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Abstract   A packed bed thermal storage has several desirable characteristics to be used for energy 
storage. The behavior of packed bed is predicted by set of differential equations. A numerical solution 
is developed for packed bed storage tank accounting to the secondary phenomena of thermal losses 
and conduction effect. The effect of heat loss to surrounding (k1), conduction effect (k2) and air 
capacitance (k3) are examined in the numerical solution. It is found that the values of k1 and k2 are 
small and can practically be neglected in the solution. The solution indicates the profiles of air and 
rock bed temperatures with respect to time and length of the bed. 
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منبع ذخيره گرما از نوع بستر ثابت داراي خواص فيزيكي و مكانيكي مناسبي براي استفاده در                          چكيدهچكيدهچكيدهچكيده
سيستمهاي گرمايشي خورشيدي به دليل محدوديت در ساعات روز و تابش             . سيستمهاي ذخيره گرمايي است   

در اين تحقيق رفتارهاي مكانيكي، حرارتي و ديناميكي        . ره گرما باشند  نور خورشيد بايد داراي نوعي سيستم ذخي      
سيستم ذخيره گرمايي از نوع بستر ثابت را بوسيله مجموعه اي از معادلات ديفرانسيل انتقال جرم و حرارت مورد 

يب ثابت  اثر ضرا . شود  براي حل اين معادلات استفاده مي      Finite Elementمطالعه قرار داده و همچنين از روش        
k1   ، k2   و k3       نتيجه گيري شده است كه مقدار ضرايب       . در حل اين معادلات بررسي شده استk1   و k2   اثري در 

 .حل معادلات و پيش گويي رفتار ديناميكي بستر ثابت ندارد
 
 
 

1. INTRODUCTION 
 
The limited amount of fossil energies has forced 
scientists all over the world to search for 
alternative renewable energy sources. The use of 
renewable energies has, therefore, seriously been 
considered in the last three decades by researchers. 
The sun has been the major source of renewable 
energy from long time ago. This energy has had a 
determinate contribution to the life of human being 
from the formation of life on the earth up to now. 
The transfer of energy from sun to the water took 
first place as the most common way of heat 
storage. To realize the substantial effect of the 
solar energy, one needs to consider its storage as 
electrical, chemical, mechanical or thermal energy. 
A few possible means of solar energy storage are 
mentioned here. Some of the methods need further 
research and development to make them technically 
and economically sound. 

     The storage of energy in solar power plant is 
essential for our round clock system operation. The 
energy storage issue is nowadays utilized to adjust 
the energy consumption rate or supply cut off 
problems. A packed bed system is considered to be 
convenient equipment for heat storage effort. The 
heat transfer to and from a flowing fluid is 
subjected to the theoretical investigations in order 
to obtain the practical information on its 
application to solar storage design [1-4]. The 
quantities of the important parameters like G (fluid 
flow rate per unit area), L (bed length), d (solid bed 
particle equivalent diameter) and A (bed surface 
area) are required for designing of a thermal 
storage bed. The assumptions made for 
mathematical analysis of heat transfer in a rock bed 
storage system are as follows: (i) negligible 
internal gradient within the solid particles, (ii) no 
internal heat generation and (iii) no mass transfer 
taking place in the system. 
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     A model can be used to describe the heat 
transfer in a packed bed system. Various 
investigators based on the two sets of differential 
equations have proposed different models. The 
first is for fluid media and the second is for solid 
[5-7]. Schumann [1] has analytically solved the 
problem. Several researchers have worked on the 
problem with different variations and extensions; 
but limited information is available on its 
application to solar design. In this work, the system 
is defined by a set of partial differential equations 
and the backward finite difference technique is 
used to solve the partial differential equations. The 
model accounts for such phenomena as thermal 
loss and conduction effects. The model indicates 
the importance of critical parameters like airflow 
rate per unit surface area, rock equivalent diameter, 
length of bed and bed surface area for designing 
purpose, too. 
 
 
 

2. MODEL 
 
Packed bed energy storage is a particular 
application of a group of processes involving fluid 
flow through a porous media. Different industrial 
processes are performed in the packed columns. A 
number of problems are associated with the design 
and operation of such columns. Every process has 
its own specific fluid dynamic characteristics with 
respect to the bed physical properties that have to 
be considered. The design aspects include the 
effect of a pumping power, total energy 
transferred, temperature difference and noise 
control. 
     Consider a cylindrical storage rock bed with the 
X-direction along its axis. An elemental volume 
located between the abscissa x and x + dx is 
considered for heat transfer evaluation. The 
governing differential equation for the energy 
supplied by air to the rock bed through convection 
into the elemental volume during dt is: 
 
hv A (Ta – Ts) dx dt (1) 
 
where the volumetric convective heat transfer 
coefficient, hv, is the product of the heat transfer 
coefficient per unit area of the rock (h) and the 
surface area of the rock per unit volume (a). A, Ta 
and Ts are the bed cross sectional area, the air and 

the rock temperatures, respectively. 
     The quantity of heat carried away by the air is: 
 
Ca G A (∂ Ta / ∂x ) dx dt (2) 
 
where G is the mass flow rate of air per unit cross 
sectional area and Ca is the heat capacity of the air. 
     The heat loss to the surroundings is 
 
Udπ (Ta - T∞ ) dx dt (3) 
 
where D, U and T∞ are the rock bed diameter, bed 
heat loss coefficient and surrounding temperature, 
respectively. 
     The energy balance for the air is obtained by 
summing up Equations 1, 2 and 3: 
 
ρa C a A f (∂Ta / ∂ t ) dx dt (4) 
 
where ρa and f are the air density and the void 
fraction, respectively. 
     The first energy balance differential equation is 
derived for gaseous phase: 
 
(∂Ta / ∂ t) + (G/ρa f ) (∂Ta / ∂ x) = (-hv / ρa Caf) (Ta–
Ts) – ( πUD / ρa Ca f ) (Ta - T∞) 
 (5) 
 
Heat balance for the rock bed (solid phase) is 
similarly obtained from: 
 
(∂Ts / ∂ t) = [(hv / ρs Cs (1-f) ] (Ta – Ts) + [ks / ρs Cs 

(1-f ) ] ∂2Ts / ∂ x2 
 (6) 
 
where ks, ρs and Cs are thermal conductivity, 
density and specific heat of the rock particles, 
respectively. The first term in right hand side of 
Equation 6 is for heat transfer by convection from 
air, while the second describes the conduction 
effect within the rocks. An equivalent diameter is 
calculated for a spherical shape for rocks of 
irregular shape. In order to make Equations 5 and 6 
dimensionless, the following groups of parameters 
are introduced: 
 
y= ax = (hv /G Ca )x (7) 
 
z = βt = [ hv / ρs Cs (1- f) ] t (8) 
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Equations 5 and 6 become: 
 
∂Ta / ∂y + k3 (∂Ta/ ∂z) = Ts – Ta – k1(Ta – T∞) (9) 
 
∂Ts / ∂ z = Ta – Ts + k2 (∂2 Ts – ∂ y2) (10) 
 
where k1, k2 and k3 are dimensionless coefficients. 
 
k1 = U / hv D, k2 = hv ks / G2 C2

p , k3 = ρaCa f / 
ρsCs(1-f) 
 
k1, k2 and k3 correspond to the heat loss to the 
surroundings, conduction effects and air 
capacitance, respectively. 
     The initial conditions are: 
 
Ta (x, t = 0) = Ta (x) or Ta (y, z = 0) = Ta (y) (11) 
 
Ts (x, t = 0) = Ts (x) or Ts (y, z = 0) = Ts(y) (12) 
 
For completely discharge rock bed, the initial condition 
becomes: 
 
Ta (y, z = 0) = Ta0 and Ts (y, z = 0) = Ts0 (13) 
 
The boundary conditions are: 
 
Ta (y, z = 0) = Ta0        Ts(y, z = 0) = Ts0 (14) 
 
Ta (x = 0, t) = Ta (t)  or  Ta (y = 0, z) = Ta(z) (15) 
 
In the solar system, Ta(t) is a function of time: 
 
Ta (t) = Ta0 + (Tamax – Tao) (sin (π t / tcoll. ) ) p (16) 
 
tcoll. is the time when the positive value of collector 
efficiency allows actual solar collection. The 
variation of temperature with respect to time for 
solar system can be expressed by Equation 16 
where p can be set such that to define the 
temperature variation shape throughout the day 
since in the solar system, temperature rises from 
minimum to maximum and then returns to 
minimum value. The value of P is taken to be 1.5 
in the model calculations, which conveniently 
defines the temperature variation: 
 
∆Ta = Ta (average) – Ta0 
 
If values of k1 and k2 are assumed to be small, 
Equations 9 and 10 become: 
 

∂Ta / ∂y + k3 (∂Ta/ ∂z) = Ts – Ta (17) 

∂Ts / ∂y  = Ta – Ts (18) 
 
Considering Equations 7 and 8 and differentiating 
with respect to x and t, respectively: 
 
∂y/∂x = hv/GCa (19) 
 
∂z/∂t = hv/ ρsCs(1-f) (20) 
 
The Equations 17 and 18 can be written in the form 
of: 
 
∂Ta / ∂x . ∂x / ∂y + k3 (∂Ta/ ∂t . ∂t / ∂x) = Ts – Ta 
 (21) 
 
∂Ts / ∂t . ∂t / ∂z = Ta - Ts (22) 
 
Equations 21 and 22 can finally be written as: 
 
∂Ta / ∂t + v ∂Ta / ∂x + k′1 (Ta – Ts) = 0 (23) 
 
∂Ts / ∂t – k′2 ( Ta - Ts) = 0 (24) 
 
where 
 
V = G/( ρaf) (25) 
 
k′1 = h v/ ρaCaf (26) 
 
k′2 = h v/ ρ sC s (1-f) (27) 
 
Equations 23 and 24 can be written in terms of 
finite difference for (n-1> x > 2) as: 
 
-ATa(x-1,t+1)+BTa(x,t+1)+ ATa(x+1,t+1) = CTs(x,t) 
+ Ta(x,t) 
 (28) 
 
Ts(x,t+1) = (Ts(x,t)/(1+ k′2  ∆t) ) + (k′2 ∆t 
Ta(x,t+1))/( 1+ k′2 ∆t) 
 (29) 
 
where 
 

A = v∆t / 2∆x  B = 1+ k′1∆t – k′1 k′2 ∆t2/ (1+ k′2∆ t) 
 

C = k′1∆t/(1+ k′2∆t)          D = v∆t/∆x = 2A 
 

E = 1 + v∆t/∆x + k′1∆t – k′1 k′2∆t2/(1+ k 
2
 2 ∆t) = B +  

 

D = B + 2A 
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Figure 1. Variation of air temperature in different layers of rock bed. 
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Figure 2. Variation of rock temperature in different layers of rock bed. 
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Figure 3. Comparison of rock and air temperatures variation. 
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Figure 4. Variation of air temperature along bed with time. 
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Figure 5. Variation of rock temperature along rock bed with time. 
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Figure 6. Comparison of rock and air temperatures variation along the rock bed length with time. 
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Figure 7. Variation of air temperature in different layers of rock bed. 
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Figure 8. Variation of temperature in different layers of rock bed. 
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Figure 9. Comparison of air and rock temperatures variation in different Layers of rock bed. 
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Figure 10. Variation of air temperature along the rock bed length with time. 
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Figure 11. Variation of rock temperature along the rock length with time. 
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Figure 12. Comparison of air and rock temperatures along the rock bed length with time. 
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In Equation 28, considering x = 2, …, n-1, we will 
have a set of equations which can be written in 
form of a matrix. This matrix is solved for 
variation of air temperature at each location in the 
rock bed at the end of the time interval ∆t, starting 
from initial conditions at t = 0 and using Equation 
29 and Ta. The variation of rock temperature can 
also be calculated. 
     Considering the case where k1, k2 and k3 ≠ 0 in 
Equations 9 and 10, Equation 9 can be written in 
terms of finite difference as: 
 
-GTa(x-1,t+1)+HTa(x,t+1)+GTa(x+1,t+1)-Ts(x,t+1) 
=LTa(x,t)+k1T∞ 
 (30) 
for (n-1> x > 2) 
 
where 
 
G= 1/2∆x 
H = (1+k1)+(k3/∆t)) 
M = 1/∆x 
L= k3/∆t 
N= (1/∆x + (1+k1)+(k3/∆t) 

Equation 10 can also be written in terms of finite 
difference for (n-1> x > 2): 
 
-CTs(x-1,t+1) + FTs(x,t+1) - C Ts(x+1,t+1)-Ta(x,t+1) 
= ETs (x,t) 
 (31) 
for x = 1 
 
ATs(x,t+1) + BTs(x+1,t+1) - C Ts(x+2,t+1)-Ta(x,t+1) 
= ETs (x,t) 
 (32) 
for x = n 
 
A Ts(x, t+1) + BTs(x-1,t+1) - CTs(x-2,t+1) -Ta(x,t+1) 
=ETs (x,t) 
 (33) 
where 
 

A= ((1/ ∆t ) + 1 –(k2/(∆x)2)) 
B= 2k2/(∆x)2 
C= k2/(∆x)2 
E= 1/∆t  
F = ((1/∆t) +1+ (2k2/(∆t)2) 
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Figure 13. Comparison of rock temperature along the bed length for cases 1 and 2. 
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4. RESULTS 
 
Two cases are considered in this work. In the first 
case k1 and k2 are considered to be negligible (i.e. 
k1 and k2 can be ignored in Equations 9 and 10). 
Figures 1 and 2 show the air and rock bed 
temperature variation with respect to the time 
respectively. The sets of curves in Figures 1 and 2 
differ by the value of Z = βtcoll.. The air 
temperature is 60 0C at t = 0, as shown in Figure 1. 
This is the condition of air before introducing into 
the rock bed. The rock bed is divided into n layers 
and air temperature profile is shown in Figure 1. 
This figure shows the time required for complete 
charging of rock bed is 7 hours. The temperature 
profiles of rock bed layers are shown in Figure 2 at 
different time intervals. The hot air gives its heat 
quickly to the rock bed due to high heat transfer 
coefficient. At the beginning, the temperature of 
the rock bed gradually increases. Heat is 
transferred gradually to the other layer. After 7 
hours, the temperature of the exiting air begins to 
rise. This is a sign of charging of the rock bed. 
Figure 3 compares the air and rock bed 
temperature profiles. As the time increased, the air 
and rock bed temperature profiles get closer the 
each other. Figure 4 shows the air temperature 
variation along the length of the bed. At t = 0, 
the air temperature is 60 0C. As is shown in 
Figure 4, the exit air temperature drops at very 
short times. As time goes on, the temperature of 
the exiting air is increased. After 3.5 hours, the 
exit temperature is about 49 0C. The rock bed 
temperature variation along the length of the bed 
is shown in Figure 5. Figure 6 compares 
variation of air and rock bed along the length of 
the bed. 
     In the latter, the coefficients k1, k2 and k3 are 
not neglected in the solution. Figures 7 and 8 show 
the temperature variation of air and rock bed with 
respect to time. It shows thermal wave dispersion 
throughout the rock bed. The time rate of change 
or slope of a curve at particular time shows the 
impulse response in Figures 7 and 8. Figure (9) 
compares temperature variation of air and rock 
bed. As the time increased the temperature profiles 
of air and rock bed get closer to each other. Figures 
10 and 11 show temperature variation of air and 
rock bed along the bed length. Figure 12 compares 
the temperature profiles of air and rock bed along 

length of the rock bed. As the time increass, the air 
and rock bed temperature profiles get closer to 
each other. 
 
 
 

5. CONCLUSION 
 

An analytical solution can be written for Equations 
5 and 6 with mere boundary condition of T(0,t) = 
T(1,t) in the inlet air temperature. In this case, the 
solution is limited to relatively small values of 
time. In order to extend solution to real case where 
an initial non-uniform spatial temperature distribution 
within the bed is considered at large time, initial 
boundary condition 11 and 12 are to be incorporated in 
the solution. The solution shows the response of 
the rock bed during the charging period (energy 
recovery mode) and the profiles of air and rock bed 
temperatures with respect to time and length of the 
bed. Equations 23 and 24 must, therefore, be 
expressed in finite difference form and solve by 
numerical procedure. Since the air is used as the 
heat transfer medium at low temperature, the effect 
of k1, k2 and k3 (heat loss, conduction through solid 
and heat capacity of fluid respectively) are found 
to be negligible in the solution of the case of air as 
a moving fluid. 
 
 
 

6. NOMENCLATURE 
 
A cross section area of bed, m2 
Ca heat capacity of the air, J/kg oC 
Cs heat capacity of the rock, J/kg oC 
d rock equivalent diameter, m 
D rock bed diameter m  
f void fraction % 
G air mass flow rate per unit cross section, 

kg/m2 s 
hv volumetric convective heat transfer 

coefficient, W/m3 oC 
ks  heat conductivity of the rock W/m oC 
k1 U/hvD 
k2 hvkp/G2Ca 
k3 ρaCaf//ρsCs(1-f)  
Ta  air temperature, oC 
Ts rock bed temperature, oC 
T∞ surrounding temperature of rock bed, oC 
t time, s  
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tcoll. solar collection time, hr 
U heat loss coefficient of the rock bed, W/m2 oC 
va air velocity, m/s 
x distance along the rock bed, m 
ρa air density, kg/m3 
ρs rock density, kg/m3 
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