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Abstract   This paper develops a computational technique for finding the maximum allowable load 
of mobile manipulators for a given trajectory. The maximum allowable loads which can be achieved 
by a mobile manipulator during a given trajectory are limited by the number of factors; probably the 
dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional 
constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F 
introduced by the base mobility, additional constraint functions are proposed directly in the task space 
of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator 
mounted on a differentially driven mobile base, application of the method to determining maximum 
allowable load is verified. The simulation results demonstrates the maximum allowable load on a 
desired trajectory has not a unique value and directly depends on the additional constraint functions 
which applies to resolve the motion redundancy. 
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در اين مقاله روش محاسباتي تعيين حداكثر ظرفيت حمل بار بازوهاي رباتي چرخ دار در يك مسير                   چکيده      چکيده      چکيده      چکيده      
حركت يك بازو با حداكثر بار قابل حمل يكي از معيارهاي مهم در طراحي مسير                   . مشخص بدست مي آيد   

.  تحت تأثير قرار دهندعوامل متعددي مي توانند ظرفيت حمل بار يك بازوي رباتي متحرك را   . باشد حركت مي 
خواص ديناميكي پايه و بازو، محدوديت گشتاور موتورهاي متحرك و قيدهاي اضافي كه براي حل مسئله                      

از مهمترين عوامل تأثير گذار در ظرفيت حمل بار سيستم تلقي مي                , درجات آزادي مازاد اعمال مي گردند      
ت پايه به سيستم تحليل مي گردند، قيدهايي به          براي حل مسئله درجات مازاد اضافي كه بواسطه حرك         . گردند

يك بازوي دولينكي صفحه اي  , در دو نمونه مثال عددي    . صورت توابع به معادله حركت سيستم افزوده شده اند        
كه روي يك پايه متحرك چرخ دار نصب شده است، براي نمايش كاربرد روش تعيين ظرفيت حمل بار استفاده                   

نتايج شبيه سازي بوضوح نشان مي دهد كه حداكثر بار           . حقيق قرار گرفته است   شده و صحت الگوريتم مورد ت     
مجاز قابل حمل در يك مسير مشخص تابعي از نوع قيدهايي است كه براي حل مسئله درجه آزاد اعمال مي                       

 .گردد و مقدار يكتايي ندارد

 

1. INTRODUCTION 

The maximum allowable load of a fixed base 
manipulator is often defined as the maximum 
payload that the manipulator can repeatedly lift in 
its fully extended configuration. However, to 
determine the maximum allowable load of a robot 
must take into account the inertia effect of the load 
along a desired trajectory as well as the 
manipulator dynamics. Wang and Ravani were 
shown the maximum allowable load of a fixed base 
manipulator on a given trajectory is primarily 

constrained by the joint actuator torque and its 
velocity characteristic [1]. Korayem and Basu by 
removing rigid body assumption for the links and 
joints imposed additional constraints as resultant 
end effector deflection for flexible manipulators 
[2-4]. They presented a method to determine 
maximum allowable load of flexible manipulators 
subject to both actuator and end effector deflection 
constraints. Carriker et. al. worked on determining 
point-to-point motions, which must perform a 
sequence of tasks defined by position, orientation, 
force and moment vectors of the end effector [5]. 
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Papadopoulos and Gonthier considered the effect 
of base mobility of robotic manipulators on large 
force quasi-static tasks [6]. They introduced the 
force workspace concept for identifying proper 
base guaranteeing task execution along desired 
paths. In their work the dynamic effects of the load 
and manipulator are not examined. There are some 
other works, which published about carrying heavy 
loads and stability of the wheeled mobile 
manipulators [7-9]. Also there are some other 
research studies which consider the problem of 
large force task planning and carrying heavy loads 
on mobile manipulators, however non of them 
consider the problem of finding maximum load 
carrying capacity of mobile manipulators.  
 In this paper, we present a new method of 
determining the maximum allowable load for 
mobile manipulators subject to both actuator and 
redundancy constraints. For motion planning and 
redundancy resolution, additional constraint 
functions and the augmented Jacobian matrix are 
used. The recursive Newton-Euler method is used 
to formulate the dynamic effects of combined 
mobile base and manipulator motion on joint 
actuator torques. A general computational 
procedure is presented for finding the maximum 
allowable load of multi-link mobile manipulators 
for a desired trajectory. Finally, by numerical 
examples involving a two-link planar manipulator 
mounted on a differentially driven mobile base, 
application of the method is presented and 
simulation test is carried out. 

2. KINEMATIC MODELING OF MOBILE 
MANIPULATORS 

The position of the end effector in the task space of 
mobile manipulators can be defined as bellow: 

)()( / mbmbb qXqXX +=  (1) 

where TzyxX ][= and T
bbbb zyxX ][=  

are the position of the end effector and the base in 
the inertial reference 
frame. T

bmbmbmbm zyxX ][ //// = is the 
position vector of manipulator with respect to the 

base. The Jacobian equation of the mobile 
manipulator can be determined as: 

••
= qJX  (2) 

where ( )mb JJJ =  and T
mb qqq )(

•••
= . 

mRX ∈
•

denotes the task velocity space of mobile 
manipulator with respect to the fixed coordinate 

frame and nRq ∈
•

 is the joints velocity space.  
The general form of the constraint equations 

can be written as: 

0=
•
qJ c  (3) 

where nc
c RJ ×∈ . On the other hand, the combined 

system of mobile manipulator has extra degrees of 
freedom on its motion. Therefore to resolving the 
redundancy, we can apply r additional constraint 
equations, which can be written as: 

••
= qJX zZ  (4) 

where nr
z RJ ×∈ . Hence the kinematic equation of 

mobile manipulators by combining the Equations 
(2), (3) and (4) is written as: 

( )
•••

=




 qJJJXX T

cz

T

z 0  (5) 

 Here ( )T
cza JJJJ =  is named as 

augmented Jacobian matrix. The Jz matrix can be 
obtained using singular value decomposition and 
other methods. However, the simple method is to 
choose user specified constraint equations in 
general form [10]: 

X g qz = ( )  (6) 

By differentiating of Equation 6 with respect to 

time, we have
••

= qJX zz  similar to Equation 4. 
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The augmented Jacobian matrix aJ , regardless of 
the configuration q of the mobile manipulator 
must be non-singular, or the determinant of 

aJ must be non-zero: 

.0)( ≠aJDet  (7) 

If the resultant aJ  to be non-singular then 
joints velocity acceleration vectors are found: 

T

za XXJq 




=

••
−

•
01  (8) 

)0(1
••••••

−
••

−




= qJXXJq a

T

za  (9) 

3. DYNAMIC MODELING OF MOBILE 
MANIPULATORS  

In order to obtain DLCC for a mobile 
manipulator, proper modeling of mobile 
manipulator and load dynamic is a 
prerequisite. Therefore the desired values are 
evaluated on the thn )1( + coordinate system 
attached to the center of mass of the end-
effector and load as a composite body [1]. The 
proposed algorithm is based upon the forward 
recursive Newton-Euler formulation that is 
used to determine the linear and angular 
accelerations of the ith link ( iω and iα ) and its 
mass center ( civ and cia ) iteratively computed 
from link 1 out to link n . The dynamic 
equations are obtained using the Newton-Euler 
approach as follows: 

cii maF =  (10) 

i
ci

ii
ci

i IIN ωωα ×+=  (11) 

where ic  is the coordinate frame has its origin 

at the center of the link and has the same 
orientation as the ith link coordinate frame. 
Then, the joint actuator torque's is computed 
recursively from link n back to link 1 by the 
backward Newton-Euler formulation as: 

i
i

i
ii

ii
i FfRf += +

+
+ 1

1
1  (12) 

1
1

111
1

1 +
+

+++
+

+ ×+×++= i
ii

ii
i

i
i

ci
i

i
ii

ii
i

i
i fRPFPnRNn  (13) 

i
iT

i
i

i zn=τ  (14) 

Here Rii 1+ describes the rotation matrix from 
coordinate frame 1+i relative to coordinate 
frame i . The other variables denoted by the 
general form i

i f describe the vector f in the 
ith  link described in coordinate frame i . Also 
on the above formulation, f denotes joint 
force, n joint torque, P position vector, 
τ joint’s actuator torque and z is the unit 
vector in the direction of joint’s rotation axis. 

4. DETERMINING MAXIMUM 
ALLOWABLE LOAD 

For determining the maximum allowable load, 
separate computation of the actuators torque 
for compensating the load dynamics lτ  and 
the manipulator dynamics nlτ  on the each joint 
is needed. Therefore the mobile manipulator 
dynamic computations are executed in two 
steps. In both steps, by neglecting the load 
moment of inertia loadI  and considering only 
mass portion of load, 1

1
+

+
n

n n  is set equal to 
zero in the dynamic equations. In the first step 
the total dynamic effects of the load and 
mobile manipulator on the actuators τ  is 
considered and 1

1
+

+
n

n f is set equal to 
)( cc agm − , where cm  and ca are of the end-
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effector and load masses and accelerations as a 
composite body and g is the gravitational 
acceleration vector. In the second step, 1

1
+

+
n

n f  
is set equal to zero, which considers only the 
effect of the mobile manipulator dynamics on 
the joint actuators nlτ . By subtracting nlτ  from 
τ , the lτ  is resulted:  

lτ =τ - nlτ  (15) 

In this Section the computational procedure 
for determining the maximum allowable load 
is outlined and also flowcharted in Figure 1.  
Continuous trajectory of the end effector is 
discretized into equally spaced m points along 
the trajectory, and then the total torque 
on jth joint at each grid point )(kjτ is obtained 
where mk ,...,2,1= . The joints actuator torque 
constraints are formulated based on the typical 
joint-speed characteristics of DC motors as 
follows:  

•
−

•
+

−−=

−=

qkkT

qkkT

21
)(

21
)(

 (16) 

where sTk =1 and nlsTk ω/2 = , sT is the stall 
torque and nlω  is the maximum no-load speed 
of the motor. If )(knlτ satisfies the following 
inequality:  

)()()( )()( kTkkT jnlj
−+ ≤≤ τ  (17) 

and if  

)()()()( )()( kkTkkT nljnlj ττ −<− −+  (18) 

then the load coefficient at jth joint jC can be 
calculated as bellow: 

)(/)()()( )( kkkTkC lnljj ττ−= +  (19) 

else, if Equation 18, is not satisfied then: 

)(/)()()( )( kkkTkC lnlj ττ−= −  (20) 

otherwise, if )()( )( kTknl
+>τ and 

0)( <klτ then:  

)(/)()()( )( kkTkkC lnlj ττ +−=  (21) 

 Start 

Discretize the load given trajectory 
x(t), v(t), a(t) into m points 

For k=1,…….m 
Find joints vector space ( )kq

( ) maxmin qkqq <<

Find Jacobian 
matrix Ja (k),
Det (Ja (k))=0 

Compute 

( ) ( ) ( )kxkJkq loada

•
−

•
= *1

 

( ) max

••
≥ qkq        

Compute  ( ) ( ) ( ) ( ) ( ))*(*1 kqkJkxkJkq aloada

••••
−

••
−=

Compute ( ) ( ) ( ) ( )kakvkk cc ,,,αω 

Compute load and end-effector dynamic effects τ,lτ, nlτ

Find actuator equations ( )kT )(+ and ( )kT )(− 

Find maximum load coefficient m a xC and l o a dm 

 

Figure 1. Flowchart of determining maximum allowable load. 
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Under the different conditions, unrealizable 
case encountered (e.g., if the desired speed is 
too high or the desired trajectory is physically 
impossible) and we have: 

0)( =kC j  (22) 

The maximum load coefficient at the jth  
joint along the given trajectory is computed as: 

}{ mkkCC jj ,...,2,1),(minmax, ==  (23) 

Finally, the maximum load coefficient for 
the mobile manipulator maxC along the given 
trajectory is computed from 

{ }ntojCC j 1,min max,max == . (24) 

where n is the number of manipulator’s joint.  

The maximum allowable load carrying 
capacity for the mobile manipulator is 
computed from the following equation: 

lload mCm ×= max  (25) 

5. SIMULATION STUDIES 

To investigate the proposed algorithm, some 
simulation studies are presented. In these 
studies, a specified trajectory for the load is 
assumed. A two-link planar manipulator 
mounted on a differentially driven mobile base 
is considered as a case study (Figure 2). The 
joint actuators are similar and their constants 
are sradnl /5.3=ω and mNk .22.631 = . For 
simulation study two cases are considered in a 
situation where the same trajectory for the load 
is selected, but a different additional constraint 

 

 
Figure 2. Schematic view of mobile manipulator. 
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functions are applied to resolve the motion 
redundancy in each case.  

5.1. Simulation Model-1   The planar two-link 
arm is mounted on mobile base at point F on the 
main axis of the base (Figure 2). The position of 
point F relative to world coordinate frame is 
denoted by ff yx , . In this case, the user specified 
additional constraints X g qz = ( ) , are considered 
as the base position coordinates ),( ff yxF . 

We combine the additional constraint 
Equations (A-3), the end effector velocity 
components Equations (A-4) and the 
nonholonomic constraint Equation (A-5) (please 
see Appendix A for details).  

Then we rewrite these equations in the matrix 

form as mentioned in the Equation (5): 
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

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 −

•
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•

f

f

e

e
f

f
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y
xy

x

JJJ
JJJ

lCosSin 0

00010
00001

10
01

00)()(

2

1

0353433

252423

000

θ
θ
θ

θθ

  

 (26) 

where, the expression of 2423 , JJ 25, J 3433 ,, JJ  and 

35J  are given by: 

)sin()sin( 21021012423 θθθθθ ++−+−== llJJ , 

 

 
Figure 3. The movement of the mobile manipulator from initial to final configuration along the trajectory. 
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)sin( 210225 θθθ ++−= lJ , 

)cos()cos( 21021013433 θθθθθ ++++== llJJ  

and )cos( 210235 θθθ ++= lJ  

 By direct calculation, the determinant of the 

augmented Jacobian matrix on the left hand side of 
the Equation (26) is found  

)sin()( 2210 θlllJDet a ××=  

Hence aJ is non-singular provided that 
oo 18002 or≠θ . That is the two arms are not 

along the same axis. Suppose that the base length 
is cml 400 = , the links length are 

 

 
Figure 4. The variation of the allowable load along the load trajectory and associated with maximum allowable load. 
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cmll 5021 == . Let the initial configuration of 
the mobile base is given by: 

}0,0,0{},,{ 0 radcmcmyxq ffi == θ  

 The initial task vector is considered as 
cmyxyxX ifftti }0,0,0,50{},,,{ == and 

desired final task vector at time Sect 2= is 
specified 
as cmyxyxX fffttf }75,50,75,150{},,,{ == . 

Notice that final tool tip position is not feasible 

without the base motion. The desired task space 
path is specified as straight lines from initial to 
final configuration. By simulation study the overall 
movement of the mobile manipulator is found and 
shown in Figure 3. 

Using the recursive Newton–Euler’s dynamic 
formulation the torques at the joints of the 
manipulator are obtained as follows: 

2
116115

2
214213

12111

ωωωω

τ

HHHH

YHXH ff

+++

++=

••

••••

 (27) 

 

 
Figure 5. Variations of the base and links angles and angular velocities along the trajectory. 
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2
12512422322212 ωωωτ HHHYHXH ff ++++=

••••••

 (28) 
where, 

[ ]
[ ])sin())((

)sin()(

101112

21022211

θθ
θθθ

+++
++++−=

cl

lc

lmlmm
lmlmH  

)cos())((
)cos()(

101112

21022212

θθ
θθθ

+++
++++=

cl

lc

lmlmm
lmlmH  

)cos()( 22221
2
2

2
22

2
13 θlmlmllmlmIH lclc

c +−++=  

)sin()( 2222114 θlmlmlH lc +−=  

)cos()()( 2222
2
12

2
11

1
15 θlmlmlmmlmIH lclc

c +++++=  

)sin()( 2222116 θlmlmlH lc +−=  

)sin()( 21022221 θθθ +++−= lmlmH lc  

)cos()( 21022222 θθθ +++= lmlmH lc  

 

 
Figure 6. The movement of the mobile manipulator from initial to final configuration. 
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2
2

2
22

2
23 lmlmIH lc

c ++=  

)cos()( 2122224 θllmlmH lc +=  

)sin()( 2122225 θllmlmH lc +−=  

In the above formulations 101

••
+= θθω  and 

2102

•••
++= θθθω are the angular velocities of the 

manipulator links relative to inertial coordinate 
frame and cil  is length of the ith  link center of 
mass from its distal joint. The task space trajectory 
is discretized into equally spaced 40=m  points. 
Then by the procedure outlined in the Sec. 4 the 
maximum allowable load of the mobile 
manipulator is determined (Figure 4). The 
allowable load carrying capacity for the mobile 
manipulator at each point of trajectory is 
determined and maximum allowable load was 

 

 
Figure 7. The variation of the allowable load along the load trajectory and associated maximum allowable load. 
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found kgmload 147.37=  at the point 

mxt 276.1= and myt 612.0= . Also, the 
corresponding base and links angles and angular 
velocity variations along the trajectory are 
illustrated in Figure 5. 

5.2. Simulation Model-2   The planar mobile 
manipulator similar to the Case 1 is considered. 
The manipulator elbow angle β  between two arms 
and end effector orientation relative to the world 
coordinate frame α are used as additional 
constraint equations. Thus  

2102

21

θθθα
θπβ

++==
−==

z

z

X
X

 (29) 

The corresponding differential kinematic 
equation and augmented Jacobian matrix is derived 
by combining the Equations (A-4), (A-5) and time 
derivatives of the Equation 29 
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 (30) 

The determinant of the augmented Jacobian 
matrix on the left hand side of the Equation (30) is 
found to be 0)( 0 ≠= lJDet .  Therefore, the 
matrix J is non-singular regardless of the 
configuration of the mobile manipulator.  
 The initial task vector is considered 

as }120,0,0,50{},,,{ oocmcmyxX itti == βα and 
desired final task vector at time Sect 2= is 
specified as 

}180,60,75,150{},,,{ oocmcmyxX fttf == βα  
 Similar to the Case 1 the final tool tip position 
is not attainable without the base motion. By 
considering straight lines from initial to final 
configuration for the task space variables, the 
overall movement of the mobile manipulator is 
determined and illustrated by the simulation study 
(Figure 6). 

The task space trajectory is discretized into 
equally spaced 40=m points. The allowable load 
carrying capacity for the mobile manipulator at 
every point of the trajectory is determined and 
maximum allowable load is found 

kgmload 188.20=  at point 
)0.0,5.0( mymx tt ==  as shown in Figure 7.  

The corresponding base and links angle and 
angular velocity variations along the trajectory are 
illustrated in Figure 8. 

In the above two case studies, the same 
trajectory for the load is considered. However, in 
each case different additional kinematical 
constraint is considered for redundancy resolution. 
It is seen that load capacity of the mobile 
manipulator varies along its path depends on the 
predefined trajectory of the load. Also it can be 
seen, the maximum allowable load has a different 
value in each case. Therefore, the value of 
maximum allowable load for a given trajectory 
depends on the additional constraint functions that 
we apply to redundancy resolution. The type of 
these constraint functions directly depends on the 
user requirements and can be chosen arbitrarily by 
considering workspace limitations, obstacle 
avoidance or optimization criteria. 

5.3. Matlab Ver 6.01   In this paper, the 
program MATLAB Release 12 Ver. 6.01 is used 
for dynamic modeling and simulation studies. This 
program provides many features that are useful in 
kinematic, dynamic and trajectory planning in 
robotics as well as useful capabilities for 
simulation analysis and results from experiments 
with real robots. Also there are some toolboxes and 
publications written by the MATLAB that provides 
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many functions and libraries for the kinematic and 
dynamic analysis of robotic manipulators [11,12]. 

6. CONLUSIONS 

The motion planning and dynamic modeling of 

mobile manipulators using the augmented Jacobian 
technique and recursive Newton-Euler method are 
presented. The application of the algorithm is 
outlined by simulation studies in detail. In the two 
case studies a two-link planar differentially driven 
mobile manipulator with a similar trajectory for the 
load, and different additional constraint functions 
for redundancy resolution is considered. In the first 

 

 
Figure 8. Variations of the base and links angles and angular velocities along the trajectory. 
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case the base coordinates fx  and fy  are applied 
as additional constraints and corresponding 
maximum allowable load is computed 

147.37=loadm  kg. In the second case, the angle 
between the two links of manipulator and angle of 
the end effector are considered as additional 
constraints and corresponding maximum allowable 
load is computed as 188.20=loadm  kg. Hence, 
the results of the case studies are shown that the 
allowable load is variable along the given 
trajectory. Also in mobile manipulators in contrast 
with the fixed base manipulators, the maximum 
allowable load on a given trajectory has not a 
unique value. But, a special and unique value may 
be computed depends on the type of the applied 
additional constraint functions to resolve the 
redundancy resolution. 

APPENDIX A. 

A.1. Case 1 Kinematics   The coordinate of the 
end effector with respect to joint 
variables 10 ,θθ and 2θ is 

)(sin)(sin

)(cos)(cosx

2102101

2102101e

θθθθθ
θθθθθ

+++++=

+++++=

llyy
llx

fe

f
 (A-1) 

As explained in Section 5.1 the user specified 
additional constraints are considered as the base 
position coordinates  

fz

fz

yX
xX

=

=

2

1
 (A-2) 

by differentiating of Equations (A-2) with respect 
to time we have: 

fz

fz

yX

xX
••

••

=

=

2

1
 (A-3) 

We assume that the speed at which the system 
moves is low and therefore the two driven wheels 

do not sleep sideways. The nonholonomic 
constraint equation for the manipulator attachment 
point F : 

0)(cos)(sin 0000 =+−
•••

lyx ff θθθ  (A-4) 

where 0l is the distance between platform center of 
mass G  and point F (Figure 2). By differentiating 
Equation (A-1), the end effector velocity 
components are as below  
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In the inverse kinematics problem, we 
find 1θ and 2θ which correspond to a given load 
position ),( ee yx  and a given platform 
position ),( ff yx . 

The angle 2θ is found by the following 
expression 
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By discretizing the robot trajectory into 
m points and by numerical integration of Equation 
(A-4) The angle 0θ can be found. The variables 

fx
•

and fy
•

are known, therefore 
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where mtoi 1=  and mTdt total /= . 

Similarly, the angle 1θ is given by 
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A.2. Case 2 Kinematics   As explained in 
Section 5.2 the user specified additional constraints 
are: 

210221 θθθαθπβ ++==−== zz XandX
 (A-9) 

In this case, the inverse kinematic of the system is 
derived as bellow 

βπθ −=2  (A-10) 

Similar to the Case 1 the base angle relative to 
the world coordinate frame 0θ numerically can be 
computed by using the Equation (A-7). The angle 
of the manipulator first link relative to the base 
main axis 1θ  by using the second part of the 
Equation (A-9) can be calculated as bellow 

)( 201 θθαθ +−=  (A-11) 

The base position relative to world coordinate 
frame at point F is calculated by rearranging 
Equation (A-1). Therefore we have 
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