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Abstract The first-order schemes used for discretisation of the convective terms are straightforward
and easy to use, with the drawback of introducing numerical diffusion. Application of the second-
order schemes, such as QUICK scheme, is a treatment to reduce the numerical diffusion, but
increasing convergence oscillation is unavoidable. The technique used in this study is a compromise
between the above-mentioned problem, i.e. reducing the numerical diffusion and increasing the
stability of the solution. This double folded task is achieved by introducing a modified second-order
hybrid scheme. In addition to that by means of this formulation it is possible to show that the
coefficients of the discretised equation at all neighboring points are positive and the value of a
coefficient at a pole point is equal to the sum of its neighboring points, which means the two basic
conditions defined by Patankar are satisfied. Therefore, this scheme has the benefits of the both first
and second order schemes together. Results obtained by this scheme to predict the complicated flow
regimes were promising and agreed well with experimental data.
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1. INTRODUCTION

The convective terms with nonlinear behavior have
a basic role in the solution of the Navier-Stokes
equations, and are very important. Convergence,
stability, and accuracy of the results are strongly
dependent on the way that these terms are
discretised. Therefore, appropriate discretisation
schemes are required to treat these terms, and
several schemes have been proposed for these
terms, with their merits and deficiencies. Basically
first-order schemes such as hybrid central / upwind
(HYBRID), and the power-law schemes [1], cause
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numerical diffusion. This problem becomes more
sever when the flow direction is skewed relative to
the grid lines. As an example, it is possible to
mention a three-dimensional flow with secondary
flows, where the numerical diffusion may become
greater than the physical diffusion [2]. Nevertheless
these schemes are unconditionally bounded and
highly stable.

On the other hand, higher order schemes such as
QUICK [3] (Quadratic Upstream Interpolation for
Convective Kinematics), the second-order upwind
[4] and the skew-upwind [5] schemes, have
successfully been used, and numerical diffusion
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Figure 1. Grid and its parameters definition.

has been reduced. However, these schemes suffer
from the boundedness problem and have oscillations
in the region of steep gradients. Stability and
accuracy of the first and higher order schemes is
an important issue, which was examined by
Leonard [3].

To develop oscillation-free high-order schemes,
two important concepts (i.e. monotonocity [6], and
bounded total variation [7]) have been introduced.
For monotone or total variation diminishing (TVD)
schemes, several methods have been developed.
The Flux-Corrected Transport (FCT) algorithm,
introduced by Zalesak [8] is one among the many
others.

In this study a modified version of the Li and
Rudman scheme [9], in which a Peclet number
dependent parameter for the second-order hybrid
scheme was introduced, is used. This scheme is
capable of predicting complicated flow regimes
with reduced numerical diffusion and minor
stability problems.

2. GENERALIZED FORMULATION FOR
FOUR-POINT SCHEMES

The governing equations for a laminar incompressible
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steady flow are continuity, and momentum equations.
All of these equations could be represented by a
general conservative form of the transport equation.
The conservative form of the transport equations
for the dependent variable, @, in a generalized

coordinate system x’[10] can be written as

0 o .. 0
ﬁ(wj(p_T(pDinax_(E):Js(p (1)

where U is the contravariant velocity component,

D’ is the geometric coefficient introduced by

transformation from the Cartesian coordinates yj
to the general coordinate system, P is the fluid

density, rq, is the diffusion coefficient, S(p is the

source term for dependent variable @, and J is the
Jacobian. For continuity equation @ is equal to 1
and for momentum equations it is equal to u, v, and
w, respectively.

Without loosing generality, it is possible to use
the Cartesian form of the transport equations. In
the following the derivation of the equations have
been explained, and the notation of the Patankar
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[1] has been employed. In a finite control volume
approach, integration of the convective terms in
equation (1) for a two dimensional case will result:

II% (pulcp)dv = Fc(pc _FW(pW +Fn(pn _Fs(ps
(2)

where F, =pu;,A,, is the mass flux from ith face

1
of the control volume with area A,, and indices e,

w, n, and s denote the east, west, north and south
faces respectively. In Figure 1 the notation used to
define the nodes and grid parameters in x-direction
are shown. Nondimensional grid parameters could
be written as follows

+ o
B]w - 6lw 62w alw - 1w
63w _6lw 61w +62w
3)
62W +63W 62w
B2w = a2w =
63W _61W 6lw +62W

As an example it is possible to write the generalized
form of the four-point scheme for an interpolated

value of @, on the west face

u, >0.0
(pw = a2w(pW +a1w(pP _qw((pP _BZW(pW +Blw(pWW)

u, <0.0
(pw = alw(pW +a2w(pP _qw((pW _BZW(pP +|31w(pE)

4)

The value of the parameter q, used in Equation 4,
depends on the scheme being used. For example, in
the central difference scheme (CD) q, =0.0, in
the QUICK scheme q, =0,,0,, /(0,6 +0;,)
and in the second-order upwind scheme (SOU)
q, =ay, -

By linearizing the source term in Equation 1 as
S,@, +S., and integrating diffusion terms in

transport equation, after some manipulations the
discretised form of the transport equation based on
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the nodal point values would be:
aP(pP :aE(pE +aW(pW+aN(pN+aS(pS+S (5)

Based on the values of the parameter (, these

coefficients are either negative or positive. As
Patankar recommended, all of the coefficients of
nodal points must be positive values. To solve this
problem a minimization method, in which q is

defined based on the Peclet number and the grid
parameters, are used as follows

0

0

Uiw —
max 10,0, ( e (6)
0

ew\

Using the above-mentioned definition, the scheme
that is referred to as a Second-order Hybrid
scheme (SHYBRID), uses the advantages of
the first and second order schemes together. Li
and Rudman [9] studied the details of analysis
of the total variation diminishing (TVD) and
boundedness for this formulation.

Another Patankar recommendation states that,
in the absence of source term in Equation 1 the
sum of the values of the coefficients at the
neighboring points must be equal to the value of
the coefficient at the pole point. So it is decided to
derive the coefficients in a modified version of the
Li and Rudman [9], which originally had not this
characteristic, as follows.

The upwind mass flow rates over each face of
the control volume are introduced as follows:

RR| L RGRL
v, v, (7)

Considering Equations 2,3,4,7, it is possible to
write:

F.o. -F,0, =

FL00.0p +0,. 0 = (@ ~ B @ +B1.0y)] +
Fl0.@ + 00,0, (P —Boc®: + B P )]
Folo, @y + 05, @ =, (@ = Boy @y + By Q)] =
F [0, @y + 00,0 —q, (@ =By, @ +B,, )]

®)
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From Equation 3 the following relation between
the geometric parameters can be derived:

alw +a2w :1

BZW - Blw = 1 (9)

Inserting Equation 9 in Equation 8, and making
suitable factorization, the right hand side of
Equation 8 can be written as follows:

(@ —@p )0 F —q F +a,.F +q.F +q,B,,F,)
+(@, @y )0, FL —q,F, +a, F/+q F +q.B.F)
+(P; — @ ). B F
—(@y ~ @y ), By, Fy + @ (F +F —F/ —F_)

(10)

Similar expressions for F @, —F.@, could be

written. Therefore, by adding the diffusion terms,
and the linearized form of the source term to the
convective terms, the coefficients derived by this
scheme could be written as follows:

ap ==(a,, —q.)F, —(a,, +q.)F, —q,B,,F, +D,
ay ==(a,, =q,)F, —(a,, +q,)F, —-q,B,F +D,
ay, =+a,, —q,)F, +(a,, +q,)F +q.B.F +D,
ag =+, —q,)F +(a, +q,)F +q,B,F, +D,

a, =a, tay tay, +tay—-S, +(F,-F, +F, -F))

S=(Pe —@:)q.B\ Fe + (P —@p)q. B Fe

(Pww _(pw)qu’le\: (O _(pS)quISFS+ +Sc
(11)

in which

_ A

S 1=w,e,s,n (12)
0+,

Considering the continuity equation, the last term
in the right hand side of the relation for a, is
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equal to zero. Now, by assuming S, =0.0 in

Equation 1, it can be easily shown that:

a, = ianb (13)

nb=1

With this formulation the coefficients of the all-
neighboring points are positive and the value of a
coefficient at a pole point is equal to the sum of its
neighboring points. With this manipulation two
basic conditions defined by Patankar [1] for numerical
algorithms are satisfied. These conditions are as
follows: 1) All coefficients must be positive, and
2) the pole coefficient must be equal to the sum of
its neighboring points. Also this new formulation
can be easily programmed and used in CFD
(Computational Fluid Dynamics) codes, which
considerably simplifies the formulation of the
coefficients for all internal and boundary nodes.

3. APPLICATION OF THE QUICK, FIRST,
AND SECOND-ORDER HYBRID SCHEMES

The aforementioned second-order scheme together
with the first-order hybrid and the QUICK schemes
were used in a computer program. The code uses
collocated grids for all dependent variables, and
Rhie and Chow’s [11] method to prevent pressure
oscillation in the SIMPLE (Semi Implicit Pressure
Link Equation) algorithm. Two geometries with
complicated flows were selected as test cases.
These test cases are a lid driven cavity, and a
square duct with a 90" bend. The flow regime in
both cases is laminar. The computed results obtained
in each case were compared with the analytic or
experimental data, whenever, they were available.

Laminar Flow in aLid Driven Cavity Figure 2
shows the geometry of the cavity which is a cube
with unite length. As it is known this is a problem
with complicated flows. The computation mesh
was a uniform grid (43x43x43) and calculation
was carried out with a Reynolds number of 1000,
based on the velocity of the lid driven face and the
length of the cavity. The number of iterations used
in these cases was the same for both schemes (2000
iterations). The velocity profiles predicted by first
and second-order hybrid schemes at the centerline
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Figure 3. Centerline U-velocity profiles.

of the cavity are shown in Figure 3. Also the
analytical results of the Ku et al [12] are combined
in the same figure. As it is shown in this figure, the
velocity profile predicted by the second-order
hybrid scheme is better than the first-order result,
especially in the recirculating regions.

Figure 4 shows the predicted secondary flows in
the two center planes of the cavity. This figure
shows that, the vortices predicted by the second-
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order hybrid scheme are more visible than that of
the first-order case. The diffusive behavior of the
first-order scheme causes vortices in the cavity to
combine together and form a single large vortex.
Therefore these vortices are not as strong as those
obtained by the second-order hybrid solution.

Laminar Flow in a Square Duct with a 90
Bend In Figure 5 the geometry of a square duct
with a 90° bend is shown. The flow in this
geometry has a three-dimensional pattern with
strong secondary flows, which are caused by
centrifugal forces and the pressure gradients across
the bend. Humphry et al. [13] experimentally
studied this problem and their test data was used
for comparison. The numerical solution was based
on their experimental Reynolds number of 790,
which was calculated based on the hydraulic
diameter of the duct and the bulk velocity. Due to
the symmetry of the duct, only one half of the
domain was solved, and a nonuniform grid system
with 47x32x17 mesh points was selected.

To obtain the flow pattern inside the bend, three
different numerical schemes were used. These
schemes are the first-order hybrid scheme, the
second-order hybrid scheme, and also the second-
order QUICK scheme. The parameter g, which was
introduced in Equation 4, determines that the
second-order scheme is either QUICK or
SHYBRID. It is worth mentioning that, since the
modified second-order hybrid scheme has less
stability problem in numerical procedure, we could
choose a greater under-relaxation coefficient than
that for QUICK scheme to solve the problem.

In Figure 6 the predicted velocity profiles obtained
by the three different numerical schemes at the exit
plane of the bend are compared with the experimental
results. These comparisons are shown at two
values of z/b (i.e. z/b = 0.5 and z/b = 1.0), which z
is the distance from the rigid boundary and b is the
one half of the width of the duct. As it is shown in
this figure, the velocity profiles predicted by the
first-order hybrid scheme show a more flat pattern
at the exit plane of the 90° bend, because in first-
order hybrid scheme the numerical diffusion is
greater than the second-order ones.

To present the numerical results through the
entire bend, ten streamwise cross-sections inside
the bend at intervals of 10° were selected. The first
cross-section was at the zero angle (i.e. at the
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Figure5. Geometry of bent duct.

beginning of the bend ), and the last cross-section
was at the 90° angle (i.e. at the exit plane of the
bend ). In Figure 7 the secondary flow formation in
the 90° bend predicted by HYBRID scheme is
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shown, while in Figures 8 and 9 the same results
obtained for SHYBRID and QUICK, are presented
respectively. A comparison of these figures shows
that the results obtained by the second-order
schemes (i.e. SHYBRID and QUICK) are much
better than the results obtained by a first-order
scheme (i.e. HYBRID). The numerical diffusion
introduced by the first-order scheme is the source
of this weakness. Close examination of Figures 8
and 9 shows that the mechanism of the vortex
formation in both SHYBRID and QUICK schemes
are similar. However, the positions of the main
vortices are not exactly the same and the difference
is much clear at angular position of 70°. Also,
there is no need to mention that the accuracy of the
results obtained by the new scheme is much better
than the other schemes (i.e. HYBRID and QUICK).
Another important point to be mentioned in these
figures (i.e. from 7 to 9) is the movement of the
vortices away from the axis of the symmetry
toward the solid wall. This in fact is due to the
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Figure 7. Mechanism of formation of secondary flows in the bend; HYBRID scheme.
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centrifugal forces in the bend, which pushes the mentioned earlier the stability would be improved
vortices toward the wall. further. This is a very useful achievement and
could be implemented in the most CFD codes of
this nature. In fact, since this scheme is almost free

4. CONCLUSION from' convergence oscillation problem, it could be
considered as a proper alternative for second-order
A modified second-order hybrid formulation for schemes that have boundedness problem.

discretisation of convective terms in the Navier-
Stokes equations was proposed. In this scheme in

addition to improve stability condition and reduced 5 NOMENCLATURE
numerical diffusion, which is the characteristic of
the most of the second-order schemes, two well A areas of the finite volume faces (i = w,e,s,n

known criteria set by Patankar [1] are satisfied (i.e.
all coefficients are .posmve and .the sum of .the a, coefficients in the finite difference equations
values of the coefficients at the neighboring points ! )

(i=W,E,S,N,P,WW_EE,SS,NN)

are equal to the value of the coefficient at the pole o ’ ’ v
point). With these two conditions satisfied, the D, diffusion coefficients in the finite difference

programming would be much easier, faster, and as equations (i = w,e,s,n)

denotes the various directions)
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Figure 9. Mechanism of formation of secondary flows in the bend; QUICK scheme.

D! geometric parameter computed from coordinate
transformation

F, mass fluxes from the finite volume faces (i
=Ww,e,s,n)

J Jacobian of the coordinate transformation

Pe Peclet number

q; parameter for the generalized four-
point schemes (i = w,e,s,n)

Ss source term of the dependent variable in
the transport equation

U; contravariant velocity components (1 =
W,e,8,1)

Uy Cartesian velocity components

X general coordinate axis

y Cartesian coordinate axis

a; grid parameters

B grid parameters
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S

diffusion coefficient for dependent variable
grid distances
density of the fluid

dependent variable (i=W,E,S,N,P, WW,
EE, SS, NN, w, e, s, n)
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