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Abstract Optimal load of mobile robots, carrying a load with predefined motion precision, is an
important consideration regarding their applications. In this paper a general formulation for finding
maximum load carrying capacity of flexible joint mobile manipulators is presented. Meanwhile,
overturning stability of the system and precision of the motion on the given end-effector trajectory are
taken into account. The main constraints applied for the presented algorithm are torque capacity of
actuators, limited error bound for the end-effector and overturning stability during the motion on the
given trajectory. In order to verify the effectiveness of the presented algorithm, a simulation study
considering a compliant joint two-link planar manipulator mounted on a differentially driven mobile
base is explained in details.
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1. INTRODUCTION

The literature on determining DLCC on different
types of robotic systems is fairly rich. Thomas, et
al. [1] used the load carrying capacity as a criterion
for sizing the actuator at the design stage of robotic
manipulators. Wang and Ravani [2] developed a
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technique to maximise the DLCC of fixed base
robotic manipulators. Korayem and Basu [3-4]
presented an algorithm for computing the DLCC of
elastic manipulators by relaxing the rigid body
assumption. S. Yue, et al. [5] used a finite element
method for describing the dynamics of the system
and computed the maximum payload of
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kinematically redundant manipulators. Korayem
and Ghariblu [6] developed an algorithm for
finding the DLCC on rigid mobile manipulators. In
their work the stability and flexibility are not taken
into account. Also, some researchers have studied
the stability of mobile manipulators. Some of the
earlier work discussed only the static stability [7-8]
and some others were concerned with the dynamic
stability [9-10]. Moreover, there is some research
work on carrying heavy loads or application of
large forces by mobile manipulators [11]. But,
none of these works has considered the DLCC
finding on mobile manipulators.

In this paper, the dynamic load carrying
capacity of flexible joint mobile manipulator
is investigated. The main focus of this research
work is small vehicles with considerations of
overturning stability and elasticity on joints. At the
first stage, the dynamics of these types of systems
is introduced in their general form. Then, for a
general case, the algorithm of finding dynamic
load carrying capacity for mobile manipulators on
a given trajectory is presented. Finally, simulation
studies are conducted for a two-link mobile planar
mobile manipulator with elastic joints.

2. DYNAMIC MODEL OF FLEXIBLE JOINT
MOBILE MANIPULATOR

If the degrees of freedom of base and manipulator
are denoted by n, and n, respectively, and end

effector degrees of freedom is denoted by m,
then in the overall system there will be a
kinematic redundancy of the order of r =n—m,
where n=n, +n, . There are different types of
constraints that can be applied to a robotic system
in order to solve the redundancy resolution
[10, 12]. One of these methods that are well
known [12] uses » as an additional user defined
by kinematic constraint equations with the general
form of x=g(q), as a function of motion

variables ¢ . This method results in a simple and

on line coordination on control of a mobile
manipulator during the motion. This paper will
follow this method because of its convenient
implementation. Referring to Figure 1, the
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configuration vector of the mobile base is shown
by ¢, =(xf,,yﬁ,00r)T, where x,,y, are the
position coordinate at point /' where manipulator is
attached to the mobile base and 6, is the
orientation angle. Subscript » is pointed on
assuming rigid case on the desired trajectory.

Meanwhile, the configuration vector of the
manipulator in rigid case is shown by

g, =@0,, 0,,
links. The overall configuration of the mobile
manipulator assuming rigid structure is shown by
4, =(q,., 4q,,). Simultaneously, the overall

n@ )", with generally m

configuration of the mobile manipulator assuming
flexibility on  joints is shown by
q, = (ébfﬂ qu)

The dynamic equations of motion are obtained
using a Lagrangian approach as follows:

D(G)d, + C(4,,4,))q, + G(G,) + K(G, — G,)=0,
(1)

1,G, +K(G, -§,)=7 2)

where D(g,) 1is the inertia matrix for the

associated rigid system, C(§,,q,) is the vector of
damping, Coriolis and centrifugal forces, G(g,) is

the vector of forces due to gravity,
K =diag[k, k, .., k,] is a diagonal matrix

of restoring force constant modeling the joint
elasticity, 7 is motor inertia, and 7 is the

generalized force inserted to the actuator.

3. FORMULATION OF DLCC FOR A
PREDEFINED TRAJECTORY

For a predefined trajectory, the DLCC of a flexible
joint mobile manipulator is defined as the
maximum load that the mobile manipulator could
carry in performing the trajectory with acceptable
precision. The emphasis on the tracking accuracy
is because of relaxing rigid body assumption,
considering the fact that one of the main reasons
for deviation from desired trajectory is the joint
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Figure 1. A schematic representation of a mobile manipulator.

flexibility. This consideration can be taken into
account in DLCC determination by imposing a
constraint on the end-effector deflection, in
addition to the actuator torque constraint imposed
alone for rigid manipulators. Otherwise, deflection
of the end-effector can cause excessive deflection
from the predefined trajectory, even though the
joint torque constraints are not violated. By
considering the actuator torque and deflection
constraints and adopting a logical computing
method, the maximum load carrying capacity of a
mobile manipulator for predefined trajectory can
be computed. Meanwhile, it is possible for the
known trajectory and computed maximum load
that stability conditions not be satisfied during the
motion. Using the method of Zero Moment Point
(ZMP) method, dynamic stability of the system for
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the known trajectory and DLCC can be checked. If
stability conditions are not fulfilled, then another
trajectory for the vehicle for the same end-effector
trajectory should be selected, until the stability
conditions are satisfied. Therefore, the algorithm
shown in Figure 2 is proposed for finding the
DLCC of the system.

3.1. Formulation of the Actuator Torque
Constraint  The actuator torque constraint is
formulated on the basis of typical torque-speed
characteristics of DC motors.

T,=k —k,q (3)

Ty ==k —k,q
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Figure 2. Algorithm of finding DLCC.

Here, k, =T, and k,=T /w,, T, is the stall

s

torque and ®,, is the maximum no-load speed of

the motor. 7, and T,

', are the upper and lower

bounds of the allowable torque. Other actuation
systems can also be dealt with similarly. Using
Equations 3 the upper and lower bounds of motor
torques are found and then the available torque for
carrying load can be expressed as:

o =T, - @), T =(T,), -3, ©®

Thus, the maximum allowable torque at i-th joint is
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equal to:
tr=maxft, 77} (5)

It is necessary to introduce the concept of load
coefficient complying with the torque actuator
constraint that can be calculated for each point j, j
=1, 2, ..., p of a given trajectory as follows

{Tmax }i l — 1’ 2’

(C,), = min{max{Tl J—max{t,}

where 7, is the no-load torque and:

max{ T, }=max{ (T ), (T )y, - ’(T[)p /

max{t,}=max{(T, ), (T,)y - (), }

3.2. Formulation of the Accuracy Constraint
A constraint should be imposed in such a way that
the worst case, which corresponds with the least
DLCC, be used to determine the maximum load.
For a given discretized trajectory, the no load
deflection (A,), and deflection with added end

effector mass (A,);, are calculated for j=1, 2, ...,

p (Figure 3). Using the computational procedure,
the additional mass at the end effector changes
both direction and magnitude of the deflection.
But, as long as the magnitude of the deflection is
less than or equal to an allowable value, the robot
is considered to remain capable of executing the
given trajectory. In other words, only the
magnitude of the deflections (A,); and (A,),

need to be considered in this context. This
prompted the use of a ball type boundary of
radius R, centered at the desired position on the

(A, as load
deflection and (A,);, and (A,), are generally

given trajectory. Although,

vectors of different directions, the magnitude
increase due to the added mass at the end effector
is linearly related to mass [5]. The difference
between the allowable deflection and the
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Figure 3. Spherical boundary of the end effector deflection.

magnitude of the deflection with added end
effector mass at point j, R, —(A,);, can be

regarded as the remaining amount of end effector
deflection which can still be accommodated at
point j of the given trajectory. This remaining
amount of end effector deflection indicates how
many loads can be carried through point j without
violating the deflection constraint. Therefore, it is
necessary to introduce the concept of a load
coefﬁcient(Cp)j for point j, j=1, 2,.., p as

follows:

. Rp _(Ae)j
B max{A,} —max{A,}

(C,), (8)

3.3. Formulation of the Stability Constraint
To analyze the stability of a mobile manipulator
on its motion, the ZMP criterion is used, which
is discussed and developed by other researchers
[9-10]. In their model, the inertia effect of
rigid body that is an important consideration
in the system dynamics is used in this
paper.

The ZMP is defined as a point on a vehicle’s
moving floor where the sum of all external,
gravity and inertial forces on the system are
equal to zero. If the i-th rigid part of the system
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has a mass m,, inertia tensor /, with respect to

its center of mass with coordinate
(x,, y,, z,)', then ZMP coordinate can be

computed as follows [10].

X _ Zimi('Z‘i +g)xi _Zimijéizi _Zi(Mi)x
o Zimi(éi + g)xi

©)

Zimi(éi +g)yi _Eimzyi i _Zi(Mi)y
Zimi(fi +g)xi

zmp

where M, =1,0, + 0, xI,0, and @, is the angular

velocity of rigid body in the inertial reference
frame. Using the recursive Newton-Euler
formulation, ZMP coordinates can be easily
computed with the following formulation:

_ (T,,),
xzmp -
(FO,I )y
(10)
— (TO,I )x

(FO,I )z

where T, and F, are the overall torque and force

Y zmp
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TABLE 1. Parameters of the Simulation.

Parameter Value (Vehicle) Value (manipulator) Unit
. . a=b=36

Dimension l,=1,=60 cm

Mass m, = 25 m; = 7, m, = 5 kg

Moment of inertia 1,=02 1,=0.05, 1,=0.03 Kg. m?
Spring Constant K, =2200 K, =2200 K, =1600 K, =1250 N.m
Actuator stall torque T,=T,=281 T,=66, T,=29 N.m
Actuator no-load speed ®,, =0, =3.5 Wy, =®y =3.5 rad/s

applied to the vehicle in the inertial reference m,,, =Cxm,, (12)

frame.

The stability index is defined as a measure for
determining the value of stability from marginal
condition as below:

distance of ZMP from boundary of

stable region

~ distance of most stable point from

stable region

The value of S = 1 corresponds to a condition
which ZMP is over or outside of the boundary of
stable region and S = 0 corresponds to a condition
which ZMP coincides with the most stable point
(Figure 9).

3.4. Determining Maximum Load Carrying
Capacity The load coefficient (C) is obtained as
follows:

C=min{(C,);, (C,);» j=L 2, ...p}

(11)
for the p number of discretized points of a
given trajectory. Then, the maximum mass

that could be carried on the given trajectory
is:
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where m;y;; is the initial mass of the load.

4. SIMULATION RESULTS AND
DISCUSSIONS

As shown in the Figure 1, the mobile manipulator
consists of a two-link planar manipulator attached
at point F(x,, y,)jon the middle of a

differentially driven vehicle with considering joint
flexibility on sub system, vehicle and manipulator.
The kinematic, dynamic and other necessary
parameters are summarized in Table 1.

As shown in Figure 4, the path of the load
is a two-segmented line that starts from
the coordinate (x,=1.0 m, y =14 m) to
intermediate point with coordinate ( x, = 1.8 m,
y; = 2.0 ) and ends at point with coordinate
(x;=28 m, y,=18 m).

The velocity of the end effector at each segment
is as follows:

v=at 0<t<t,/4
v=v 1, /t<t<3t,/4  i=1.2
v=—at 3t /451y,

where ¢, is the time of motion at each segment
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Figure 4. The path of the mobile manipulator considering the load and vehicle motion.
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Figure 7. The variation of stability index in the time domain.
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Figure 8. Joint torques for the final trajectory: (a) Vehicle right wheel, (b) Vehicle left wheel and (c) Manipulator first joint.
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Figure 8. Joint torques for the final trajectory: (Continued from previous page) (d) Manipulator second joint.

and the overall motion time is ¢; + t, = Ty = 2 sec.
To find suitable base trajectory, initially a linear
path is selected for the vehicle, which starts from a
point with coordinate (x; = 1.1 m, y; = 0.5 m)
to the end point with coordinate (x; = 2.8 m,
y; = 1.6 m). The path of the load considering
joint flexibility is shown in Figure 4 for
comparison with the desired path. In the
Figure 5 it is seen that for the given end
effector trajectory and initial selected path for
the base and initial load that -equals
m,, =1.0 kg, the ZMP lies outside the

polygonal stable region produced by lines
which connects the base wheels together.
Therefore, another path must be selected for the
vehicle. A final path is selected for the vehicle,
which starts from a point with coordinate
(x,=1.0 m, y,=1.0 m) to the end point with
coordinate (x, =2.8 m, y =1.6 m). Figure 6
shows the variation of ZMP point during the
motion considering final path for the vehicle.
Also, Figure 7 shows the variation of stability
index for both cases; initial and final vehicle
paths. The corresponding exerted torques to
vehicle and manipulator actuators, considering
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the final path for the vehicle, are shown in
Figure 8. For the final motion, the equivalent
dynamic load carrying capacity at each instant
of time is shown in Figure 9. It can be seen that
maximum load carrying capacity is equal to 1.807
kg.

Therefore, using kinematic redundancy of the
systems, there are various ways of carrying a load
from a desired trajectory. However it is possible
that one of the constraints related to the torque,
precision or stability be violated in one way or
another. As shown in the simulation study, for the
initial path selected for wvehicle, the stability
constraint is violated, which for the final vehicle
path, the stability criterion is satisfied.
Furthermore, none of the joint motors move with
their full capacity.

5. CONCLUSION

A computational algorithm for finding dynamic
load carrying capacity of flexible joint mobile
manipulators is introduced. The actuator torque,
motion accuracy and over-turning stability are
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Figure 9. Variation of DLCC during the motion for the final trajectory.

considered as main constraints in the problem
formulation. Due to combined motion of the
vehicle and manipulator, the overall system has
kinematic redundancy on its motion. Thus
changing the vehicle motion for a predefined end
effector trajectory is used to prevent system from
overturning. In a simulation study, a two arm
planar manipulator mounted on a differentially
driven vehicle is considered for carrying a
load on a given trajectory. It is seen that by
changing vehicle motion for a predefined end
effector trajectory, stability condition of mobile
manipulator is assured and motion accuracy
constraint is dominated in comparison to motor
torque constraints and computed maximum
load carrying capacity is found to be equal to
1.807 kg.
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