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Abstract     In this paper we describe the distribution problems faced by one of the largest retailers 
in the distribution and sale of fast moving consumer goods in the U.K. The paper describes an initial 
solution method, which is then improved by a novel form of simulated annealing. A computational 
experiment for the improvement algorithm has been also carried out in order to illustrate the 
flexibility of the computer programming and to demonstrate how it can be used to address broader 
management issues. 
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در اين مقاله، مساله توزيع و فروش يكي از بزرگترين شركتهاي عرضه كننده مواد غذايي در انگلستان                    چكيدهچكيدهچكيدهچكيده
روشي براي بدست آوردن يك جواب اوليه شدني قابل قبول و سپس بهبود آن               . مورد مطالعه قرار گرفته است    

همچنين آزمايش  . ه است  توصيف شد  (SA)توسط يك شكل جديد از يكي از الگوريتم هاي هوش مصنوعي              
تواند  محاسباتي براي الگوريتم بهبود به منظور نشان دادن انعطاف پذيري و اثبات اينكه چگونه برنامه فوق مي                  

 .مورد استفاده مديران قرار گيرد، انجام شده است
 
 
 

1. INTRODUCTION 
 
The transport of goods or people from one place to 
another is a very important economic activity that 
is usually known as distribution. Vehicle routing 
problems arise in many companies, where goods 
must be distributed from suppliers to customers.  
These problems have been extensively 
studied, especially in the last  decades. The 
reason for their receiving so much attention 
is that it is simultaneously very important for 
the economy of the firms and very interesting 
for operational research (OR) scientist. The 
basic vehicle routing problem can be defined as 
follows: Given a depot and a number of customers 
with known geographical locations and demands, 
the VRP (vehicle routing problem) consists of 
determining set routes that minimize the total 
distance traveled, whilst satisfying all the 

customers� requirements. A route consists of a 
sequence of visits to customers, starting and ending 
at the depot. The total demand of all the customers 
on a route must not exceed the vehicle capacity. 
Each route, which may also have limited total 
distance or duration, is assigned to one vehicle, all 
of which are assumed to be identical, and each 
customer is visited exactly once. 
     Real world problems are generally quite 
different from the basic vehicle routing problems 
dealt with in the literature [1], as the context of the 
problem generates a wide variety of constraints, 
such as the numbers of vehicles and drivers, 
different commodities with different time windows 
for customers, which may vary in duration. The 
number of constraints that must be considered is 
often large. Moreover, the real characteristics of 
the distribution problems vary from one company 
to another. 
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     The following characteristics of a practical 
problem are examples that may make it different 
from the basic VRP: 

• Dealing with both pickup and delivery, 
• Delivery of different types of commodity, 
• Loading constraints that may depend on the 

type of commodity, 
• Pickup and delivery from a central hub depot, 
• Time window constraints, which may depend 

on the type of commodity, and 
• Multiple trips in one vehicle route. 
 
 
 

2. AN OVERVIEW TO THE REAL 
DISTRIBUTION PROBLEM 

 
Developments in vehicle routing have been driven 
by a need to obtain solutions to ever more complex 
real-world problems and then to improve upon 
those solutions. Thus additional complications, like 
having multiple depots and vehicles of different 
sizes, have been considered. However, none is 
quite as multifaceted as the logistics problem faced 
by the UK�s major superstore operators; Asda, 
Safeway, Sainsbury and Tesco. Although now 
increasingly selling durables all have evolved from 
grocery retailers with operations as described 
below. 
     Suppliers do not normally deliver directly to 
any of the hundreds of stores. Instead, each must 
deliver to a regional distribution center (RDC), of 
which there are likely to be between 10 and 20, at 
times predetermined by the retailer. However, not 
all RDCs will stock every product; for example, 
medium-moving grocery products will only be 
kept at a limited number of �central� locations. 
Then the basic problem is to schedule deliveries 
from a RDC to the retail stores in its area, if 
necessary picking up goods en route from a central 
warehouse, generally referred to as a hub depot. 
Whilst a superstore retailer will stock thousands of 
different products, in bar code terms, there are 
basically five product categories for distribution. 
     Grocery items only stocked at a hub depot, from 
which deliveries must be made directly to some 
retail outlets, Grocery items available at a RDC for 
delivery to the stores, Produce, such as is sold 
by the traditional greengrocer, Perishable goods, 

like dairy products, Frozen products, which are 
predominantly foods. 
     The individual items will have been picked in 
the warehouse to fulfill a store�s order and stacked 
on pallets A pallet may contain different products 
from the same category but products from different 
categories will not be on the same pallet. The 
delivery scheduler is only interested in the number 
of pallets of each category required by a store and 
is unconcerned about the product mix on the 
pallets. 
     At the RDC, grocery items are stocked at the 
ambient temperature, produce and perishable 
goods are kept in a chilled environment and frozen 
products are maintained below zero. The delivery 
vehicles, which are loaded from the rear, can be 
divided into three compartments, kept at different 
temperatures during a trip. The front compartment, 
loaded first and unloaded last, is for pallets 
of frozen products. The middle section is for 
both produce and perishable goods. The back 
compartment, unloaded first, is for grocery items, 
irrespective of whether loaded on to the vehicle at 
the RDC or the hub. Because the sizes of the 
compartments are totally flexible, a full vehicle 
could carry one, two or all three of these product 
types. However, rear end loading and unloading 
precludes total flexibility in terms of the mix of 
product types carried by a vehicle, if it is to deliver 
to more than one store. For example, a vehicle 
could not make one drop of grocery and frozen 
products at one store and produce or perishable at a 
second store. Instead, it would have to deliver 
grocery to the first store, produce or perishables to 
the second store and then return to the first store 
with the frozen products Similarly, a vehicle partly 
laden with pallets from the RDC could not travel to 
the hub and fill up with pallets from there, if the 
first delivery was for only RDC loaded goods. 
Thus the product type mix of pallets for the various 
stores is a significant determinant of the vehicle 
delivery schedule,  not covered in the VRP 
literature. 
     Because of their importance, time windows was 
the first complexity introduced into the VRP In 
practice, there are both hard and delivering to soft 
time windows, with hard time windows not to be 
violated at any price However, soft time windows 
allow a vehicle to arrive early or late but a penalty, 
depending on the degree of violation, is incurred 
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for doing so. Suppliers the RDCs complain that 
time windows are hard and narrow. However, 
since the vehicle scheduler and the person 
responsible for inward goods at the stores work for 
the same company, time windows for non-urgent 
items can be negotiated on the telephone to 
improve delivery schedules As is immediately 
apparent, this favors existing schedules, when 
making comparative tests of any new scheduling 
method. 
     The VRP literature distinguishes between 
backhauls, which is characterized by picking up 
product for delivery to the depot after all the 
outgoing deliveries have been made, and the so-
called pickup and delivery. In the latter case, goods 
are collected from pick-up points on a route and 
dropped at delivery points on the same route; 
transportation of the infirm has this structure.  
Superstore vehicle schedulers face both these 
problems to different extents. The most frequent 
type of collection is the return from stores to any 
depot of salvage, which is packaging materials, 
pallets etc This can only be undertaken after all the 
product deliveries have been made. Products are 
also collected from suppliers, most usually for 
delivery to the depot where the vehicle is based, 
but more complex backhauls are possible. For 
example, a collection may be made from a 
supplier, after delivering to a nearby store, and 
trucked to a distant depot, before returning to its 
base, making an inter-depot transfer in the process 
As well as the limit to a vehicle�s pallet capacity, 
the driver�s time is also regulated, in terms of both 
the length of the driving day and the inclusion of 
rest periods. The vehicle schedules must include 
allowances for loading and unloading that depend 
on the number of pallets involved and preparation 
times, which are independent of the number of 
product categories. 
     The collaborating retailer uses a commercially 
available routing and scheduling package to 
produce a base schedule for morning (AM) and 
afternoon (PM) deliveries for each day of the week 
[2] The base schedule is updated every six months, 
because the software is not designed to handle 
complex routing and is insufficiently fast to route 
initiate for each shift The scheduler at a depot 
arrives at 6.00 am to begin scheduling the PM 
deliveries Up-to-date grocery demands will be 
known, whilst those for produce, perishable and 

frozen products will become known between 7.00 
am and 8.00 am, as will backhauls for both the PM 
and the following AM shifts The scheduler uses 
this information to update the demands in the base 
PM schedule and modify routes. The commercial 
software is used at this stage to calculate the times 
of modified routes and to prevent the scheduler 
violating either the vehicle capacity or hard time 
window constraints Obviously if some demands 
have been increased, then the scheduler may be 
unable to make complex adjustments, resulting in 
split-loads. This process is completed by 9.30 am 
and the printed schedule given to the warehouse 
for loading. At 10 am, the scheduler starts the same 
process for the next day�s AM schedule, except 
that now up-to-date grocery information is missing 
Nevertheless, a schedule is printed at 1 pm and 
retained until 6 pm, when the required grocery 
data arrives. The AM schedule is then updated 
manually and passed to the warehouse for loading 
the vehicles, which will leave the RDC at regular 
intervals from 3.30 am onwards. 
 
 
 
3. THE STRUCTURE OF THE ALGORITHM 
 
Quite simply, an algorithm is required to solve 
the real-world scheduling problem at the lowest 
possible cost and sufficiently quickly to be used 
daily for both the AM and PM schedules, without 
the need to make adjustments to a predetermined 
skeletal schedule The approach described in this 
paper involves using a meta-heuristic, which starts 
with an initial solution that is improved iteratively. 
Whilst Gendreau, et al. [3] consider tabu search to 
be the most effective approach, their conclusion 
was drawn from CVRPs, where the complexity is 
less, as far fewer constraints must be included and 
is therefore very different from the problem of the 
grocery superstore retailers Simulated annealing 
was chosen as the basis for the heuristic as it has 
performed well on complex problems and for its 
ease of coding. 
     A trip is defined to be a journey starting and 
finishing at the RDC, whilst a route consists of 
all the trips made by one vehicle within the 
schedule. An initial feasible solution is obtained 
with 3 simple steps that construct vehicle routes 
sequentially. 
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1. Starting a New Trip or Route   If there are 
still demands to be met, whether a new trip within 
the present route or a new route is started depends 
on the remaining driving time. Note that all trips 
start and finish at the RDC and all demands are 
either to be picked up from the RDC or the hub or 
they are backhaul Add the closest customer not 
already scheduled to the RDC to a new trip for an 
existing vehicle route or start a new route, as is 
appropriate, and go to Step 2. 
2. Adding a Demand to the Current Trip 
Unless all demands have been scheduled, find the 
one nearest to the vehicle�s current location 
and go to the appropriate subroutine for adding a 
customer. Repeat until either a customer has been 
added or none of the unscheduled demands can be 
included in the trip. Then go to Step 3. 
3. Continuing to Schedule Demands   Go to 
Step 1 if either the unscheduled demands are 
unsuitable for the present trip or there is 
insufficient time left on the route for another 
demand to be scheduled Otherwise, go to Step 2. 
     The subroutines for adding a customer 
distinguish between whether the demands are 
supplied from the RDC or the hub or are backhaul, 
as follows. 
 
3-1. Demands Supplied From The RDC 
If the first demand is for more than 19 pallets of 
the same product type, one trip is assigned, 
because the vehicle will be almost full. If the first 
demand is for fewer pallets, a new trip is started 
unless the category is frozen, when the next 
demand is considered instead. This is because 
frozen products are placed at the front of the 
vehicle but the first scheduled demand is at the 
rear. When the first customer requires more than 
one category, all those with overlapping time 
windows are considered. The capacity and driving 
time constraints are checked for feasibility. The 
trip terminates if the first customer (or any other) 
has salvage to be returned to the RDC or hub. 
Otherwise, additional customers are considered for 
inclusion with a customer having demands for n 
product categories being taken to be n customers 
with demands in time window order. Category 
compatibility and time windows are checked and 
acceptable demands included in the trip. 
 
3-2. Demands Supplied From The Hub   As 

the hub only stocks grocery, loading feasibility is 
excluded from the constraints. A vehicle will be 
routed via the hub when customers are to be 
supplied from it. 
 
3-3. Backhauls    The time window of a backhaul 
is checked before its insertion in a trip When the 
backhaul is delivered to the RDC, a new trip may 
be started. If it is delivered elsewhere, such as to 
another supplier or RDC, and if sufficient driving 
time is available, then the trip may be continued by 
returning to Step 2., In obtaining an initial solution, 
the number of vehicles is not limited but hard time 
windows are used. 
     The improvement algorithm is essentially 
standard simulated annealing [4], except that a 
given number (M) of best-improve moves are 
made at each of the (N) iterations with the same 
temperature, before consideration is given to the 
probabilistic acceptance of a worse solution. 
Following Osman [5], the λ-interchange generation 
mechanism is used to explore the neighborhood 
structure. For deliveries from the RDC, λ = 1 is 
used, so that two customers in different trips may 
be swapped or a customer may simply be shifted 
from one trip to another. All the product categories 
to be delivered at a drop are moved.  However for 
deliveries from the hub, the pick-up from the hub 
and the delivery of those goods are not allowed to 
be moved independently (i.e. λ = 2), because the 
hub and the customer requiring the hub groceries 
must be in the same trip.  Similarly for a backhaul, 
both its origin and destination must be moved 
together. The simulated annealing stops when a 
prescribed number of cycles of N iterations have 
been executed without changing the value of the 
best solution. The costs of distribution, which 
change with the schedule, are the tractor, trailer 
and driver fixed costs and the variable cost per 
mile Thus when a customer is removed from a 
route, there is a cost reduction equal to that for one 
vehicle, if the route contained one customer, and 
zero otherwise In addition, there will be a decrease 
in the mileage cost. The converse applies when a 
customer is added to a route. 
     In obtaining an initial solution, it is assumed 
that the vehicle capacity is fixed and that time 
windows are hard. In the real world, the scheduler 
can always load a few extra pallets on to a 
nominally full vehicle and the time windows are 
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soft. Hence the improvement algorithm includes 
penalty costs for overloading, expressed as pounds 
per additional pallet, and time window penalties in 
pounds per hour waiting or late at a customer Any 
changes in these penalty costs must be included 
with the vehicle and mileage cost changes, 
whenever a customer is removed from or added to 
a route Obviously the change in the capacity 
penalty, which is usually zero, depends on the 
vehicle capacity and the number of pallets on the 
vehicle before and after the customer removal or 
addition. However, the removal or addition of a 
customer may alter the time window penalties for 
late customers in the route. Thus the changes 
summed over those customers must be calculated. 
When a customer is added to a trip, loading 
feasibility has to be checked against the product 
categories of the previous and following customer. 
This is unnecessary for a removal. 
     A trip with only one customer is not destroyed 
if that customer is removed during the simulated 
annealing, because it provides an opportunity to 
insert another customer. In practice, it is expected 
that the improvement algorithm will reduce the 
number of vehicles, unless the initial solution is 
very good. 
     The λ-interchange mechanism could be 
extended but it becomes complex for sets of 
customers Instead, it can very easily be applied to 
complete trips in routes, instead of customers, with 
λ = 1. No costs will change, except the time 
window penalties, and the only constraint is the 
length of the driver�s day. 
 
 
 

4. SETTING VALUES FOR THE 
SIMULATED ANNEALING 

PARAMETERS 
 

In any application to a particular combinatorial 
optimization problem, we must take a number of 
decisions on choices. These choices fall into two 
classes according to Johnson et al. [6]: problem 
specific choices and generic choices for cooling 
schedules. In order to experiment with the 
parameters, we need to work on the generic 
choices, which are as follows: 
• Generic choices define the components of the 

cooling schedule. A cooling schedule must give 
specific answers to the following questions on how 
to determine: 
1. The initial starting value of the temperature T. 
2. The number of iterations to be performed at 

each temperature. 
3. The cooling rate and the temperature update 

rule. The termination of the algorithm 
(stopping criterion). 

     As was stated before, there are four important 
parameters that have to be considered in this 
algorithm in order to escape from a local optimal 
solution. These parameters are as follows: 
 
• T: The Initial Temperature   In the process, 
the temperature (T) descends slowly through a 
series of levels. The value of the initial temperature 
determines the initial probability of accepting an 
uphill move. If it is set too low, the algorithm may 
not be able to move to other regions of the solution 
space and may become permanently trapped in a 
local optimum. If it is set too high, uphill steps 
may be accepted over many iterations during early 
iterations and computing time may be wasted 
before the probability of accepting an uphill step is 
significantly reduced. There are various more 
sophisticated methods for setting the initial 
temperature value, but we are simply using 
experimentation to find a suitable value. 
 
• N: The Number of  Iterations at Each 
Temperature   When the parameters receive a 
value, the algorithm starts to work. As stated 
above, T gets a suitable value in order to escape 
from the local optimal solution. So with first value 
of T, the first iteration starts. The modification 
made to the standard simulated annealing 
algorithm ensures that the entire neighborhood has 
been searched within each iteration. The algorithm 
in this paper performs M trials, taking the 
best improvement at each one, so for this 
implementation the value of N does not need to 
relate to the size of the neighborhood. In all the 
runs, M is set to 100. The number of iterations at 
each temperature affects the rate of cooling. The 
higher the value of N, the slower the cooling will 
be. Generally, higher values of N may lead to 
better quality solutions, but at the expense of a 
longer computation time. 
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• r: The Temperature Update Rule   As stated 
previously, the rapid quenching process can be 
viewed as analogous to local optimization via 
steepest descent. In this implementation, simple 
geometric cooling is used where at each 
temperature change, the current temperature is 
multiplied by a constant, r where 0 < r < 1. The 
closer the value of r to 1, the slower will be the 
cooling and so may produce better quality 
solutions, but at the expense of longer computation 
time. 
 
• Sc: The Stopping Criterion   The stopping 
criterion, which has been used in this algorithm, 
represents the number of iterations, which have 
taken place with no change in the value of the best 
solution. 
     After some initial experiments (results not 
recorded) testing the effect of different values, a 
series of experimental runs was carried out where 
each parameter was given two possible values in 
the region of what was expected to be a suitable 
value. The Tables 1 and 2 show the different 

values for the parameters. All the experiments have 
been carried out using a PC Pentium 3. In both 
tables: 

T: initial temperature 
N: number of iterations 
r: the temperature update rule 
Sc: stopping criteria 
Cost: total cost  
No. its: total of number of the iterations 
CPU: total time in second 

     The above tables show the best cost, which is 
£3266.86, is obtained with different parameter 
values. This result appears eight times in two 
tables. There are five following points: After the 
initial experiments with parameter values, the 
results are not too sensitive to the values used in 
these experiments. 
     The same cost resulted whether stopping 
criteria (Sc) was set to 50 or 100. Therefore there 
is no need to wait for 100 iterations without 
improvement before stopping; 50 iterations 
without improvement will be sufficient. 
     When t is 0.99, the best result of £3266.88 is 

TABLE 1. Experiment with Different Values of the Different Parameters (T = 400). 
 

T N r Sc Cost No. its CPU 

400 200 0.99 100 3266.86 21057 821 

400 200 0.99 50 3266.86 19687 767 

400 200 0.90 100 3401.20 9939 387 

400 200 0.90 50 3401.20 8569 334 

400 100 0.99 100 3266.86 21057 821 

400 100 0.99 50 3266.86 19687 767 

400 100 0.90 100 3482.70 6339 247 

400 100 0.90 50 3482.70 4969 193 
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always achieved, but when t is set to 0.9 a worse 
result is always achieved, so t should be set to 0.99 
     When r is 0.99 the best cost and total number of 
iterations (No. its) are not affected by the value of 
T and N used. For the later experiments, we 
decided, to use T = 400 and N = 100. 
     The similarity in the result for different values 
proposed for the simulated annealing parameters 
arises because all runs are started from the same 
initial solution, the same neighborhood moves are 
tried, any reduction in cost is always accepted and 
when there is an increase in cost, the probabilities 
of acceptance implied by these parameter values 
are similar. 
 
4.1 Changing The Time Windows   One of the 
other experiments is changing the time windows 
for the customers. The reason for this is because 
after discussing the previous results with the 
company, they suggested that the grocery time 
window should be tighter. In order to do that, we 
kept the same time windows for perishable and 
produce, which was one hour, and for frozen, 
which was two hours. But we decreased by one 

hour the latest time for deliveries of grocery. Runs 
were again carried out with different values of the 
simulated annealing parameters to check whether 
the conclusions from the previous section were still 
valid. The results appear in the Tables 3 and 4. 
     The tables show that the results have a similar 
sensitivity to the values of the simulated annealing 
parameters as in the previous section. As the 
results show, again the best result was found when 
T = 400, N = 100, r = 0.99 and Sc = 50. This 
confirms the choice of parameter values, which 
will now remain fixed for other experiments. As 
expected, the cost increased because the time 
window was decreased for grocery. This made 
some deliveries in the previous solution infeasible. 
So this set of experiments shows two important 
points: The best cost was found again using the 
same values assigned to the parameters as for the 
previous experiments with the original time 
windows for grocery. The best solution cost 
increases when a time window is decreased. 
 
4.2. Changing the Capacity of The Vehicles 
An important issue for the management of any 

TABLE 2. Experiment with Different Values of the Different Parameters (T = 2000). 
 

T N r Sc Cost No. its CPU 

2000 200 0.99 100 3266.86 21057 821 

2000 200 0.99 50 3266.86 19687 767 

2000 200 0.90 100 3319.70 12939 504 

2000 200 0.90 50 3319.70 11569 451 

2000 100 0.99 100 3266.86 21057 821 

2000 100 0.99 50 3266.86 19687 767 

2000 100 0.90 100 3401.20 7839 305 

2000 100 0.90 50 3401.20 6469 252 
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distribution operation is deciding on the size and 
type of the vehicles used. One use of the computer 
programming is to examine the sensitivity of the 
distribution cost to the capacity of the vehicles. In 
the following experiment, the capacity of the 
vehicles was increased from 21 to 24 pallets. 
     After finding the best values for the parameters 
which are T = 400, N = 100, r = 0.99 and Sc = 50, 
we set up the parameters according to those values. 
The time windows used were the same as for Table 
5. 
     After increasing the capacity, the number of 
vehicles is still 12 and the distance was the 
same. There was a change just in the penalty 
function for capacity. These results show that 
a simple assumption that distribution costs are 
inversely proportional to the capacity of the 
vehicles used can be very misleading. This 
program can be used to investigate the relationship 
between vehicle capacity and distribution costs 
more precisely. 
 
4.3 Different Demands   In all the above 

experiments the demand of the customers was the 
same. But in this experiment, we changed the 
demand of the customers to represent the 
fluctuations, which may occur on different days, 
and the result is shown in table 6. In this case, we 
tried different values for the parameters and again 
the best result was found using T = 400, N = 100, 
r = 0.99 and Sc = 50. 
 
4.4 Relaxing Time Window Constraints   As was 
stated in Section 2, company has divided its 
customers into two parts: AM and PM. Delivery 
for AM is done between 3 a.m. and 3 p.m. and for 
PM between 3 p.m. and 3a.m. In this experiment, 
we used the algorithm to examine the effect of 
removing the time windows. In other words we 
assigned to all the customers the same time 
window, which was from 3 a.m. until 3 p.m., and 
as it is shown in Table 7 the number of vehicle 
required is 10. 
     The results show if the time windows become 
wider, there is a big difference in terms of the cost 
and number of the vehicles. It gives an indication 

TABLE 3. Experiment with Different Time Windows (T = 2000). 
 

T N r Sc Cost No. its CPU 

2000 200 0.99 100 3353.45 21451 836 

2000 200 0.99 50 3353.45 19705 768 

2000 200 0.90 100 3377.63 13077 510 

2000 200 0.90 50 3377.63 11595 452 

2000 100 0.99 100 3353.45 21181 826 

2000 100 0.99 50 3353.45 20029 781 

2000 100 0.90 100 3459.13 7933 309 

2000 100 0.90 50 3459.13 6735 262 
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to the management of the scale of cost reduction, 
which is possible if a way can be found to relax 
time window constraints. 

5. CONCLUSION 
 

A particular distribution problem has been studied 

TABLE 4. Experiment with Different Time Windows (T = 400). 
 

T N r Sc Cost No. its CPU 

400 200 0.99 100 3353.45 21443 836 

400 200 0.99 50 3353.45 19700 767 

400 200 0.90 100 3459.13 10061 392 

400 200 0.90 50 3459.13 8685 338 

400 100 0.99 100 3353.45 21327 831 

400 100 0.99 50 3353.45 19683 765 

400 100 0.90 100 3540.63 6375 248 

400 100 0.90 50 3450.63 5189 202 

 
TABLE 5. Changing Capacity from 21 to 24. 

 

• T • N • r • Sc • cost • No. its • CPU • Cap 

• 400 • 100 • 0.99 • 50 • 3214.86 • 19687 • 767 • 24 

 
TABLE 6. Changing Demand. 

 

• T • N • r • Sc • cost • No. its • CPU • Cap 

• 400 • 100 • 0.99 • 50 • 3316.51 • 19532 • 732 • 21 

 
TABLE 7. Experiment with Different Time Windows (T = 400). 

 

• T • N • r • Sc • Cost • No. its • No.vehicle 

• 400 • 100 • 0.9
9 • 50 • 2772.01 • 19687 • 10 
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in this paper which is typical of that faced by 
companies operating supermarkets and other types 
of shop. The program runs quickly enough, so that 
it can be used on a daily basis using the most 
recent demand figures, instead of planners having 
to manually update a base schedule. The program 
is designed to be user friendly so can be used by a 
scheduler and is very flexible in terms of being 
able to change time windows, demands and other 
inputs. 
     Further computational experiments illustrate the 
flexibility of the computer programming and 
demonstrate how it can be used to address broader 
management issues (such as the capacity of the 
vehicles to be used), as well as the daily 
scheduling. 
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