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Abstract   Frequency response diagrams of a system include detailed and recognizable information 
about the structural and parameter effects of the transfer function model of the system. The 
information are qualitatively and quantitatively obtainable from simultaneous consideration of 
amplitude ratio and phase information. In this paper, some rules and relationships are presented for 
making use of frequency response information in order to identify the structure of rational and 
irrational models in a heuristic manner. Estimation of the values of the parameters are also 
accomplished in a graphical trial and error procedure. As an example, the heuristic method was 
applied for identifying the simplified model of a rotary cement kiln from the frequency response 
information of the analytically derived model of the system. The analytical model of the kiln, used in 
this paper, was obtained elsewere in a detailed procedure with some assumptions and by using initial 
and boundary conditions. Results obtained from identification of the simplified model for rotary 
cement kiln not only reveal the application of the heuristic method for model identification, but also 
demonstrate the appearance of unstable poles and zeros in the model of the system.  
 
Key Words   Heuristic Identification, Model Structure, Irrational Transfer Function, Distributed 
Parameter, Rotary Cement Kiln, Limited-Delay-Resonance, Unlimited-Delay-Resonance 

 
   پاسخ فركانسي سيستمها حاوي اطلاعات كامل و قابل تشخيصي از ساختار و همچنين اثرات                          چكيدهچكيدهچكيدهچكيده

ارهاي نسبت دامنه ها و فاز چه         اين اطلاعات از روي نمود     . باشد پارامترهاي مدل تابع تبديلي سيستم مي       
در اين مقاله قواعد و روابطي براي استفاده از اطلاعات           . بصورت كيفي و چه بصورت كمي در دسترس است         

پاسخ فركانسي براي تشخيص ساختار مدل سيستم هاي گويا و غير گويا و شناسايي آنها بصورت پي بردني                      
بعنوان . يز بصورت حدس و خطاي گرافيكي انجام شده است        تخمين مقادير پارامترهاي مدل ن    . ارائه شده است  

مثال، براي نشان دادن روش پي بردني ارائه شده در مقاله، از اطلاعات پاسخ فركانسي يك كوره دوار سيمان                       
مدل تحليلي بكار رفته در مقاله در جاي          .مربوط به مدل تحليلي بدست آمده براي سيستم، استفاده شده است           

نتايج . صل با استفاده از بعضي فرضها و شرايط اوليه و همچنين شرايط مرزي بدست آمده است               ديگري بطور مف  
دارد،  حاصل از شناسايي مدل ساده شده، ضمن اينكه كاربرد روش پي بردني ارائه شده در اين مقاله را بيان مي                     

 .ج وجود داردگوياي اين مطلب است كه در مدل كوره دوار سيمان ريشه هاي ناپايدار صورت و مخر
 
 

1. INTRODUCTION 
 
Frequency response diagrams include detailed and 

recognizable information concerning the structural 
and parameter effects of the transfer function model of 
systems. In fact, the qualitative information of 
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frequency response data helps in a delicate manner 
in identifying the structural aspects of the model of 
a system. The information can very well be detected 
from both qualitative and quantitative points of 
view from the amplitude ratio and phase diagrams 
of the system. From the apparent behavior of the 
diagrams, one can recognize the lumped or distributed 
parameter nature as well as other structural aspects 
of the model of the system. The essential recognizable 
information are the difference between the orders 
of denominator and numerator of the transfer 
function, as well as the appearance of origin 
located poles or zeros, and the appearance of 
minimum or non-minimum phase behavior of the 
model. Also, the existence of unstable poles or 
zeros in the model are well recognizable from the 
intermediate and high frequency information. On 
the other hand, the appearance of periodic resonance 
in both amplitude ratio and phase diagram is an 
indication of irrational form of the structure of the 
model of the system. The values of the model 
parameters can still be determined in a heuristic 
manner. The procedure of heuristic identification 
of model structure and parameter estimation, presented 
in this paper, finds its important applications very 
well in process systems which mostly are inherently 
distributed parameter in their nature and thus the 
problem of choosing a model structure for the 
system becomes more complicated than the 
lumped parameter systems. Such kinds of process 
systems consist of packed column and rotary drum 
systems, as well as shell and tube heat exchangers, 
which include the common physical nature of two 
flowing streams in parallel or counter flow. 
     In this paper, frequency response information of 
an analytically derived complex model of a rotary 
cement kiln is used for identifying the structure as 
well as the parameters of the simplified model of 
the system in a heuristic manner. The rotary 
cement kiln is a distributed parameter process 
system with the longitudinal dependence of the 
variables being more important than their radial or 
angular dependencies. Thus, it seems that an 
irrational simplified transfer function model structure 
consisting of parallel combination of two rational 
transfer functions is quite capable in describing 
and fitting the dynamic behavior of the system. 
Actually, it is very difficult to apply the conventional 
identification techniques for this system [1]. 
Whereas the heuristic technique applied here can 

be used to identify the structure of the model of the 
system. 
 
 
 

2. ANALYTICAL MODEL OF ROTARY 
CEMENT KILN 

 
Like many other process systems, the rotary cement 
kiln is a distributed parameter process system in 
which the transportation of materials (including 
solid and gas) is the dominant phenomena in the 
system. However, many other important phenomena 
occur in the system. These include: intensive 
radiation of flame (especially in the burning zone), 
formation and variation of the thickness of the 
coating layer in the burning zone, and the calcination 
of the calcium carbonate and transportation of 2CO  
gases from flowing solid to the gas stream 
(appearing only in the calcining zone of the kiln). 
Since the procedures of derivation of the analytical 
model are very complicated, here only a brief 
explanation of the assumptions, as well as the 
procedures of developing the model is presented. 
Such distributed parameter systems are referred to 
as quasi-rational distributed systems (QRDS) [2,3] 
and their simplified transfer functions are constructed 
from parallel combination of two rational transfer 
functions, which at least one of them include time-
delay parameter. This time-delay parameter, in 
contrast to the time-delay parameter of rational 
models, depending on the values of the other 
parameters in the model, may show complete 
characteristics of a time-delay (TD) parameter or a 
quasi-time-delay (QTD) characteristic. We refer to 
the (QTD) characteristic as the situation in which a 
limited effect on phase diagram at high frequencies 
appears, despite the existence of time delay 
parameter in the model. Quasi-rational distributed 
systems exhibit a periodic resonating behavior in 
frequency response diagrams both in amplitude 
ratio and phase. 
      In this paper, frequency response of an 
analytically derived transfer function model of a 
rotary cement kiln is used as an example for better 
demonstrating the procedures for identifying the 
structure of the model and its parameters from the 
frequency response data of the system. Although, 
demonstration of derivation of a model for a rotary 
cement kiln is not the objective of this paper, but 
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for the sake of better understanding the subject, a 
brief explanation of the model derivation is also 
discussed here. The details of the complicated analytical 
model, including procedures of derivation are 
given elsewhere [4]. It is necessary to note that we 
do not claim anything about applicability of the 
model presented here, since there have been some 
big assumptions applied during model derivation. 
     The analytical model of the system is derived 
by use of some assumptions and application of heat 
balance on the essential individual elements of the 
system, including the kiln shell as well as the gas 
and solid materials [5]. The resulting nonlinear partial 
differential equations from the energy balances 
were combined with the model of transportation of 
solid materials in rotary drums [6]. This was done 
for the purpose of inserting the variable “n” (the 
drum’s rotation speed) in the model. This variable 
is an important controlling variable for such 
systems. The outside temperature and the wind 
velocity were also included in the model by 
considering the heat transfer between the shell and 
the flowing ambient air (wind) outside the kiln. At 
the same time, the parameters of time and length in 
the model were changed to their dimensionless 
forms by dividing them by the residence time of 
solid material inside the kiln and the length of kiln, 
respectively. Then, the model was linearized 
around the operating point and the resulting 
linearized model, which included eight input and 
two output variables were solved analytically by 
considering the boundary conditions to obtain 
sixteen various transfer functions of the system. 
The input and output variables considered in the 
model are shown in Figure 1. 

     The velocity of solid material and flowing gas 
were assumed to be independent of distance in the 
kiln. These additional assumptions were required 
to be included for reducing the number of 
unknowns. In this way the model becomes exactly 
specified with degree of freedom equal to zero. 
Due to these additional assumptions, some expected 
changes in the results of simulating the model were 
observed, which are discussed later during model 
simplification studies. The resulting model of the 
system was very complicated with a great number 
of replacing variables and parameters. This was 
due to the linearizations, which was performed on 
the individual terms of the model, and also due to 
the analytical procedure that was applied for 
solving the set of equations [4]. In fact, the 
resulting complicated model, although very detailed in 
its nature, could not explicitly express anything 
regarding the dynamics of system unless it is 
simplified in the form of standard models for 
dynamic systems; like transfer functions. It should 
be considered that the model, due to its analytical 
nature, depending on various assumptions applied 
in its derivation, is quite able to reflect the inherent 
dynamical aspects of the system. Thus, the 
conclusions of the paper is twofold, in that it 
reflects not only some specific dynamic characteristics 
of rotary cement kilns, but also presents a new 
heuristic method in frequency response domain for 
determining the structure of the simplified model 
of a system and identifying the values of its 
parameters. 
 
 
 

3. SIMULATION AND QUALITATIVE 
MODEL VALIDITY 

 
The resulting analytical model is simulated in 
frequency domain for individual transfer functions. 
The simulation is performed by use of MATLAB 
software. The results of simulation can be used not 
only for identifying the simplified transfer functions 
of the system, but also to investigate the model 
validity in a qualitative manner. The results of 
simulation both for the analytically derived model 
and the heuristic derived and simplified one are 
shown in comparison in Figures 2 through 17 for 
various transfer functions. 
     Although the heuristic identification of simplified 

 
 
Figure 1. Input and output variables considered in the model 
of rotary cement kiln. 
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Figure 2. Frequency response simulation for )s(G Tso,Tsi
. 

 

 

Figure 3. Frequency response simulation for )s(G Tso,Tgi . 
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Figure 4. Frequency response simulation for )s(G Tso,Usi
. 

 

Figure 5. Frequency response simulation for )s(G Tso,Ugi
. 
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Figure 6. Frequency response simulation for )(, sG TsoTa
. 

 

Figure 7. Frequency response simulation for )s(G Tso,Ua
. 
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Figure 8. Frequency response simulation for )s(G Tso,qf
. 

 

Figure 9. Frequency response simulation for )s(G Tso,n
. 
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Figure 10. Frequency response simulation for )s(G Tgo,Tsi
. 

 

 

Figure 11. Frequency response simulation for )s(G Tgo,Tgi
. 
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Figure 12. Frequency response simulation for )s(G Tgo,Usi
. 

 

 

Figure 13. Frequency response simulation for )s(G Tgo,Ugi
. 
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Figure 14. Frequency response simulation for )s(G Tgo,Ta
. 

 

Figure 15. Frequency response simulation for )s(G Tgo,Ua
. 
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Figure 16. Frequency response simulation for )s(G Tgo,qf
. 

 

Figure 17. Frequency response simulation for )s(G Tgo,n
. 
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model is discussed later, in order to avoid repetition 
of graphs, the simulation of simplified model is 
also represented simultaneously in Figures 2 to 17. 
Each of the Figures is divided into two parts, one 
for lower frequencies and the other for higher 
frequencies. This is done since we are interested in 
having a clear observation of the system behavior 
from sufficient low frequencies up to sufficient high 
frequencies to help for better recognition of the 
effects of existing dynamical elements of the 
system. In these Figures ω is in Rad./(Unit Time), 
where the unit of time is the retention time of solid 
material while passing through the drum, in the 
vicinity of operating conditions. 
     Before getting into the details of the procedures 
for heuristic identification of the simplified model, 
it is well suited here to have a discussion about the 
validity of the complex analytical model. From 
qualitative validity point of view, the following 
points can be discussed: 
 

1. In the diagrams relating to the input n , the 
rotational speed of the kiln (Figures 9 and 17), 
contrary to all the other inputs, low frequency 
slopes equal to 1+ are visible in amplitude ratio 
diagrams. This means that the transfer functions 
for this input should be differentiating ones 
(with a zero in the origin). In other words, the 

step response curve will have a new steady state 
value equal to its initial steady state value prior 
to insertion of the input. This conclusion is well 
in accordance with physical implication of the 
system. Since it is recognizable that, for a 
change in the speed of rotation of the drum, 
there will not be any sustained change in the 
output temperatures, if no additional input or 
output energy is affecting the system. 

2. It is expected that the diagrams of phase show a 
limit value at high frequencies, for cases in 
which the inputs and outputs are located in one 
end of the kiln. Contrary to this, for cases in 
which the related inputs and outputs are located 
in opposite ends, the phase diagrams should 
exhibit the existence of the effects of time-delay 
parameters. This means no approach to any 
limiting value at high frequencies in phase 
diagrams. Thus according to Figure 1, we 
expect to observe the phase part of the diagrams 
relating to )s(G Tso,Tsi  (Figure 2), )s(G Tso,Usi  
(Figure 4), )s(G Tgo,Tgi  (Figure 11), )s(G Tgo,Ugi  
(Figure 13) and )s(G Tgo,qf (Figure 16) exhibit 
no limited values at high frequencies, due to the 
effect of the respective delay times. However, 
this behavior can only be observed in Figures 2 
and 11 for )s(G Tso,Tsi  and )s(G Tgo,Tgi , while for 
the other three (Figures 4, 13 and 16), the phase 
diagrams do not show any such effect. This 
problem is a straight result of the exerted 
assumptions during the procedures of deriving 
the analytical model. Firstly, the assumption of 
independence of velocities of gas and solid 
phase on the distance in the drum has resulted 
in disappearance of the effects of time-delay 
parameters in the velocity input diagrams 
(Figures 4 and 13). Secondly, concerning the 
input fq  (the heat of combustion), its related 
term in the model is inserted in equations 
without any differentiation with respect to time 
or any dependence to the velocity of flowing 
gas. Thus, the effect of time-delay could not be 
traced in its phase diagram in Figure 16. In fact, 
it is a reasonable assumption that the time-delay 
for gas velocity and heat of combustion inputs 
are the same as the time-delay for gas 
temperature input affecting the temperature of 
gas at the output. In the same manner, we may 

 
Figure 18. Phase diagram of )s(G Tso,Tsi

 after elimination of 
time-delay effect. 
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assume that the time-delay for solid velocity 
input is the same as the time-delay for solid 
temperature input affecting the solid 
temperature output at the other end of the kiln. 
In this way, the missing time-delay effects in 
the Figures 4, 13 and 16, can be recovered in 
the procedures of identifying the simplified 
model from the frequency response of the 
complex analytical model. This is the task, 
which is done later in deriving the simplified 
model for system. 

3. Some of the Figures exhibit periodic resonance 
behavior, with the same periods of oscillation 
coexisting in both the amplitude ratio and phase 
diagram. Such behavior in frequency response, 
which we expect to be a specific characteristic 
of distributed parameter process systems with 
two flowing streams, is frequently reported for 
shell and tube heat exchangers from long time 
ago [7,8]. For this type of heat exchangers it is 
known that the transfer function model of the 
system is in the form of irrational transfer 
function, which is the combination of two 
transfer functions in parallel, one of which 
includes time-delay parameter. Furthermore, it 
is known that for such models there will appear 
periodic resonance in frequency response. 

 
 
 

4. HEURISTIC IDENTIFICATION OF 
SIMPLIFIED MODEL 

 
In developing the heuristic identification of the 
simplified model from the frequency response 
data, we make a distinction between the rational 
and irrational transfer function models. The 
structure of irrational model considered here, is 
very well suited for describing the class of 
distributed parameter process systems in which the 
axial transportation of materials is the dominant 
phenomenon affecting the dynamic characteristics 
of the system. For such systems, the simplified 
models can be considered in the form of parallel 
combination of two rational transfer functions 
which at least one of them will include time-delay 
parameter. As an example, among the sixteen transfer 
functions discussed in this paper for the rotary 
cement kiln, five of them are explicitly observed to 
have periodic resonance characteristics. Therefore, 

the irrational transfer functions are well suited for 
demonstrating their specific dynamic behavior.  
     In fact, many of the diagrams represented in 
Figures 2 to 17, include some irregular resonance, 
which can be observed at high frequencies. These 
are appearing after the regular resonance. The 
irregular resonance were neglected here to be 
modeled, because it would be a very difficult task 
and requires much prior knowledge of the dynamics of 
more complicated irrational models to enable one 
to detect and identify the structure of such 
characteristics. Therefore, this part of diagrams are 
omitted from the Figures 2 to 17, except the two 
Figures 5 and 8 (relating to )s(G Tso,Ugi and 

)s(G Tso,qf ), which are shown only for demonstrating 
this type of behavior. Concerning to Figure 8, 
attempts were made to demonstrate the irregular 
resonance by using some additional terms in the 
simplified model. But, as seen in this Figure the 
results of fitting are not so much excellent although 
that it is not up to very high frequencies. The 
details of the irregularities of the model are 
reflected in [4]. 
 
4a. Identification of Rational Transfer 
Function Models   For the case under study, 
the system can be considered as a non-resonating one 
demonstrated by the following transfer function 
model: 
 

sde
)1s(

)1s(sK
)s(G n

1i
i,D

m

1j
j,N

p
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τ−

=

=

∏

∏

+τ

+τ
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In this model, the parameter L,3,2,1n;n = is the 
number of poles of denominator that are not 
located in the origin (non-integrating poles). Also, 

L,3,2,1,0m;m =  is the number of zeros of 
numerator that are not located in the origin (non-
differentiating zeros) and LL ,2,1,0,1,2,p;p −−=  
is the number of poles or zeros that are located in 
the origin (differentiating poles or integrating zeros). 
Thus, the order of numerator and denominator are 
 

,pmDN +=      0p >  
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,mDN =      0p ≤  
 

,nDD =       0p ≥  
 

,pnDD −=       0p <  
 
The overall order of the model is npm −+ . The 
parameters i,Dτ  and j,Nτ  represent the time 
constants, K is the steady state gain of the model, 
and 0; dd ≥ττ , is the time-delay parameter of 
the model. Here, in the example of rotary cement 
kiln, we are not faced with the cases were the 
complex roots should be considered in the model. 
Nevertheless, for such cases of non-periodic 
resonance systems determination of damping 
parameter as well as the time constant from the 
frequency response data are also possible [9]. Each 
of the time constants “ τ ” are related to its 
affecting frequency, by: 
 

τω
=τ

c

1  (2) 

 
where, τωc  is the corner frequency at which the 
parameter τ  affects the amplitude ratio and phase. 
Therefore, it is possible to predict the approximate 
values of time constant parameters by considering 
the changes in the slope of amplitude ratio curve as 
well as the changes in the phase diagram in the 
vicinity of each visible τωc . 
     The order of repetition of an especial time 
constant parameter can be detected from the order 
of changes in the slope of amplitude ratio. The 
change in the slope of amplitude ratio should be 

1+  for each of the appearing zeros in the model 
and it is 1−  for each of the poles. Thus, all of the 
poles and zeros appearing in the model affect the 
overall slope of amplitude ratio at high frequency. 
It is notable that, there is no effect from the sign of 
the poles or zeros (stable or unstable poles or 
zeros) on the slope changes appearing in amplitude 
ratio. 
     There would be corresponding changes in the 
phase. Contrary to the changes which appear in the 
slope of the amplitude ratio, in the case of phase 
the changes are dependent on the fact that the pole 

or zero is located in the RHP or in the LHP of the 
complex coordinate. In total, there appear four 
different cases regarding the stable and unstable 
poles and zeros in the frequency response 
diagrams. These are as follows: 

1. For each of the stable zeros, there appears a 
90+ degrees change in ultimate value of phase 

diagram at high frequencies, and an increase 
equal to one in the slope of amplitude ratio. 

2. For each of the unstable zeros, there appears a 
90− degrees change in ultimate value of phase 

diagram at high frequencies, and an increase 
equal to one in the slope of amplitude ratio.  

3. For each of the stable poles, there appears a 
90− degrees change in ultimate value of phase 

diagram at high frequencies, and a decrease 
equal to one in the slope of amplitude ratio.  

4. For each of the unstable poles, there appears a 
90+ degrees change in ultimate value of phase 

diagram at high frequencies, and a decrease 
equal to one in the slope of amplitude ratio. 

     These concepts, not only help in recognizing 
the values of time constant parameters very well, 
but also their stable or unstable characteristics can 
be checked and determined directly. After 
determination of the approximate values of time 
constants and their respective stability, their 
improved values can be obtained graphically in a 
trial and error effort by comparing the model and 
data. 
     In order to identify the structure of the model, it 
is needed to determine the orders of numerator and 
denominator, as well as the number of each of the 
stable and unstable poles and zeros. Also, it is 
necessary to determine the sign of the steady state 
gain of the model. These are the prerequisites, before 
starting to determine the values of parameters 
which can be done graphically in a  trial and error 
procedure. In order to accomplish the above task, 
the following rules can be used straightly for 
identification of rational models from frequency 
response data. These rules are relevant to low and 
high frequencies as well as the intermediate 
frequency information. 

A1. The slope of low frequency asymptote in 
amplitude ratio diagram is equal to the number 
of origin located root(s) in the transfer function. 
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That is ,  if  the dynamic element ps ; 
...,2,1,0,1,2...,p −−=  is affecting the behavior of 

the model, then, the low frequency asymptote with 
slope equal to p  will occur in amplitude ratio. 
Also the phase diagram of the model will show a 
jump equal to p90  at all frequencies. Therefore, if 

0p > , the jump will be in upward direction, and if 
0p < , it will be in downward direction. Since this 

jump appears at all frequencies, therefore its effect 
can be detected at high frequencies as well as low 
frequencies. In the example of rotary cement kiln, 
for the graphs relating to speed of rotation of drum, 
low frequency slope of amplitude ratio is 
recognized to be equal to 1+ , while for all the 
other inputs it is equal to zero. 
A2.  High frequency slope of the asymptote 
of amplitude ratio diagram is an indication 
of the difference between the orders of the 
polynomials of numerator and denominator 
( ...,2,1,0D;DDD MDNM −−=−= ). 
     If the resonating characteristics appear in the 
frequency response diagrams, it is possible to 
consider two upper and lower envelops both for 
amplitude ratio and phase diagrams. In the 
example of rotary cement kiln, the upper and 
lower envelops for amplitude ratios appear to be 
parallel at high frequencies (at least up to 
frequencies under our consideration). Therefore, 
the slope of amplitude ratio at high frequency 
can be considered as the slope of one of these 
envelops. 
A3.  In addition to the above jumps and ultimate 
effects on the phase diagram, there will be other 
all-frequency phase jump effects which results 
from the existence of negative sign in the steady 
state gain of the system. Therefore, if 0K < , 
then without any effect on amplitude ratio the 
phase diagram will jump an amount equal to 

180+ degrees towards the upward direction or 
180− degrees towards the downward direction. 

The direction of jump depends on weather the 
phase diagram exhibits a positive slope or a 
negative slope at low frequencies (see the 
Figures 12, 14, 15, 16 and 17). 
A4.  It is worth noting that the slope of asymptote 
of amplitude ratio at high frequencies is 
independent of the sign of the time constants in the 

numerator or denominator (LHP or RHP roots). 
These effects of high frequencies for amplitude 
ratio are similar to the intermediate effects stated 
before. 
     The following equations can describe the 
relation between high frequency asymptote of 
amplitude ratio as well as the high frequency phase 
values with the LHP and RHP poles and zeros of 
the model. 
 

p)DD()DD(DDS DRDLNRNLDNH ++−+=−=
 (3) 
 

[ ]
0K,180)DD(90S

90p)DD()DD(P

DRNRH

DRDLNRNLH

>−−⋅=
+−−−=

 

 (4) 
 

0K,180PP HK,H <±=  (5) 
 
     From the above equations it is not possible to 
determine in an explicit manner the four unknowns 

NLD , NRD , DLD  and DRD  with prior information 
of p , HS  and HP  or K,HP . Thus, heuristic 
determination of the above unknowns finds its 
application for identifying a full precise model 
from the data. 

A5.  In both amplitude ratio and phase, the 
neighboring stable poles and zeros or neighboring 
unstable poles and zeros will cancel the effects of 
each other at high frequencies. These roots can be 
detected from trends of increases or decreases in 
the diagrams at intermediate frequencies. If these 
kinds of poles and zeros are neglected, then, 
around their affecting frequency, there will appear 
some deviations in fitness of model and data. 

A6.  If the data show the effects of time delay 
parameter (specially large amount of parameter) 
then this parameter should be determined at first. 
This can be done in a graphically trial and error 
procedure, such that the ultimate value of phase 
becomes recognizable. In this way, the details of 
the effects of time constant parameters as well as 
the steady state gain on phase become apparent. 
This is the effort, which has been made exactly for 

)s(G Tso,Tsi , shown in Figure 2, since its time-delay 
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parameter is large enough to diminish the effects of 
other time constant parameters. In Figure 18 the 
same phase diagram of Figure 2 – B is shown after 
elimination of time-delay effect. 
 
4b. Identification of Irrational Transfer 
Function Models   An irrational transfer 
function model of the structure shown in 6 is well 
suitable for identifying the frequency response data of 
Figures 12, 14, 15, 16, and 17, relating to )s(G Tgo,Usi , 

)s(G Tgo,Ta , )s(G Tgo,Ua , )s(G Tgo,qf  and )s(G tgo,n , 
respectively. These Figures demonstrate periodic 

resonance both in their amplitude ratio and phase. 
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Figure 19. Frequency response of the distributed model 
representing limited-delay-resonating phase characteristics 
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Figure 20. Frequency response of the distributed model
representing unlimited-delay-resonating phase characteristics
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     Here also, a structure with no complex roots in 
the simplified model is considered, since an under 
damped behavior is not observed in the Figures. 
An example of finding a simplified process model 
for such a distributed parameter system, which 
includes complex poles, is available elsewhere 
[10]. 

     In this model the explicit time-delay parameter 
is dτ , while the parameter dt  can be considered as 
a quasi-time-delay parameter since it may represent 
either an unlimited-delay effect or a limited-delay 
effect in the phase diagram. The difference 
between the two cases of limited-delay effect and 
unlimited-delay effect is shown in Figures 19, 20 
and 21. As is shown in these Figures, the phase 
diagram may change significantly with a slight 
change in the amount of the parameters 1K  and 

2K  [11,12]. 
     In the frequency response diagrams for rotary 
cement kiln, no such examples of unlimited-delay 
phase characteristic are observed. However, such 
transcendental dynamic characteristics have been 
observed for similar distributed parameter process 
systems [8]. The rules that can be stated for 
heuristic identification of the elements in the 
structure of the model of such systems are 
discussed bellow. Actually, these rules should be 
used in connection to the previously stated rules 
for rational models. 

B1. As in model 1, the parameter p can be 
determined from the slope of the asymptote of 
amplitude ratio at low frequencies. This is a 
case, appearing in Figure 17 for input n  and 
output gT . It should be noted that the term 
“sP” should appear similarly in both parts of 
the simplified model of rotary cement kiln. 
Also, in the same way as the rational 
models, the term “ ps ” causes the phase 
diagram to have a jump equal to p90  at all 
frequencies. 

B2. At high frequencies, the upper and lower 
envelopes of resonating amplitude ratio 
diagram are parallel lines with some specific 
slopes, which means that the slope of 
individual rational parts of the model are 
equal at high frequencies 
( 2D2N2H1D1N1H DDSDDS −==−= ) 
[11].  

B3. In model 6 the period of resonance at low and 
middle frequencies depends on time constant 
parameters as well as the parameter dt . At 
sufficiently high frequencies, where the effect 
of time constant parameters can almost be 

 
Figure 21. Effect of time-delay parameter on the 
frequency response behavior of distributed model, 
representing limited-delay-resonating phase characteristics 
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neglected, the parameter dt  will become 
the main affecting parameter on period of 
resonance [11]. Thus, it is possible to 
determine the value of dt  in a graphical trial 
and error procedure by adjusting the period of 
model to the period of data at middle and high 
frequencies. 

B4. At low frequencies the periods of resonance 
are affected by all the parameters except dτ , 

1K  and 2K . However, the algebraic signs for 

1K  and K2 straightly affect the first period of 
resonance as well as the 180±  reesdeg  
jumps in phase. The appearance of a half or a 
complete resonance in the first period, may be 
checked by comparing with the next coming 
period(s) in the graph. The above statements 
are summarized in Table 1, which can help 
very well to recognize the respective signs 
and relative values of the parameters K1 and 
K2 from the apparent behavior of amplitude 

ratio and phase at low frequencies. The 
final values of these parameters can then 
be obtained by trial and error in a graphical 
mode. 

B5. The width of periodic resonance, or in other 
words, the vertical distance between the upper 
and lower envelopes at high frequencies is a 
function of 21 KKK −=′ . As the value of 

K ′  decreases the distance between the upper 
and lower envelopes increases, such that at 

0K =′ , the distance reaches to its maximum 
value, both in amplitude ratio and phase. For 
phase diagram the maximum width, 
corresponding to 0K =′ , is equal to 180  
degree [11,12]. Using this fact and also noting 
that the absolute value of overall gain of the 
model 212,1 KKK +=  can be determined 
directly from the low frequency value of 
amplitude ratio, and also considering the 
notation B2, the signs and the values of the 

TABLE 1. Determination of Parameters K1 and K2 from Low Frequency Information. 
 
 

Relative conditions 

of steady-state gains 

Condition of first period 
of resonance in amplitude 

ratio 

Appearance of jump effect in 
phase equal to 180± degrees 

1      01 fK  02 fK , 21 KK f  half period no 

2      01 fK  02 fK , 21 KK p  half period no 

3      01 fK  02 pK , 21 KK f  complete period no 

4      01 fK  02 pK , 21 KK p  complete period yes 

5      01 pK  02 fK , 21 KK f  complete period yes 

6      01 pK  02 fK , 21 KK p  complete period no 

7      01 pK  02 pK , 21 KK f  half period yes 

8      01 pK  02 pK , 21 KK p  half period yes 
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parameters K1 and K2 can be determined 
graphically in a trial and error procedure.  

B6. For the case of Figures 9 and 17, in which the 
slope of amplitude ratio at low frequency is 
not zero, determination of the values of gains 
“ K ” in model 1, and “K1,2 = K1 + K2” in 
model 6 can be done from the values of 
amplitude ratios at 1=ω . By use of the 
above rules, all of the five diagrams, which 
possess resonating characteristics, are fitted 
heuristically with the simplified models of 
irrational structure. 

B7. In the case of rotary cement kiln, in all of the 
five diagrams which demonstrate periodic 
resonance characteristics, the phase diagrams 
are approaching to some limiting range at 
high frequencies without demonstrating the 
infinite phase characteristics of a time-delay 
parameter (similar to Figure 20). This 
means that 21 KK f [11,12]. Thus, the 
rotary cement kiln model is related only to the 
rows 1, 3, 5 and 7 in Table 1. Now, by use of 
the above information, and noting the 
appearance of a complete or half period 
resonance in amplitude ratio as well as the 
appearance of 180± degrees jump in phase 
diagrams, it would be possible to determine 
the related row in Table 1, from which the 
signs of parameters 1K  and 2K are determined. 
In this manner, after determining the signs of 
the parameters 1K  and 2K , their precise 
values can be determined in a graphical trial 
and error effort such that 21 KK >  and the 
low frequency gains of model and data 
become exactly fitted. 

B8. In the case of rotary cement kiln model, the 
effects of parameter dτ cannot be detected in 
any one of the diagrams. Thus, in any of the 
five resonating cases it is concluded that 

0d =τ , while the parameter 0t d ≠  since 
there are periodic resonance in the diagrams. 
After determination of parameters p and dτ , 
the time constant parameters “ τ ” as well as 
the quasi-time-delay parameter “ dt ” can be 
determined by considering the rules B2 and 

B3 in a graphical trial and error procedure. If 
the parameter dτ exists in the model, it should 
be determined prior to time constants in a 
graphical trial and error sense, because the 
effects of this parameter prevents from clear 
observation of the effect of time constants. 

 
     The results of application of the above rules 
and statements to the cement kiln are the 
following simplified transfer functions. It is seen 
that the system is an unstable distributed 
parameter one: 
 

se
s

ssG TsoTsi
01.1

22

226

, )11045.3(
)1108.7(1003.1)( −

+×−
+×−×= −

−−

 

 (7) 
 

)1s100.5()1s105.7(
)1s106.5(101.3)s(G 22

31

Tso,Tgi +×−+×
+×−×= −−

−−

 (8) 
 

s01.1e
)1s1055.7(

)1s105.28(1054.1)s(G 2

12

Tso,Usi
−

+×
+××= −

−
 

 (9) 
 

)1s1075.6()1s1075.6(
)1s100.7(805.1)s(G 22

3

Tso,Ugi +×−+×
+×−×−= −−

−

 

 (10) 
 

222

26

Tso,Ta )1s105.6()1s1031.5(
)1s1031.5(1083.2

)s(G
+×+×−

+××−
= −−

−−

 

 (11) 
 

222

2

Tso,Ua )1s105.6()1s1031.5(
)1s1031.5(19.2)s(G

+×+×−
+××

= −−

−

 

 (12) 
 

22

37

Tso,qf )1s108.7(
)1s104.6(101.1)s(G

+×
+×−×−= −

−−
 

 

)e1()1s105(103.1

)1s1095.6(
)1s10345.1()1s10345.1(

s0778.0413

2

44

−−−

−

−−

++×−×+

+×−
+×−+××  

 (13) 



38 - Vol. 17, No. 1, April 2004 IJE Transactions B: Applications 
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5. CONCLUSION 
 
Frequency response diagrams include complete 
information about the details of structure and 
individual elements of the model of the system. 
These information can be detected heuristically by 
use of some rules and relationships which are 
presented for identifying the structure of the model 
of the system. The rules were presented for rational 
as well as irrational transfer function models. 
Primary estimations of the amounts of the parameters 
of the model are possible by considering the region 
of frequencies in which some changes appear in 
the diagrams of amplitude ratio and phase. Then, 
the final amounts of the parameters can be 
obtained heuristically by investigating the fitness 
of the model and data in a graphical mode. The 
results of applying the method to the frequency 
response data of a rotary cement kiln revealed that 
this system includes unstable poles and zeros. 
Also, it is shown that the irrational models are very 
much suitable for describing the dynamics of these 
systems. This is an expected result due to the fact 
that the rotary cement kln is a distributed 
parameter process system, in which the material 
transportation is the dominant phenomenon 
affecting the dynamics of the system. 
     The heuristic method developed here for 
identifying the process systems, is suitable to 
identify the structure of rational and irrational 
transfer functions. This method was applied for the 
rotary cement kiln up to frequencies of appearing 
non-regular resonance in the frequency response 
diagrams. The non-regular resonance can also be 
identified and traced by considering some additional 
elements in the structure of the model. But, this 
would be a very difficult task and needs much 
more prior knowledge of the dynamics of irrational 
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models to make it possible to detect and identify 
such complicated characteristics. 
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