Li are the cross-sectional area and 
length of the ith element, respectively. 
     In addition, displacement constraints are 
imposed on the vertical component of the three 
central joints along the diagonal of the grid (joints 
19, 20 and 22) as 

1,2,3i     1.5cm,δ1.5cm i =≤≤−  

     The results are presented in Tables 19-23. The 
efficiency of HQA method in terms of the number 
of iterations is better than other approaches. In 
all the problems under investigation, it was 
noticed that this method is very stable and the 
changes in the parameters such as multipliers r 
and s do not influence the convergence process. 
In some methods like LA, sometimes difficulties 
arise for problems to converge and changing 

 
 
Figure 4. Double layer grid 

 
 
 
TABLE 19. Iteration Histories of Double Layer Grid for 
Continuous Variables. 
 

Iteration LA QA HLA HQA 
0 3781.0 3781.0 3781.0 3781.0 
1 3650.6 3650.6 3405.9 3650.6 
2 1377.3 3015.4 1177.0 2964.5 
3 1210.2 1218.4 1136.5 1360.2 
4 1144.8 1201.6 1134.2 1092.6 
5 1142.8 1147.1 1132.6 1056.0 
6 1138.8 1136.4 1124.7 1056.1 
7 1128.8 1136.4 1106.9 1056.1 
8 1128.8  1106.9  

 

TABLE 20. Iteration Histories of Double Layer Grid for 
Discrete Variables. 
 

Iteration LA QA HLA HQA 
1 1131.9 1144.6 1127.1 1060.5 
2 1132.4 1147.6 1122.0 1060.5 
3 1134.2 1150.7 1117.5  
4 1134.7 1154.6 1117.5  
5 1139.3 1154.6   
6 1141.5    
7 1141.8    
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move limits, initial design point and other 
optimization parameters is necessary to get a 
proper convergence. 

     For the size of problems considered in this 
study, the computational time of QHA is slightly 
larger than other methods. For these problems this 

TABLE 22. Optimum Design for double layer grid 
(discrete): cm2. 
 
Variable Member LA QA HLA HQA 

1 1-2 0.5 0.5 0.3 0.3 
2 2-3 1 2 0.3 1 
3 3-4 2 8 2 4 
4 4-5 9 5 10 5 
5 10-11 6 3 6 4 
6 11-12 3 5 1 5 
7 12-13 10 5 10 5 
8 16-17 13 16 16 14 
9 17-18 10 6 13 7 

10 20-21 24 20 20 25 
11 2-10 0.5 0.5 0.5 0.5 
12 3-11 0.5 0.5 0.5 0.5 
13 11-16 5 6 5 6 
14 4-12 0.5 0.5 0.5 0.5 
15 12-17 10 9 7 9 
16 17-20 16 16 13 15 
17 6-7 2 6 4 5 
18 7-8 1 0.5 0.1 2 
19 8-9 7 6 6 6 
20 14-8 9 9 10 12 
21 19-15 12 14 11 12 
22 8-15 1 2 1 1 
23 6-14 2 7 1 6 
24 14-19 8 2 14 8 
25 19-22 23 16 27 22 
26 6-2 3 5 3 3 
27 10-7 2 3 3 3 
28 7-3 1 5 1 2 
29 14-11 3 5 3 3 
30 11-8 7 13 8 7 
31 8-4 3 3 3 3 
32 12-9 0.1 2 0.1 0.3 
33 19-17 3 5 1 2 
34 17-15 8 7 6 7 
35 2-7 2 5 2 3 
36 7-11 1 2 1 2 
37 3-8 5 7 4 4 
38 8-12 10 10 8 9 
39 4-9 0.1 2 0.1 0.3 
40 12-15 8 7 6 7 
41 1-6 12 5 12 2 
42 6-10 12 5 13 6 
43 10-14 13 5 13 5 
44 14-16 15 9 15 10 
45 16-19 13 7 14 6 
46 19-20 16 10 15 12 
47 20-22 12 5 12 1 

 

TABLE 21. Optimum Design for Double Layer Grid 
(Continuous): cm2. 
 
Variable Member LA QA HLA HQA 

1 1-2 0.42 0.42 0.27 0.27 
2 2-3 0.59 1.97 0.20 1.34 
3 3-4 1.65 8.31 2.31 4.06 
4 4-5 8.61 5.45 9.74 4.49 
5 10-11 4.54 3.09 5.87 3.95 
6 11-12 3.05 5.31 0.92 4.59 
7 12-13 9.69 5.12 10.32 5.39 
8 16-17 12.95 16.01 16.28 13.56 
9 17-18 10.14 5.55 13.10 7.27 

10 20-21 23.76 19.73 20.18 24.93 
11 2-10 0.51 0.50 0.50 0.50 
12 3-11 0.50 0.50 0.50 0.54 
13 11-16 4.87 5.69 5.19 5.97 
14 4-12 0.52 0.5 0.50 0.56 
15 12-17 10.01 9.09 7.16 8.76 
16 17-20 16.00 15.85 12.67 15.23 
17 6-7 1.93 5.51 3.57 5.42 
18 7-8 0.97 0.40 0.14 2.01 
19 8-9 7.03 5.84 6.23 5.62 
20 14-8 9.31 9.02 9.63 12.21 
21 19-15 11.96 13.63 11.02 11.98 
22 8-15 0.86 1.78 1.03 0.93 
23 6-14 2.36 6.95 9.50 5.71 
24 14-19 7.65 2.24 13.62 8.06 
25 19-22 23.29 16.11 26.97 22.06 
26 6-2 3.28 4.50 3.14 3.24 
27 10-7 2.31 2.44 2.69 2.79 
28 7-3 0.62 4.80 1.01 1.74 
29 14-11 3.29 4.69 2.81 3.22 
30 11-8 6.64 12.72 7.64 7.40 
31 8-4 3.20 3.14 3.23 3.13 
32 12-9 0.101 1.64 0.14 0.22 
33 19-17 2.63 3.58 1.18 2.16 
34 17-15 8.00 7.25 5.61 6.66 
35 2-7 1.49 4.99 1.74 2.57 
36 7-11 0.97 2.20 1.48 1.86 
37 3-8 4.72 6.70 3.57 3.90 
38 8-12 10.16 9.49 7.70 9.31 
39 4-9 0.12 1.64 0.14 0.21 
40 12-15 8.12 7.29 5.61 6.58 
41 1-6 12.34 5.41 11.72 2.22 
42 6-10 12.30 5.39 12.81 5.62 
43 10-14 12.84 5.19 12.82 4.84 
44 14-16 14.64 8.88 15.27 10.21 
45 16-19 13.24 6.97 13.54 6.04 
46 19-20 15.54 10.14 14.82 11.80 
47 20-22 12.33 5.41 11.71 0.82 
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is reasonable as the time taken by the optimization 
process is greater than the time required by the 
analysis. The overall computational time to 
achieve an optimal solution depends on the number 
of design variables, number of constraints and the 
size of the problem in terms of the degrees of 
freedom. Usually, all the constraints are not 
considered in each design iteration and some of the 
critical or near critical constraints are retained. The 
number of retained constraints is two to three times 
the number of design variables. Thus only the 
number of variables and the number of degrees of 
freedom has a great influence on the computational 
time. Practical design problems have 10 to 50 
variables and several thousand degrees of freedom. 
In such cases, the cost of analysis dominates the 
overall cost. Therefore, in large-scale problems, 
reducing the number of iterations has an important 
role on the overall computational cost of 
optimization. 

8. CONCLUSIONS 

An efficient second order hybrid approximation is 
presented for the functions that are required in the 
process of continuous and discrete optimization. 
The exact evaluation of these functions is 
computationally expensive, thus the introduction 
of the approximate functions creates a robust 
optimization process. First the continuous 
optimization is obtained by a penalty function, then 
the discrete variables are obtained by presenting a 
new penalty function with the use of the same 
approximation concepts. The main features of the 
proposed technique are that the second order 
derivatives are established by the available first 
order derivatives. In addition, only the diagonal 
elements of the Hessian matrix are estimated. The 

numerical results indicate that with this form of 
simplification, a high quality approximation is 
established. Also the hybrid second order 
approximation is stable to converge and parameters 
such as penalty function multipliers, initial point 
and move limits do not change the convergence 
process. In this method for small size problems, the 
execution time is slightly higher, however, for 
large structures in terms of the number of degrees 
of freedom, the overall computational cost would 
decrease. 
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