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Abstract   The first-order schemes used for discretisation of the convective terms are straightforward 
and easy to use, with the drawback of introducing numerical diffusion. Application of the second-
order schemes, such as QUICK scheme, is a treatment to reduce the numerical diffusion, but 
increasing convergence oscillation is unavoidable. The technique used in this study is a compromise 
between the above-mentioned problem, i.e. reducing the numerical diffusion and increasing the 
stability of the solution. This double folded task is achieved by introducing a modified second-order 
hybrid scheme. In addition to that by means of this formulation it is possible to show that the 
coefficients of the discretised equation at all neighboring points are positive and the value of a 
coefficient at a pole point is equal to the sum of its neighboring points, which means the two basic 
conditions defined by Patankar are satisfied. Therefore, this scheme has the benefits of the both first 
and second order schemes together. Results obtained by this scheme to predict the complicated flow 
regimes were promising and agreed well with experimental data. 
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   بکار بردن روشهای مرتبه اول در گسسته کردن جمله های جابجايي ساده است؛ اما در اين روشها                        چکيدهچکيدهچکيدهچکيده
 معرفي  QUICKبرای کاهش ديفيوژن عددی روشهای مرتبه دوم، مانند روش            . آيد ديفيوژن عددی بوجود مي   

رای کاهش ديفيوژن عددی و     در اين مطالعه ب   . شده اند، اما در اين روشها مشکل نوسانات همگرايي وجود دارد          
بوسيله اين روش دو شرط اساسي       . افزايش پايداری حل عددی روش هيبريد مرتبة دوم تصحيح شده است             

معرفي شده توسط پاتانکار که عبارتند از مثبت بودن ضرايب معادلات گسسته شده و برابری ضريب گره                        
ين روش معرفي شده مزايای روشهای مرتبه اول        بنابرا. شوند مرکزی با مجموع ضرايب نقاط مجاور آن ارضا مي        

در پيش بينی جريانهای پيچيده، نتايج بدست آمده توسط اين روش جالب هستند و تطابق               . و دوم را با هم دارد     
 .دهند بسيار خوبي با نتايج تجربي نشان مي

 
 

1. INTRODUCTION 
 
The convective terms with nonlinear behavior have 
a basic role in the solution of the Navier-Stokes 
equations, and are very important. Convergence, 
stability, and accuracy of the results are strongly 
dependent on the way that these terms are 
discretised. Therefore, appropriate discretisation 
schemes are required to treat these terms, and 
several schemes have been proposed for these 
terms, with their merits and deficiencies. Basically 
first-order schemes such as hybrid central / upwind 
(HYBRID), and the power-law schemes [1], cause 

numerical diffusion. This problem becomes more 
sever when the flow direction is skewed relative to 
the grid lines. As an example, it is possible to 
mention a three-dimensional flow with secondary 
flows, where the numerical diffusion may become 
greater than the physical diffusion [2]. Nevertheless 
these schemes are unconditionally bounded and 
highly stable. 
     On the other hand, higher order schemes such as 
QUICK [3] (Quadratic Upstream Interpolation for 
Convective Kinematics), the second-order upwind 
[4] and the skew-upwind [5] schemes, have 
successfully been used, and numerical diffusion 
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has been reduced. However, these schemes suffer 
from the boundedness problem and have oscillations 
in the region of steep gradients. Stability and 
accuracy of the first and higher order schemes is 
an important issue, which was examined by 
Leonard [3]. 
To develop oscillation-free high-order schemes, 
two important concepts (i.e. monotonocity [6], and 
bounded total variation [7]) have been introduced. 
For monotone or total variation diminishing (TVD) 
schemes, several methods have been developed. 
The Flux-Corrected Transport (FCT) algorithm, 
introduced by Zalesak [8] is one among the many 
others. 
     In this study a modified version of the Li and 
Rudman scheme [9], in which a Peclet number 
dependent parameter for the second-order hybrid 
scheme was introduced, is used. This scheme is 
capable of predicting complicated flow regimes 
with reduced numerical diffusion and minor 
stability problems. 
 
 
 

2. GENERALIZED FORMULATION FOR 
FOUR-POINT SCHEMES 

 
The governing equations for a laminar incompressible 

steady flow are continuity, and momentum equations. 
All of these equations could be represented by a 
general conservative form of the transport equation. 
The conservative form of the transport equations 
for the dependent variable, φ, in a generalized 
coordinate system jx [10] can be written as 
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where jU  is the contravariant velocity component, 

j
mD  is the geometric coefficient introduced by 

transformation from the Cartesian coordinates jy  
to the general coordinate system, ρ  is the fluid 
density, φΓ  is the diffusion coefficient, φS  is the 
source term for dependent variable φ, and J is the 
Jacobian. For continuity equation φ is equal to 1 
and for momentum equations it is equal to u, v, and 
w, respectively. 
     Without loosing generality, it is possible to use 
the Cartesian form of the transport equations. In 
the following the derivation of the equations have 
been explained, and the notation of the Patankar 
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Figure 1. Grid and its parameters definition. 
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[1] has been employed. In a finite control volume 
approach, integration of the convective terms in 
equation (1) for a two dimensional case will result: 
 

∫∫ φ−φ+φ−φ=φρ
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where iii AuF ρ= , is the mass flux from ith face 
of the control volume with area iA , and indices e, 
w, n, and s denote the east, west, north and south 
faces respectively. In Figure 1 the notation used to 
define the nodes and grid parameters in x-direction 
are shown. Nondimensional grid parameters could 
be written as follows 
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As an example it is possible to write the generalized 
form of the four-point scheme for an interpolated 
value of wφ  on the west face 
 

0.0u w >
)(q WWw1Ww2PwPw1Ww2w φβ+φβ−φ−φα+φα=φ  

 
0.0u w <

)(q Ew1Pw2WwPw2Ww1w φβ+φβ−φ−φα+φα=φ
 
 (4) 
 
The value of the parameter wq  used in Equation 4, 
depends on the scheme being used. For example, in 
the central difference scheme (CD) 0.0qw = , in 
the QUICK scheme )/(q w3w2w2w1w δ+δδα=  
and in the second-order upwind scheme (SOU) 

w1wq α= . 
     By linearizing the source term in Equation 1 as 

CPP SS +φ , and integrating diffusion terms in 
transport equation, after some manipulations the 
discretised form of the transport equation based on 

the nodal point values would be: 
 

Saaaaa SSNNWWEEPP +φ+φ+φ+φ=φ  (5) 
 
Based on the values of the parameter q , these 
coefficients are either negative or positive. As 
Patankar recommended, all of the coefficients of 
nodal points must be positive values. To solve this 
problem a minimization method, in which q  is 
defined based on the Peclet number and the grid 
parameters, are used as follows 
 














−α= )

P
1(,0.0maxq
we

w1w  (6) 

 
     Using the above-mentioned definition, the scheme 
that is referred to as a Second-order Hybrid 
scheme (SHYBRID), uses the advantages of 
the first and second order schemes together. Li 
and Rudman [9] studied the details of analysis 
of the total variation diminishing (TVD) and 
boundedness for this formulation. 
     Another Patankar recommendation states that, 
in the absence of source term in Equation 1 the 
sum of the values of the coefficients at the 
neighboring points must be equal to the value of 
the coefficient at the pole point. So it is decided to 
derive the coefficients in a modified version of the 
Li and Rudman [9], which originally had not this 
characteristic, as follows.  
     The upwind mass flow rates over each face of 
the control volume are introduced as follows: 
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Considering Equations 2,3,4,7, it is possible to 
write: 
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From Equation 3 the following relation between 
the geometric parameters can be derived: 
 

1
1
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 (9) 

 
Inserting Equation 9 in Equation 8, and making 
suitable factorization, the right hand side of 
Equation 8 can be written as follows: 
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Similar expressions for ssnn FF φ−φ  could be 
written. Therefore, by adding the diffusion terms, 
and the linearized form of the source term to the 
convective terms, the coefficients derived by this 
scheme could be written as follows: 
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in which 
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Considering the continuity equation, the last term 
in the right hand side of the relation for Pa  is 

equal to zero. Now, by assuming 0.0S =φ  in 
Equation 1, it can be easily shown that: 
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With this formulation the coefficients of the all-
neighboring points are positive and the value of a 
coefficient at a pole point is equal to the sum of its 
neighboring points. With this manipulation two 
basic conditions defined by Patankar [1] for numerical 
algorithms are satisfied. These conditions are as 
follows: 1) All coefficients must be positive, and 
2) the pole coefficient must be equal to the sum of 
its neighboring points. Also this new formulation 
can be easily programmed and used in CFD 
(Computational Fluid Dynamics) codes, which 
considerably simplifies the formulation of the 
coefficients for all internal and boundary nodes. 
 
 
 

3. APPLICATION OF THE QUICK, FIRST, 
AND SECOND-ORDER HYBRID SCHEMES 

 
The aforementioned second-order scheme together 
with the first-order hybrid and the QUICK schemes 
were used in a computer program. The code uses 
collocated grids for all dependent variables, and 
Rhie and Chow�s [11] method to prevent pressure 
oscillation in the SIMPLE (Semi Implicit Pressure 
Link Equation) algorithm. Two geometries with 
complicated flows were selected as test cases. 
These test cases are a lid driven cavity, and a 
square duct with a 90° bend. The flow regime in 
both cases is laminar. The computed results obtained 
in each case were compared with the analytic or 
experimental data, whenever, they were available. 
 
Laminar Flow in a Lid Driven Cavity   Figure 2 
shows the geometry of the cavity which is a cube 
with unite length. As it is known this is a problem 
with complicated flows. The computation mesh 
was a uniform grid (43x43x43) and calculation 
was carried out with a Reynolds number of 1000, 
based on the velocity of the lid driven face and the 
length of the cavity. The number of iterations used 
in these cases was the same for both schemes (2000 
iterations). The velocity profiles predicted by first 
and second-order hybrid schemes at the centerline  
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of the cavity are shown in Figure 3. Also the 
analytical results of the Ku et al [12] are combined 
in the same figure. As it is shown in this figure, the 
velocity profile predicted by the second-order 
hybrid scheme is better than the first-order result, 
especially in the recirculating regions. 
     Figure 4 shows the predicted secondary flows in 
the two center planes of the cavity. This figure 
shows that, the vortices predicted by the second-

order hybrid scheme are more visible than that of 
the first-order case. The diffusive behavior of the 
first-order scheme causes vortices in the cavity to 
combine together and form a single large vortex. 
Therefore these vortices are not as strong as those 
obtained by the second-order hybrid solution. 
 
Laminar Flow in a Square Duct with a 90° 
Bend   In Figure 5 the geometry of a square duct 
with a 90° bend is shown. The flow in this 
geometry has a three-dimensional pattern with 
strong secondary flows, which are caused by 
centrifugal forces and the pressure gradients across 
the bend. Humphry et al. [13] experimentally 
studied this problem and their test data was used 
for comparison. The numerical solution was based 
on their experimental Reynolds number of 790, 
which was calculated based on the hydraulic 
diameter of the duct and the bulk velocity. Due to 
the symmetry of the duct, only one half of the 
domain was solved, and a nonuniform grid system 
with 47x32x17 mesh points was selected. 
     To obtain the flow pattern inside the bend, three 
different numerical schemes were used. These 
schemes are the first-order hybrid scheme, the 
second-order hybrid scheme, and also the second-
order QUICK scheme. The parameter q, which was 
introduced in Equation 4, determines that the 
second-order scheme is either QUICK or 
SHYBRID. It is worth mentioning that, since the 
modified second-order hybrid scheme has less 
stability problem in numerical procedure, we could 
choose a greater under-relaxation coefficient than 
that for QUICK scheme to solve the problem. 
     In Figure 6 the predicted velocity profiles obtained 
by the three different numerical schemes at the exit 
plane of the bend are compared with the experimental 
results. These comparisons are shown at two 
values of z/b (i.e. z/b = 0.5 and z/b = 1.0), which z 
is the distance from the rigid boundary and b is the 
one half of the width of the duct. As it is shown in 
this figure, the velocity profiles predicted by the 
first-order hybrid scheme show a more flat pattern 
at the exit plane of the 90° bend, because in first-
order hybrid scheme the numerical diffusion is 
greater than the second-order ones. 
     To present the numerical results through the 
entire bend, ten streamwise cross-sections inside 
the bend at intervals of 10° were selected. The first 
cross-section was at the zero angle (i.e. at the  
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Figure 2. Geometry of square cavity. 
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beginning of the bend ), and the last cross-section 
was at the 90° angle (i.e. at the exit plane of the 
bend ). In Figure 7 the secondary flow formation in 
the 90° bend predicted by HYBRID scheme is 

shown, while in Figures 8 and 9 the same results 
obtained for SHYBRID and QUICK, are presented 
respectively. A comparison of these figures shows 
that the results obtained by the second-order 
schemes (i.e. SHYBRID and QUICK) are much 
better than the results obtained by a first-order 
scheme (i.e. HYBRID). The numerical diffusion 
introduced by the first-order scheme is the source 
of this weakness. Close examination of Figures 8 
and 9 shows that the mechanism of the vortex 
formation in both SHYBRID and QUICK schemes 
are similar. However, the positions of the main 
vortices are not exactly the same and the difference 
is much clear at angular position of 70°. Also, 
there is no need to mention that the accuracy of the 
results obtained by the new scheme is much better 
than the other schemes (i.e. HYBRID and QUICK). 
Another important point to be mentioned in these 
figures (i.e. from 7 to 9) is the movement of the 
vortices away from the axis of the symmetry 
toward the solid wall. This in fact is due to the 
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Figure 4. Secondary flows in two centerplane, (a) and (c) SHYBRID, (b) and (d) HYBRID. 
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Figure 5. Geometry of bent duct. 
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Figure 7. Mechanism of formation of secondary flows in the bend; HYBRID scheme. 
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centrifugal forces in the bend, which pushes the 
vortices toward the wall. 
 
 
 

4. CONCLUSION 
 
A modified second-order hybrid formulation for 
discretisation of convective terms in the Navier-
Stokes equations was proposed. In this scheme in 
addition to improve stability condition and reduced 
numerical diffusion, which is the characteristic of 
the most of the second-order schemes, two well 
known criteria set by Patankar [1] are satisfied (i.e. 
all coefficients are positive and the sum of the 
values of the coefficients at the neighboring points 
are equal to the value of the coefficient at the pole 
point). With these two conditions satisfied, the 
programming would be much easier, faster, and as 

mentioned earlier the stability would be improved 
further. This is a very useful achievement and 
could be implemented in the most CFD codes of 
this nature. In fact, since this scheme is almost free 
from convergence oscillation problem, it could be 
considered as a proper alternative for second-order 
schemes that have boundedness problem. 
 
 
 

5. NOMENCLATURE 
 
Ai areas of the finite volume faces (i = w,e,s,n 

denotes the various directions) 
ia  coefficients in the finite difference equations 

(i=W,E,S,N,P,WW,EE,SS,NN) 
iD  diffusion coefficients in the finite difference 

equations (i = w,e,s,n) 

 
Figure 8. Mechanism of formation of secondary flows in the bend; SHYBRID scheme. 
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j
mD  geometric parameter computed from coordinate 

transformation 
iF  mass fluxes from the finite volume faces (i 

= w,e,s,n) 
J Jacobian of the coordinate transformation 
Pe Peclet number 

iq  parameter for the generalized four- 
point schemes (i = w,e,s,n) 

Sф source term of the dependent variable in 
the transport equation 

Uj contravariant velocity components (i = 
w,e,s,n) 

uk Cartesian velocity components 
xj general coordinate axis 
yj Cartesian coordinate axis 

ijα  grid parameters 

ijβ  grid parameters 

φΓ  diffusion coefficient for dependent variable 

ijδ  grid distances 
ρ  density of the fluid 

iφ  dependent variable (i=W,E,S,N,P, WW, 
EE, SS, NN, w, e, s, n) 
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