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Abstract Frequency response diagrams of a system include detailed and recognizable information
about the structura and parameter effects of the transfer function model of the system. The
information are qualitatively and quantitatively obtainable from simultaneous consideration of
amplitude ratio and phase information. In this paper, some rules and relationships are presented for
making use of frequency response information in order to identify the structure of rationa and
irrational models in a heuristic manner. Estimation of the values of the parameters are also
accomplished in a graphical trial and error procedure. As an example, the heuristic method was
applied for identifying the simplified model of a rotary cement kiln from the frequency response
information of the analytically derived model of the system. The analytical model of the kiln, used in
this paper, was obtained elsewere in a detailed procedure with some assumptions and by using initia
and boundary conditions. Results obtained from identification of the simplified model for rotary
cement kiln not only revea the application of the heuristic method for model identification, but also
demonstrate the appearance of unstable poles and zeros in the model of the system.

Key Words Heurigtic Identification, Model Structure, Irrational Transfer Function, Distributed
Parameter, Rotary Cement Kiln, Limited-Delay-Resonance, Unlimited-Delay-Resonance
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1. INTRODUCTION recognizable information concerning the structural
and parameter effects of the transfer function modd of
Freguency response diagrams include detailed and systems. In fact, the qualitative information of
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frequency response data helps in a delicate manner
in identifying the structural aspects of the model of
a sydem. The information can very well be detected
from both qualitative and quantitative points of
view from the amplitude ratio and phase diagrams
of the system. From the apparent behavior of the
diagrams, one can recognize the lumped or digtributed
parameter nature as well as other structural aspects
of the mode of the system. The essentid recognizable
information are the difference between the orders
of denominator and numerator of the transfer
function, as well as the appearance of origin
located poles or zeros, and the appearance of
minimum or non-minimum phase behavior of the
model. Also, the existence of unstable poles or
zeros in the model are well recognizable from the
intermediate and high frequency information. On
the other hand, the gppearance of periodic resonance
in both amplitude ratio and phase diagram is an
indication of irrational form of the structure of the
model of the system. The values of the model
parameters can still be determined in a heuristic
manner. The procedure of heuristic identification
of modd structure and parameter estimation, presented
in this paper, finds its important applications very
well in process systems which mostly are inherently
distributed parameter in their nature and thus the
problem of choosing a model structure for the
system becomes more complicated than the
lumped parameter systems. Such kinds of process
systems consist of packed column and rotary drum
systems, as well as shell and tube heat exchangers,
which include the common physical nature of two
flowing streams in parallel or counter flow.

In this paper, frequency response information of
an analytically derived complex model of arotary
cement kiln is used for identifying the structure as
well as the parameters of the simplified model of
the system in a heuristic manner. The rotary
cement kiln is a distributed parameter process
system with the longitudinal dependence of the
variables being more important than their radial or
angular dependencies. Thus, it seems that an
irrational smplified transfer function model structure
consisting of parallel combination of two rational
transfer functions is quite capable in describing
and fitting the dynamic behavior of the system.
Actudly, it is very difficult to apply the conventional
identification techniques for this system [1].
Whereas the heuristic technique applied here can
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be used to identify the structure of the model of the
system.

2. ANALYTICAL MODEL OF ROTARY
CEMENT KILN

Like many other process systems, the rotary cement
kiln is a distributed parameter process system in
which the transportation of materials (including
solid and gas) is the dominant phenomena in the
system. However, many other important phenomena
occur in the system. These include: intensive
radiation of flame (especially in the burning zone),
formation and variation of the thickness of the
coating layer in the burning zone, and the calcination
of the cacium carbonate and transportation of CO,

gases from flowing solid to the gas stream
(appearing only in the calcining zone of the kiln).
Since the procedures of derivation of the analytical
model are very complicated, here only a brief
explanation of the assumptions, as well as the
procedures of developing the model is presented.
Such distributed parameter systems are referred to
as quasi-rational distributed systems (QRDS) [2,3]
and their smplified transfer functions are constructed
from parallel combination of two rational transfer
functions, which at least one of them include time-
delay parameter. This time-delay parameter, in
contrast to the time-delay parameter of rational
models, depending on the values of the other
parameters in the model, may show complete
characteristics of atime-delay (TD) parameter or a
quasi-time-delay (QTD) characteristic. We refer to
the (QTD) characteristic as the situation in which a
limited effect on phase diagram at high frequencies
appears, despite the existence of time delay
parameter in the model. Quasi-rational distributed
systems exhibit a periodic resonating behavior in
frequency response diagrams both in amplitude
ratio and phase.

In this paper, frequency response of an
analytically derived transfer function model of a
rotary cement kiln is used as an example for better
demonstrating the procedures for identifying the
structure of the model and its parameters from the
frequency response data of the system. Although,
demonstration of derivation of a model for arotary
cement kiln is not the objective of this paper, but
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Figure 1. Input and output variables considered in the model
of rotary cement kiln.

for the sake of better understanding the subject, a
brief explanation of the model derivation is aso
discussed here. The detail s of the complicated analytical
model, including procedures of derivation are
given elsewhere [4]. It is necessary to note that we
do not claim anything about applicability of the
model presented here, since there have been some
big assumptions applied during model derivation.

The analytical model of the system is derived
by use of some assumptions and application of heat
balance on the essential individual elements of the
system, including the kiln shell as well as the gas
and solid materias [5]. The resulting nonlinear partial
differential equations from the energy balances
were combined with the model of transportation of
solid materials in rotary drums [6]. This was done
for the purpose of inserting the variable “n” (the
drum’s rotation speed) in the model. This variable
is an important controlling variable for such
systems. The outside temperature and the wind
velocity were also included in the model by
considering the heat transfer between the shell and
the flowing ambient air (wind) outside the kiln. At
the same time, the parameters of time and length in
the model were changed to their dimensionless
forms by dividing them by the residence time of
solid material inside the kiln and the length of kiln,
respectively. Then, the model was linearized
around the operating point and the resulting
linearized model, which included eight input and
two output variables were solved analytically by
considering the boundary conditions to obtain
sixteen various transfer functions of the system.
The input and output variables considered in the
model are shown in Figure 1.
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The velocity of solid material and flowing gas
were assumed to be independent of distance in the
kiln. These additional assumptions were required
to be included for reducing the number of
unknowns. In this way the model becomes exactly
specified with degree of freedom equa to zero.
Due to these additional assumptions, some expected
changes in the results of simulating the model were
observed, which are discussed later during model
simplification studies. The resulting model of the
system was very complicated with a great number
of replacing variables and parameters. This was
due to the linearizations, which was performed on
the individual terms of the model, and aso due to
the analytical procedure that was applied for
solving the set of equations [4]. In fact, the
resulting complicated modd, athough very detailed in
its nature, could not explicitly express anything
regarding the dynamics of system unless it is
simplified in the form of standard models for
dynamic systems; like transfer functions. It should
be considered that the model, due to its analytical
nature, depending on various assumptions applied
inits derivation, is quite able to reflect the inherent
dynamical aspects of the system. Thus, the
conclusions of the paper is twofold, in that it
reflects not only some specific dynamic characteristics
of rotary cement kilns, but also presents a new
heuristic method in frequency response domain for
determining the structure of the simplified model
of a system and identifying the values of its
parameters.

3. SIMULATION AND QUALITATIVE
MODEL VALIDITY

The resulting analytical model is simulated in
frequency domain for individual transfer functions.
The simulation is performed by use of MATLAB
software. The results of simulation can be used not
only for identifying the smplified transfer functions
of the system, but also to investigate the model
validity in a qualitative manner. The results of
simulation both for the analytically derived model
and the heuristic derived and simplified one are
shown in comparison in Figures 2 through 17 for
various transfer functions.

Although the heuristic identification of smplified
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modd is discussed later, in order to avoid repetition
of graphs, the simulation of simplified modd is
also represented simultaneoudy in Figures 2 to 17.
Each of the Figures is divided into two parts, one
for lower frequencies and the other for higher
frequencies. Thisis done since we are interested in
having a clear observation of the system behavior
from sufficient low frequencies up to sufficient high
frequencies to help for better recognition of the
effects of existing dynamical elements of the
system. In these Figures w isin Rad./(Unit Time),
where the unit of time is the retention time of solid
material while passing through the drum, in the
vicinity of operating conditions.

Before getting into the details of the procedures
for heuristic identification of the simplified model,
it iswell suited here to have a discussion about the
validity of the complex analytica model. From
qualitative validity point of view, the following
points can be discussed:

1. In the diagrams relating to the input n, the
rotational speed of the kiln (Figures 9 and 17),
contrary to all the other inputs, low frequency
slopes equal to +1are visible in amplitude ratio
diagrams. This means that the transfer functions
for this input should be differentiating ones
(with a zero in the origin). In other words, the

30-Vol. 17, No. 1, April 2004

step response curve will have anew steady state
value equal to itsinitial steady state value prior
to insertion of theinput. This conclusion is well
in accordance with physical implication of the
system. Since it is recognizable that, for a
change in the speed of rotation of the drum,
there will not be any sustained change in the
output temperatures, if no additional input or
output energy is affecting the system.

. It is expected that the diagrams of phase show a

limit value at high frequencies, for cases in
which the inputs and outputs are located in one
end of the kiln. Contrary to this, for cases in
which the related inputs and outputs are located
in opposite ends, the phase diagrams should
exhibit the existence of the effects of time-delay
parameters. This means no approach to any
limiting value at high frequencies in phase
diagrams. Thus according to Figure 1, we
expect to observe the phase part of the diagrams

relating to Gqg 1o, (s) (Figure 2), G4 1 (S)
(Figure 4)' GTgi,Tgo(S) (Figure 11)’ GUgi,Tgo(S)
(Figure 13) and G 14, () (Figure 16) exhibit

no limited values at high frequencies, due to the
effect of the respective delay times. However,
this behavior can only be observed in Figures 2
and 11 for Gg 1, () and Gy 14 (S) , While for

the other three (Figures 4, 13 and 16), the phase
diagrams do not show any such effect. This
problem is a straight result of the exerted
assumptions during the procedures of deriving
the analytica model. Firstly, the assumption of
independence of velocities of gas and solid
phase on the distance in the drum has resulted
in disappearance of the effects of time-delay
parameters in the velocity input diagrams
(Figures 4 and 13). Secondly, concerning the
input g, (the heat of combustion), its related

term in the model is inserted in equations
without any differentiation with respect to time
or any dependence to the velocity of flowing
gas. Thus, the effect of time-delay could not be
traced in its phase diagram in Figure 16. In fact,
it is areasonable assumption that the time-delay
for gas velocity and heat of combustion inputs
are the same as the timedelay for gas
temperature input affecting the temperature of
gas at the output. In the same manner, we may

IJE Transactions B: Applications



assume that the time-delay for solid velocity
input is the same as the time-delay for solid
temperature input affecting the solid
temperature output at the other end of the kiln.
In this way, the missing time-delay effects in
the Figures 4, 13 and 16, can be recovered in
the procedures of identifying the simplified
model from the frequency response of the
complex analytical model. This is the task,
which is done later in deriving the simplified
model for system.

3. Some of the Figures exhibit periodic resonance
behavior, with the same periods of oscillation
coexisting in both the amplitude ratio and phase
diagram. Such behavior in frequency response,
which we expect to be a specific characteristic
of distributed parameter process systems with
two flowing streams, is frequently reported for
shell and tube heat exchangers from long time
ago [7,8]. For this type of heat exchangersit is
known that the transfer function model of the
system is in the form of irrational transfer
function, which is the combination of two
transfer functions in paralel, one of which
includes time-delay parameter. Furthermore, it
is known that for such models there will appear
periodic resonance in frequency response.

4. HEURISTIC IDENTIFICATION OF
SIMPLIFIED MODEL

In developing the heuristic identification of the
simplified model from the frequency response
data, we make a distinction between the rational
and irrational transfer function models. The
structure of irrational model considered here, is
very well suited for describing the class of
distributed parameter process systems in which the
axial transportation of materias is the dominant
phenomenon affecting the dynamic characteristics
of the system. For such systems, the simplified
models can be considered in the form of parallel
combination of two rational transfer functions
which at least one of them will include time-delay
parameter. As an example, among the sixteen transfer
functions discussed in this paper for the rotary
cement kiln, five of them are explicitly observed to
have periodic resonance characteristics. Therefore,

IJE Transactions B: Applications

the irrational transfer functions are well suited for
demonstrating their specific dynamic behavior.

In fact, many of the diagrams represented in
Figures 2 to 17, include some irregular resonance,
which can be observed at high frequencies. These
are appearing after the regular resonance. The
irregular resonance were neglected here to be
modeled, because it would be a very difficult task
and requires much prior knowledge of the dynamics of
more complicated irrational models to enable one
to detect and identify the structure of such
characteristics. Therefore, this part of diagrams are
omitted from the Figures 2 to 17, except the two

Figures 5 and 8 (relating to G (s) and

G .70 (S) ), which are shown only for demonstrating

this type of behavior. Concerning to Figure 8,
attempts were made to demonstrate the irregular
resonance by using some additional terms in the
simplified model. But, as seen in this Figure the
results of fitting are not so much excellent although
that it is not up to very high frequencies. The
details of the irregularities of the model are
reflected in [4].

Ugi, Tso

4a. ldentification of Rational Transfer
Function Models For the case under study,
the system can be conddered as a hon-resonating one
demongrated by the following transfer function
model:

KsP - (ty,;S+)
G, (9= ” e €

n

|:| (T, 5+1)

In this model, the parameter n; N =1,2,3,:--isthe
number of poles of denominator that are not
located in the origin (non-integrating poles). Also,
m;, m=0,123--- is the number of zeros of
numerator that are not located in the origin (non-
differentiating zeros) and p; p=---,—2,-1,012,---
is the number of poles or zeros that are located in
the origin (differentiating poles or integrating zeros).
Thus, the order of numerator and denominator are

Dy=m+p , p>0
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Dy=m , p=<O
Dy, =n , p=20
Dp=n-p , p<0

The overall order of the model is m+p—-n. The
parameters T,; and T, represent the time
constants, K is the steady state gain of the model,
and T,; T, =20, isthe time-delay parameter of

the model. Here, in the example of rotary cement
kiln, we are not faced with the cases were the
complex roots should be considered in the model.
Nevertheless, for such cases of non-periodic
resonance systems determination of damping
parameter as well as the time constant from the
frequency response data are also possible [9]. Each
of the time constants “T” are related to its
affecting frequency, by:

T=— (2)

where, W, is the corner frequency at which the

parameter T affects the amplitude ratio and phase.
Therefore, it is possible to predict the approximate
values of time constant parameters by considering
the changes in the slope of amplitude ratio curve as
well as the changes in the phase diagram in the
vicinity of each visible w, .

The order of repetition of an especial time
constant parameter can be detected from the order
of changes in the slope of amplitude ratio. The
change in the slope of amplitude ratio should be
+1 for each of the appearing zeros in the model
and it is —1 for each of the poles. Thus, al of the
poles and zeros appearing in the model affect the
overall slope of amplitude ratio at high frequency.
It is notable that, there is no effect from the sign of
the poles or zeros (stable or unstable poles or
zeros) on the slope changes appearing in amplitude
ratio.

There would be corresponding changes in the
phase. Contrary to the changes which appear in the
slope of the amplitude ratio, in the case of phase
the changes are dependent on the fact that the pole
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or zero is located in the RHP or in the LHP of the
complex coordinate. In total, there appear four
different cases regarding the stable and unstable
poles and zeros in the frequency response
diagrams. These are as follows:

1. For each of the stable zeros, there appears a
+ 90 degrees change in ultimate value of phase
diagram at high frequencies, and an increase
egual to onein the slope of amplitude ratio.

2. For each of the unstable zeros, there appears a
—90degrees change in ultimate value of phase
diagram at high frequencies, and an increase
egual to one in the slope of amplitude ratio.

3. For each of the stable poles, there appears a
—90degrees change in ultimate value of phase
diagram at high frequencies, and a decrease
egual to one in the slope of amplitude ratio.

4. For each of the unstable poles, there appears a
+90 degrees change in ultimate value of phase
diagram at high frequencies, and a decrease
equal to onein the slope of amplitude ratio.

These concepts, not only help in recognizing
the values of time constant parameters very well,
but also their stable or unstable characteristics can
be checked and determined directly. After
determination of the approximate values of time
constants and their respective stability, their
improved values can be obtained graphically in a
trial and error effort by comparing the model and
data.

In order to identify the structure of the model, it
is needed to determine the orders of numerator and
denominator, as well as the number of each of the
stable and unstable poles and zeros. Also, it is
necessary to determine the sign of the steady state
gain of the modd. These are the prerequidtes, before
starting to determine the values of parameters
which can be done graphically in a trial and error
procedure. In order to accomplish the above task,
the following rules can be used straightly for
identification of rational models from frequency
response data. These rules are relevant to low and
high frequencies as well as the intermediate
frequency information.

Al. The dlope of low frequency asymptote in
amplitude ratio diagram is equal to the number
of origin located root(s) in the transfer function.
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That is, if the dynamic element s°;
p=..-2,-1012,.. is affecting the behavior of
the model, then, the low frequency asymptote with
slope equal to p will occur in amplitude ratio.

Also the phase diagram of the model will show a
jump equal to 90p at all frequencies. Therefore, if

p > 0, the jump will be in upward direction, and if
p <0, it will be in downward direction. Since this

jump appears at dl frequencies, therefore its effect
can be detected at high frequencies as well as low
frequencies. In the example of rotary cement kiln,
for the graphs relating to speed of rotation of drum,
low frequency dope of amplitude ratio is
recognized to be equal to +1, while for al the
other inputsit is equal to zero.

A2. High frequency slope of the asymptote
of amplitude ratio diagram is an indication
of the difference between the orders of the
polynomials of numerator and denominator
(Dy =Dy-D,; D, =0,-1-2,.).

If the resonating characteristics appear in the
frequency response diagrams, it is possible to
consider two upper and lower envelops both for
amplitude ratio and phase diagrams. In the
example of rotary cement kiln, the upper and
lower envelops for amplitude ratios appear to be
parallel at high frequencies (at least up to
frequencies under our consideration). Therefore,
the slope of amplitude ratio at high frequency
can be considered as the slope of one of these
envelops.

A3. Inaddition to the above jumps and ultimate
effects on the phase diagram, there will be other
all-frequency phase jump effects which results
from the existence of negative sign in the steady
state gain of the system. Therefore, if K <0,
then without any effect on amplitude ratio the
phase diagram will jump an amount equal to
+180degrees towards the upward direction or
—180degrees towards the downward direction.
The direction of jump depends on weather the
phase diagram exhibits a positive slope or a
negative slope at low frequencies (see the
Figures 12, 14, 15, 16 and 17).

A4. It isworth noting that the slope of asymptote
of amplitude ratio at high frequencies is
independent of the sign of the time constants in the
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numerator or denominator (LHP or RHP roots).
These effects of high frequencies for amplitude
ratio are similar to the intermediate effects stated
before.

The following equations can describe the
relation between high frequency asymptote of
amplitude ratio as well asthe high frequency phase
values with the LHP and RHP poles and zeros of
the model.

S,=Dy =Dy =(Dy. *Dyr) ~(Dp. +Dpg) +p
3
PH :[(DNL _DNR)_(DDL _DDR)+p]90
=S, M0 - (D,z —Dpr)180 , K>0
(4)
P, « = P, +180 , K <0 ®)

From the above equations it is not possible to
determine in an explicit manner the four unknowns

Dy Dyr: Dp. and D, with prior information
of p, S, and B, or B,,. Thus heuristic

determination of the above unknowns finds its
application for identifying a full precise model
from the data.

A5. In both amplitude ratio and phase, the
neighboring stable poles and zeros or neighboring
unstable poles and zeros will cancel the effects of
each other at high frequencies. These roots can be
detected from trends of increases or decreases in
the diagrams at intermediate frequencies. If these
kinds of poles and zeros are neglected, then,
around their affecting frequency, there will appear
some deviations in fithess of model and data.

AG6. If the data show the effects of time delay
parameter (specially large amount of parameter)
then this parameter should be determined at first.
This can be done in a graphically trial and error
procedure, such that the ultimate value of phase
becomes recognizable. In this way, the details of
the effects of time constant parameters as well as
the steady state gain on phase become apparent.
This is the effort, which has been made exactly for

G4 15 (5) » ShOwn in Figure 2, since its time-delay

Vol. 17, No. 1, April 2004 - 33



G(s)=1.2f(s+1)+exp(-0.25s)/(s+1)
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Figure 19. Freguency response of the distributed model
representing limited-delay-resonating phase characteristics
12 e—04253
+ .

G(s) = —
© s+1 s+l

parameter is large enough to diminish the effects of
other time constant parameters. In Figure 18 the
same phase diagram of Figure 2 — B is shown after
elimination of time-delay effect.

4b. ldentification of Irrational Transfer
Function Models An irrational transfer
function model of the structure shown in 6 is well
suitable for identifying the frequency response data of
Figures 12, 14, 15, 16, and 17, relaing to G g 1., (9) ,

GTa,Tgo (S) ' GUa,Tgo (S) ! Gqf,Tgo (S) a]d Gn,tgo (S) '
respectively. Thee Fgures demondrate periodic
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G(s)=1/(s+1)+1.2exp(-0.25s)/(s+1)
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Figure 20. Freguency response of the distributed model
representing unlimited-delay-resonating phase characteristics
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resonance both in their amplitude ratio and phase.
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G(s)=[1.2/(s+1)+exp(-0.258)/(s+1)]exp(-0.255)
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Figure 21. Effect of time-delay parameter on the

frequency response behavior of distributed model,

representing  limited-delay-resonating phase characteristics
012 e 0 (5,

G =
) %ﬂ+ s+1 Ep

Here also, a structure with no complex roots in
the simplified model is considered, since an under
damped behavior is not observed in the Figures.
An example of finding a simplified process model
for such a distributed parameter system, which
includes complex poles, is available elsewhere
[10].

IJE Transactions B: Applications

In this model the explicit time-delay parameter

is T4, while the parameter t, can be considered as
a quas-time-dday parameter since it may represent
either an unlimited-delay effect or a limited-delay
effect in the phase diagram. The difference
between the two cases of limited-delay effect and
unlimited-delay effect is shown in Figures 19, 20
and 21. As is shown in these Figures, the phase
diagram may change significantly with a dlight
change in the amount of the parameters K, and
K, [11,12].

In the frequency response diagrams for rotary
cement kiln, no such examples of unlimited-delay
phase characteristic are observed. However, such
transcendental dynamic characteristics have been
observed for similar distributed parameter process
systems [8]. The rules that can be stated for
heuristic identification of the elements in the
structure of the model of such systems are
discussed bellow. Actually, these rules should be
used in connection to the previously stated rules
for rational models.

B1. As in model 1, the parameter p can be
determined from the slope of the asymptote of
amplitude ratio at low frequencies. Thisis a
case, appearing in Figure 17 for input n and
output T,. It should be noted that the term

“s™ should appear similarly in both parts of
the simplified model of rotary cement kiln.
Also, in the same way as the rational
models, the term “s°” causes the phase
diagram to have a jump equal to 90p at all

frequencies.

B2. At high frequencies, the upper and lower
envelopes of resonating amplitude ratio
diagram are paralle lines with some specific
dopes, which means that the dope of
individual rational parts of the model are
equal at high frequencies

(SHl = DNl - DDl =SHz = DN2 - DD2)
[11].

B3. Inmodel 6 the period of resonance at low and
middle frequencies depends on time constant

parameters as well as the parameter t,. At

sufficiently high frequencies, where the effect
of time constant parameters can amost be
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TABLE 1. Determination of Parameters K, and K, from Low Frequency I nformation.

Relative conditions Condition of first period Appearance of jump effect in
of steady-state gains of resonan?eeltiir; amplitude | phaseequal to +180degrees
K, >0 K, >0, |K|>|K,| half period no
K, >0 K, >0, |K)|<|K,| half period no
K,>0 K, <0, |K1| . |K2| compl ete period no
4 K =0 K,=<0,|K|<[K,| complete period yes
K, <0 K, =0, [K,|>|K,| complete period yes
K,=<0 K, >0, |K1| =< |K2| complete period no
K, <0 K, <0, |Kj|>|K,| half period yes
K, <0 K, <0, |[Kj|<[K,| half period yes
pedlocied, [he Parameer o il peeame final values of these paramaiers oan then
:egowgnrge [iclil_ngrﬁﬁrsﬁ?t?rs 0802;%?9 E[)o bme;) c(;k;jai ned by trial and error in agraphical
determine the value of t, in agraphical trial
and error procedure by adjusting the period of B5. The width of periodic resonance, or in other

B4.

model to the period of data at middle and high
freguencies.

At low freguencies the periods of resonance
are affected by all the parameters except T,

K, and K,. However, the algebraic signs for
K, and K, straightly affect the first period of

resonance as well as the +180 degrees

jumps in phase. The appearance of ahalf or a
complete resonance in the first period, may be
checked by comparing with the next coming
period(s) in the graph. The above statements
are summarized in Table 1, which can help
very well to recognize the respective signs
and relative values of the parameters K; and
K, from the apparent behavior of amplitude
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words, the vertical distance between the upper
and lower envelopes at high frequencies is a

function of K’ :||K1| —|K2|| . As the value of

K" decreases the distance between the upper
and lower envelopes increases, such that at
K' =0, the distance reaches to its maximum
value, both in amplitude ratio and phase. For
phase diagram the maximum width,
corresponding to K' =0, is equal to 180
degree[11,12]. Using this fact and also noting
that the absolute value of overall gain of the

model |K,,|=|K, +K,| can be determined

directly from the low frequency value of
amplitude ratio, and also considering the
notation B2, the signs and the values of the
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parameters K; and K, can be determined
graphicdly inatria and error procedure.

B6. For the case of Figures 9 and 17, in which the
slope of amplitude ratio at low frequency is
not zero, determination of the values of gains
“K” in model 1, and “K;, = K; + K," in
model 6 can be done from the values of
amplitude ratios a¢ w=1. By use of the
above rules, al of the five diagrams, which
possess resonating characteristics, are fitted
heuristically with the simplified models of
irrational structure.

B7. Inthe case of rotary cement kiln, in al of the
five diagrams which demonstrate periodic
resonance characteristics, the phase diagrams
are approaching to some limiting range at
high frequencies without demonstrating the
infinite phase characteristics of a time-delay
parameter (similar to Figure 20). This
means that |K,|>|K,[[11,12]. Thus, the
rotary cement kiln model isrelated only to the
rows 1, 3, 5and 7 in Table 1. Now, by use of
the above information, and noting the
appearance of a complete or half period
resonance in amplitude ratio as well as the
appearance of +180degrees jump in phase
diagrams, it would be possible to determine
the related row in Table 1, from which the

sgns of parameters K, and K , are determined.
In this manner, after determining the signs of
the parameters K, and K,, their precise
values can be determined in a graphical tria
and error effort such that [K,| >|K,| and the
low frequency gains of model and data
become exactly fitted.

B8. In the case of rotary cement kiln model, the
effects of parameter T, cannot be detected in

any one of the diagrams. Thus, in any of the
five resonating cases it is concluded that

T, =0, while the parameter t, #0 since
there are periodic resonance in the diagrams.
After determination of parameters pand T,
the time constant parameters “ 1" as well as
the quasi-time-delay parameter “t,” can be
determined by considering the rules B2 and
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B3 in agraphical trial and error procedure. If
the parameter T, existsin the model, it should

be determined prior to time constants in a
graphical trial and error sense, because the
effects of this parameter prevents from clear
observation of the effect of time constants.

The results of application of the above rules
and statements to the cement kiln are the
following simplified transfer functions. It is seen
that the system is an unstable distributed
parameter one:

1.03x107°(-7.8x102 s+1)? Lot

G, S) =
ra.150(9) (-3.45%1072 5+1)2
(7)
B 3.1x107!(-5.6x10°s+1)
GTgi,Tso (S) - —2 )
(7.5x10°s+1)(-5.0x10"“s+1)
(8)
2 -1
G oy 1a () = 1.54 x10 (28.5_:10 s+1) g 10Ls
(7.55x10 2 s +1)
9)
_ -1.805% (-7.0x107° s+1)
GUgi,Tso (S) - —2 2
(6.75x10™°s+1)(-6.75x10“ s+1)
(10)
_ —2.83x107°(5.31x107? s+1)
GTa,Tso (S) - 2 —2 2
(-5.31x10°s+1)(6.5x10“s+1)
(11)
B 2.19%(5.31x107%s+1)
G Ua, Tso (S) - —2 ) 2
(-5.31x10°s+1) (6.5x10“s+1)
(12)
-1.1x10 7 (-6.4x103s+1
Gqf,Tsa (S) = ( S )

(7.8x10 %s+1)°

. (1.345x 10 s+1)(-1.345%10* s+1)
(-6.95%107?s+1)

+1_3x10—13(_5x10—4 s+1) (l+e—0.07785)

(13)
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—2095.8s

G S) = 14
o () (7.34x107? s+1) (9
_ —2.02x107%(-7.0x107*s+1)
GTsi,Tgo (S) - -2 -2
(7.3x10°s+1)(-5.1x10""s+1)
(15)
_ (-2.83x107s+1)® _0.00033 s 16
Gra.1o (8) = (-3.06x10 7 s+1)7 4o
GUs’,Tgo(S) =

2.48x (-4.25x10° s +1) (-4.75x107* s +1)
(7.75%x10* s+1) (6.95x10 25 +1) (-6.95x10 25 +1)

-4 2
-0. -4, + -
. 068><i0 ( 425x10_4s 1) -ooomsss (17)
(5.0x107* s+1)(7.0x10™* s +1)

- 5.37x10%(1.92x10% s + 1)
(-28.85+1) (7.06x10 2 s +1)

G Ugi, Tgo (S) =

w 5.645x10 *s+1 o 000033 s
(2.526 x10 3 s +1)

(18)

_ -1.36x10°
GTa,Tgo (S) - -2 -3
(-6.6x1072s+1) (25x10 7 s +1)

N 7.7x10°°
(-6.6x1072s+1) (2.5%10 % s+1)

-0.00138s

(19)
10.57
G Ua, Tgo (S) = -2 -3
(-6.6x10°s+1)(2.5%x10"°s+1])

N -6.0 -0.00138 s
(-6.6x107s+1) (2.5x10%s+1)

(20)

0 -1.0x10°5(-9.62x102s+1) [
H-11x107s+1) (251x10°s +1) 59_0_000335

Gy 1e0(9) =
of Tgo %_ L]_O‘6 o 0001375 B
0 (251x107°s+1) O

(21)
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Gn,Tgo (S) =
5.24x10%(-4.75%10*s+1)s
(7.75x107*s+1) (6.95x1072s+1) (-6.95%10 7 s+1)

-1.7x107%s

+ —-0.00138s
(5.8x107* s+1) (7.8x107* s+1)

(22)

5. CONCLUSION

Frequency response diagrams include complete
information about the details of structure and
individual elements of the model of the system.
These information can be detected heuristically by
use of some rules and relationships which are
presented for identifying the structure of the model
of the system. The rules were presented for rational
as well as irrational transfer function models.
Primary estimations of the amounts of the parameters
of the model are possible by considering the region
of frequencies in which some changes appear in
the diagrams of amplitude ratio and phase. Then,
the final amounts of the parameters can be
obtained heuristically by investigating the fitness
of the model and data in a graphica mode. The
results of applying the method to the frequency
response data of a rotary cement kiln revealed that
this system includes unstable poles and zeros.
Also, it isshown that the irrational models are very
much suitable for describing the dynamics of these
systems. This is an expected result due to the fact
that the rotary cement kin is a distributed
parameter process system, in which the material
transportation is the dominant phenomenon
affecting the dynamics of the system.

The heuristic method developed here for
identifying the process systems, is suitable to
identify the structure of rational and irrational
transfer functions. This method was applied for the
rotary cement kiln up to frequencies of appearing
non-regular resonance in the frequency response
diagrams. The non-regular resonance can aso be
identified and traced by considering some additional
elements in the structure of the model. But, this
would be a very difficult task and needs much
more prior knowledge of the dynamics of irrational
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models to make it possible to detect and identify
such complicated characteristics.
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