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Abstract This paper describes the application of static var compensators, (SVC) on an
electrical distribution network containing two large synchronous motors, one of which is
excited via a three-phase thyristor bridge rectifier. The second machine is excited via a
diode bridge rectifier. Based on linear optimization control (LOC), the measurable feedback
signals are applied to the control system loops of SV C and the excitation control loop of the
first synchronous motor. The phase equations method was used to develop a computer
program to model the distribution network. Computer results were obtained to demonstrate
the system performance for some abnormal modes of operation. These results show that
employing SVC based on the LOC design for electrical distribution networks containing
large synchronous motors is beneficial and may be considered a first stage of the system
design.
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1. INTRODUCTION

General idea of applying a voltage regulator is to
optimally stabilize the equipment voltage during
and immediately after the momentary disturbance
of supply voltage, so that a satisfactory functioning
of the equipment is composed of a motor load group
for which operation continuity is to be maintained
when subjected to unavoidable momentary sags of
the supply voltage, which is of particular interest to
continuous process plants [1,2]. The technique of
“riding” through voltage dips by keeping motors
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connected to their sources during a voltage sag can
minimize potential harmful effects to the motors
and enhancing operation continuity can be further
improved by voltage stabilization at the point of
service.

Previous researchers have reported about the
applications of SVC in large induction motors [1-
4]. During last decade applications of SVC in
combination with PSS (Power System Stabilizer)
to the power systems were reported, too [5-7].
Although, the SVC systems have been applied to
the power systems as well as to the distribution
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Figure 1. The distribution network.

networks containing large induction motors
however, little attention have been paid to applying
the SVC compensators on large synchronous
motors[8].

The application of synchronous motors in
electric drives has the advantage of constant speed
operation, and of being capable to operate at a
leading power factor. In large sizes, these motors
also operate more efficiently than induction
motors to maintain operation continuity in the
presence of momentary voltage sags [8]. A method
has been presented in [8] to determine the
minimum capacitive SVC rating necessary for
operational continuity of acritical synchronous
motor load group. The critical load is driven by a
group of synchronous motors for which the
dynamic characteristics were justifiably assumed
to be co-herent so that they were represented by a
single equivalent synchronous motor. In the
proposed method, the utility-related voltage
disturbances were reflected in the model by abrupt
momentary voltage sags at the source end, while
the system was operating under steady state rated
load conditions. In addition, the well-known equal
area criterion was used in order to determine the
minimum capacitive SV C rating necessary for the
motor to be transiently stable in the first swing.
The method described in [8] can only be applied to
coherent synchronous motor load groups and not to
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the stiffer distribution systems containing large
incoherent synchronous motor loads. In addition,
the transient and nonlinear nature of the dynamic
system was not taken into account. It may be
noted that the operational continuity of a critical
synchronous motor load group heavily depends not
only on its own characteristics but on those of the
remaining system as well.

The present paper describes the application of
SVC on atypical distribution network containing
two large synchronous motors as illustrated in
Figure 1. This figure shows that synchronous
motor A is excited via a three phase thyristor
converter, and motor B via a diode bridge rectifier.
A SVCisdirectly connected to busbar B.

Based on the LOC method, using the reduced
order equations of the synchronous machines, the
measurable signals are applied to the control
system loops of the SVC and excitation control
loop of the synchronous motor A. Using the phase
equation method, a computer program was written
to predict the system dynamic performance,
especially during abnormal conditions such as
motor starting or shunt or series faults.

Thyristor-switched capacitors (TSCs) are used
to survive the immediate effects of the voltage sag
(transient stable), although the thyristor-switch
reactor (TSRs) may also be added to the TSCs to
improve damping of the ensuing system oscillations
(oscillatory stable).

In this sudy, the three sngle-phase compensators
are designed which can be individually used to
deal with voltage sags in any of the three phases. It
may be noted that three phase voltage sags have
the most severe effect on the operation continuity
of synchronous motors.

2.NETWORK SYSTEM WITH TWO
MOTORS

Consider motor A in a distribution network as in
Figure 1. To design the LOC signals for the motor
it is assumed that motor B is disconnected from the
busbar C. Then motor A isdirectly connected from
the busbar C. then motor A isdirectly connected to

an infinite busbar via an equivalent reactance X

as shown in Figure 2.
Consider the IEEE SVC model (with an
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Figure 2. Power circuit configuration of motor A connected
to Bushar A.

integrator block of E added) and the synchronous
S

machine excitation systems as shown in Figures 3
and 4, neglecting the step-down transformer time
constant T. Therefore

E K,
fd :—T—;d+_|_—a(—Vt+Vr+UE) (1
. AB, Kk,
AB, =‘T—'+T—(AVt +Ug), (2

r r

where E,, = open circuit induced emf of the
machine, AV, =V, -V, and B, isthe SVC
capacitive suseptance.

With reference to Appendix |, using the reduced

order equations of the three phase synchronous
machines (including torque equation) and Equation
1, the linearized matrix state equations of the
system shown in Figure 2, with respect to the initial
steady state are

X = AX + BU @A)

where A is the state matrix, B is a vector control
matrix and

X = [D8,000, Ay, MY 4, DY, AE 4, 0BT,

(4)

Referring to Appendixes Il and I, the state
variables Y, W, P,, are not measurable and

therefore are replaced for measurable variables
terminal voltage V,, developed power P,, and

field current i,,. As a result, the modified matrix
state equationsis

Z=FZ+GU (5)
where

Z =[08, A0, AV, , AP, i, AE,,AB,]" (6)

Max.rate
Vi | 1 k. AE [ o gf’* Vfd’
1+ST 1+ST, / :
Min.rate

Figure 3. IEEE model of excitation system.
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Figure 4. SVC model.
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N 1+Sﬂ /
US
Z=MX (7)
F=MAM™ (8)
G=MB 9)

U isthe vector of control effort.

It may be noted that in our study, the LOC design
is based on the linearized seventh order equations
givenin (5). In order to achieve a zero steady state

in B, aswell as to reduce the steady state error of

busbar voltage on A, an integrator block is used in
Figure 4. However, if the LOC damping signals are
designed based on the complete linearized matrix
state equations of the distribution network then, in
that case no need to include the mentioned block in
the SVC model.

3.OPTIMAL CONTROL DESIGN

With reference to [9], the main aim of our LOC
design is to minimize a performance index or the
performance function of the quadratic form given
as

_1l.-
J—EIO(ZTQY+UTHndt (10)

where Q = dig[ql q7] is the weighting
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matrix of the state variables deviationsZ andR in
that of the control effort.

By introducing a co-state variable vector P,
the system dynamics Equation 5 and the Cost
Function 10 are appended to form the
following Hamiltonian generalized co-energy
function [9].

H:%MTQZ+UTRunyUz+GU](n)

Applying Pontryagin’s maximum principle [9] to
Equation 11 and solving the resultant equations for
vector U , it gives

UH_QE_DF -S1z0 12)
- - [ U

#g HQ FHPE

which are the combined state and co-state equations
for the system.

The co-state variable vector P can be related to
the state variable vector Z as

P=KZ (13)

Where K is called the Riccati matrix, which is a
sguare matrix. Therefore, the solution of P can be
found if k isfound.

Combining Equation 13 with Equation 12, the
Riccati matrix equation is obtained as:
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FFKT+KTF-K"SKT+Q=0 K =constant

(14)
where Sisasymmetric matrix and is given by
S=GR'G’ (15)

The Reccati symmetrical matrix K can be calculated
from the eigenvectors of the state and co-state system
meatrix of 14. The eigenvector equations of N may be
written in matrix form[9] as

INIX =[NLA 4 & g“* 08 19)

0 AL

where l/\+J represents the eigenvalues of the right

hand side and|A” | those on the left hand side of
the complex variable plane respectively.
Here[/\] is a diagona eigenvalue matrix with

14 elements, and [X] is a 14 column eigenvector

with 14 elements per column.
Let the eigenvector matrix be partitioned into
four 7 by 7 matrices such that

=26 XuD

E(II >(IV E (17)

In [9] has been described that (X, X,™) satisfies
the Riccati matrix equation of 14, therefore matrix K is
K=X,%," (18)

In addition, from Equations 12 and 13, the vector
of LOC signalsisabtained as

U=—(R'G"K)x (18)

With referenceto [8], the incremental deviations of
damping and synchronizing torque components of
a synchronous machine are given as

AT, =K Aw, AT =K Ad (29

where K, and K4 are the synchronizing and
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damping torques coefficients.

From 20, it can be seen that in order to have a
nearly high damping torque component, one
solution may be to choose a nearly high positive
value for second element q,in diagonal weighting
matrix Q. This value is usualy obtained by trial
and error method. Also in Reference 9, it has been
described that the values of other elements in
matrix Q can be very small even equal to zero.

4. SYSTEM SIMULATION

Referring to Figure 1, for smplicity, it was assumed
that the neutral points of synchronous motors, SVC
and infinite busbar are connected to imaginary
neutral points of busbars A and B via very large
impedance, (theoretical equal to infinity). Having
made this assumption, the a,b,c phase equations of
the distribution network can easily be written.
Based on applying the LOC signals only to motor
A, and using the phase equations for sequence
ABC, a step by step computer program was
developed to model the system of Figure 1. In this
simulation, the commutation overlap was considered
for both the SVC and excitation systems of motor
A.

Typica parameters of the system may be found
with reference to [10], in which parameters of a
typical distribution network are given as: f=60Hz,
p=2,cos(Y) = 0.9 (leading), and

R, =0,X, =0.05 X, =0.0973,
X, =0.55,X " =0.133,X}, = 0.19,

X" =0.133,X ,, = 0.2049,

fy =0.000041,X ,, =0.16,V,, =1,

o =0.00041, X, = 0.01029,r,, = 0.0136,
X, =05R, =00

al in per unit.

Ty =7.765 S, Ty, =0.044 s,
T =0.094 sH=463 s

Also, the typical parameters of the SVC and

Vol. 16, No. 3, October 2003 - 239



synchronous machine excitation systems of Figures 2
and 3 are given as

k, =2500, T, =0.15s, K, =50 and T, =005 s
From Appendixes | and Il, using the above

parameters, the numerical values of Matrixes A
and M were obtained as

oo 1 0 0 0O 0 00
H-2563 0 -2501 -2016 -567 O 0 5
0006 0 -45 032 001 015 0 O
A=S-278 0 -182 -236 03 0 0 -
E -172 0 -045 -036 -129 0 0 E
0751 0 -422 340 231 20 0 O
H144106° 0 3231310° 3557710° 499:1° 0 -1667H
(24)

o1 0 0 0 0 0 0O
Ho 10 0 0 0 0
(10.686 O 1.94 -2.315 02945 0 od
M=[2000 0 04797 05727 00489 O Of
(3108 0 -74985 1145 -.005 O oU
S0 0o o0 0 0 1 09
Ho o o 0 0 0 1H
(25)

Also, from Equations 7and 8, the numerical values
of Matrixes G and F were obtained as

.0 0000 10° o d

O (26)
0 00 0 0 1666.70
0o o 1 0 0 0 0 | 0O
D806 0 -862 -6406 -3 0 | 0
0-4348 686 -207 3035 -89 0201 | 0 O
F_534.08 201 160 -1823 067 0072 | O S
_S 53 -3108 62 -30296 1995 -1125| O [
26541 O 58516 12027 2846 20 | O [
[ - - - - - | 0
O 0
(143990 O 43012 76158 16756 | -16675
(27)
For Q and R given by
0
rR=2 %oy Q=diagl0 10 0 0 0 0 0.0000]
1 1
(28)
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Matrix Equation 14 was solved for the Riccati
Matrix K

024186 323 -178 -1161 -0065 -00188 -0.00090]
0323 104 -0346 -2005 -00107 -00028 00001
0-178 -0346 01819 1057 00061 00024 0
K=P-1161 -2005 1057 674 0035 00121 0.0004
D-0065 -00107 00061 0035 0002 0000l 0 U
[-0.0188 -0.0028 00024 00121 00001 00001 O [
Hoo009 00001 0  0.0004 0 0 o H

Consequently, using Equation 18, the vectors of
control signals U and Ug were obtained as

E

.0 13319 56571 0.7393 -3.0494 0.0001 O 0 O
Sy [v]
S

H0.00Zl 0.0779 0.0039 -0.403 -0.0002 0 -0.0002

(26)

Computer results were obtained for a few system
abnormal conditions, such as starting of motor B
while A is in steady state initially, the three and
single phase faults on bushbar A, occurring at zero
second and clearing a 0.07 s and 0.015 s
respectively. The results from these ssimulations are
shown in Figures 5-7 respectively. Figures 5, 6 and
7 demonstrate that if damping signals are not
applied to the control loop of the SVC as well as
the excitation system of synchronous motor A,
then both motors would be hunting and aso the
busbar voltage on A would remain in a transient
state. In addition, due to the system low frequency
oscillations (for anearly long duration of time), not
only a mechanical damage could cause to the
motors shafts but also it could effectively change
the system dynamic stability conditions[11].

From Figure 7, adight Steady State error (roughly
less than five percent) is seen in the bushar voltage
on A. That is because of our LOC design, which is
based on using the seventh order linearized
Equations 5 and not based really on using the
complete linearized equations of the system.
However, an integrator block has been used in the
SVC model in order to achieve a zero steady state

error in SVC state variableB, and also to reduce
the above-mentioned error.

5. CONCLUSIONS
Based onthe LOC design, aSVCisapplied toatypical
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Figure 5. Phase to earth fault on Busbar A.

With loc Signal Without LOC Signal
1 l 5 e Tein e . 10 v ﬂ‘_,?,___._[
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Figure 6. Starting motor B with motor A in steady state.
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Figure 7. Three phase fault on Busbar A.

distribution network containing two incoherent
large synchronous motors.

The abc-s phase equations method has been
used to model the distribution network and
therefore, both types of series and shunt faults can
be studied. A transformation matrix has been
derived which can be used to transform the
machine state variables directly in terms of
machine measurable quantities. As a result, the
measurable LOC damping feedback signals can be
designed for applying to the SV C and synchronous
machine excitation systems. The computer results
obtained show that for operational continuity of a
critical synchronous motor load group during
system abnormal condition, applying the damping
signals to the SV C and motor excitation systemsis
beneficial and therefore this should be considered a
first stage of the system design. It was aso found
that based on the LOC design, the minimum
capacitive rating required could easily amount to
the same order of the critical load. If the feedback
damping signals are not applied to the distribution

242 - Vol. 16, No. 3, October 2003

system, this rating is considerably increased and
may provide a cost effective solution or even none
feasible technical solution. In addition, because of
the low frequency oscillations existing in the
system nearly for a long time, therefore, both the
motors would be hunting and as a result a
mechanical damage could cause to the motors
shafts. Furthermore, these oscillations could also
change the system dynamic stability conditions.
We also applied a SVC and a SVC in combination
with a PSS to the digribution network of Figure 1.
Comparing to the method described in this paper,
the computer results obtained by these methods has
effectively shown the less damping effects on the
system low frequency oscillations.

APPENDIX |

From Reference 12, the reduced order equations of
the three phase sdient pole synchronous machines
(including torque equation) are
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Vds = _lqus + Rsids’ Vqs = qus + Rsiqs’
1 )
Vig = — Wiy + Ryglggs
W,
1 . 1 .
O0=—Wu*+ Ryl 0=—W + Ryl
G,
(27)
d=w, —W,,
LW,
®, =—(T -T,),
r 2H( L e)
Te:quids_wdsiqs
(28)
qus:xIsiqs+L|quy
Wig =Xyt g + Wing
Wia =Xig g + Wing
Wig =X g (lgs Figg +iig)
(29)
l-Iqu :Xlkqikq +quq7
l-|Jqs :Xlsids+wmd7l'|',mq :qu (iqs+ikq)
(30)

where

V4,14 = direct axis stator voltage and current
Vs =quadrature axis stator voltage and current
WY, = field winding flux linkage

P4 = direct axis dumper winding flux linkage
Y, = quadrature axis damper winding flux linkage
Ig)1kgs11q = rotor winding currents

0 = torque angle
W = rotational angular speed
W, = synchronous base angular speed

W, = synchronous angular speed

R, = stator resistance

X,s = stator |eakage inductance

X . = direct axis magnetization inductance
E;s = transformed field voltage

IJE Transactions B: Applications

APPENDIX 11

Derivation of X-Modd of a Three-Phase
Synchronous Mator Connected to an Infinite
Busbar Linearization of Equations 1, 2, 3 and 29
gives

X = Ax + BAl + BU (31)
where

X =08, A0, AP 4, AP, A, AE 4]

(AN, O 32
AI - .dSD ( )

los [

The results is expressed in Park’s parameters
which are more familiar to engineers [10]

M1 0 O 0 O 00
= = = 0
0 0@, &, 8 0 0f
_ 0 0 a; ay ay ag a37%
A:%) 0 a a, 0 0 0 (33
g) 0 a, a, 0 O 0 B
® 0 8, 8 8 8 &[]
%) 0 a, a, as a5 a E
Sl:&’ Szz(xd_X'S)(X:‘,’_X'S),
2H (Xg =X )Xy = X5)
_ (X4 —Xg) _ (Xg=Xq)

XX T (X = X)

ay, =SS! 4o a,, =SS;l g, 8y =SS, 4
(34

'a"‘33 =_i,[1+ SS()'(d _Xd)]’
TdO Xd _Xls

= Ss(xd _X|s)

T VTRVIEY (35
TdO(Xd _Xls)

3 =1

°T T
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1 a63 - _ kaSZVqO ,

To VT,
= = = kaSCS\/qO = =
az; = ag Ky, Qg = VT a,, = ag Ky
t0""a
565 =KkS,Vyo (Vyo-To), a75 =§65K
Be=-—, 8,20, &,=-+
g6 Ta’ 76 ) 77 T
(36)
where
Ky = oot (37)
Also
B= o 921 by by ~O 961 9715T
%’ b, O 0 by b b72D
(38)
where
b S_L[(X" _X")IqO S4|qO mq
b Sl[(xg_XZ)Ido'l'Sszd(ldo'l'lqo)
+xmd dOS ]
_ x" x
b31 (X Xls)q
TdO
~ X" =X ~ X=X
b4l:( dn IS)' b52:( q" l)’
TdO TqO
— AR AV [
b, =K, 1701 b, =byK
61 VT, 71 61
~ ~ -R.V +X"V
b, =b,, = —ka[ 40 col ,
VioTa
b72 = bGZKT
(39)

(X4, Xy ,X, ) and
(T(;O,T(','O,T(;'O) arethe standard d axisand q axis

In above Equations,
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Figure 8. A three phase synchronous motor connected to an
infinite power system.

transient and subtransient reactances and time
constants of athree-phase salient pole synchronous
machine [12].

Following procedure may be followed from
Park’s equations [6], in order to eliminate the
current vector Al in Equation 28.

AV, R, Di g, + X0 Ai
AV, R, A, — X, Alds

=S, Ady,
SSAq)kq +S ¢fd
(40)

From Figure 8, the steady state Equations for the
external system are

AV, ==X Ai =V, Sin,) A3

: (41)
AV ==X Aiy +V,cos(d,)Ad

Also in Equations 33-38, the parameters with
subscript zero denote the motor A initial steady
state condition.

From Equations 39 and 40

= £y~ c=(d @

where

_[ksk, +k,k, 0 k,s, k,s; —-Kkgs, 0O

_E(sk1+k3k2 0 kasz kasa _k554 0%
(43)
=V, 008(3,), k, =V, sin(3,),
RS x’(’]+xe "
k3=31k4: D Ky = =(X +X4)/D
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D =R = (Xe +X5) (X +X7)
(44)

Combining Equation 27 with Equation 40, it gives

X =AX +BU (45)

where

A=A+BC (46)
APPENDIX I

Derivation of Transformation Matrix M The
vector X can be expressed in terms of directly
measurable machine terminal equations as

Terminal Voltage

\Y \%

AV, =—P AV + AV (47)
VtO VtO

From Equations 39 and 40

AV, = myAd+ My Ady, + my,Ad,, + My Ad kq
(48)

where

— [CZl(VdOX'c; - VqORs) - Cll(VdORs + VqOX'c’i)]
Vio

_ [C23(Vdoxlc; _VqORs) - Cll(VdORs + quXZ)]

- Vv

ms, :[C24(Vdoxlc'; _VqORs)

31

33
to

V
+K_qo _Cl4(Vd0Rs +VqOXd)/VtO]
3
Mas =[Co5 (V4o Xg = VoRs)
n V
_C15(Vd0Rs +Vq0Xd _K_do)/vto]
3

(49)

Electrical Power From Figure 8, the incremental

IJE Transactions B: Applications

deviation of electric power AP, is

AP, =Vl + VoA o + 1AV +1 AV
(50)

Again from Equations 40 and 41

AP, =my,Ad + MyAd + MyAd g + M AP kq
(51)

where

My =S Vo + SV = 140(SX" =SRy)
+140(SeXy +SsR,)
My = S,[K,Vyo + KV + 140 (KX —K5RY)
+1 01— KX —K;R,)]
S;

m44 :m438_’
2

My = S4[_|qO(K3XZI +KsR,)
+1 d0(1+ st:; - KaRs) - (Kavdo + KSVqO)]
(52)

S =K K + KKy, S =K Ky + KK, (53)

Field Current Consider the linearized form of
Equation 25

Ady =X Al + X (Al + A6, +Ai) (54)
Ad =X Qi + X (A +AQ +A) (55)

Solving Equations 53 and 54 for Ai,, andAi,, in
terms of A, AP, andAi ., it gives

X X

Ai,, = A - md A
“ (dexkd_xzmd) ¢fd dexkdxrznd ¢kd
X (X , =X .
+ md( md 2kd)AIdS
dexxd_xmd
(56)

Substituting for Ai ., from Equation 40 into Equation
54, it follows that
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Aiy =mg A+ Mg A, + My, A, +mMy; AD kq
(57)

where

Mg =Cpy S, X s Mg =Ci5 S, Xy

Mgz =Ci3 S; X 1y

+ (Xd _X’d)[1+ (Xd _X"d)(x’d _x’c’j)]
de (Xd _xls)
mg, = 01482 de + (Xd _)’(d)(xd :xd)
(Xd _xls)
Mgs =CsS, (X g = X6)
(58)

As aresult, the transformation matrix M is

Oo1 0 O 0 0 0 0O

U0 1 0 o o o o

O O

gniil O m33 m34 m35 O OB
M=, 0 mg, m, mg 0 O (59

g.nﬂ O m53 m54 55 O OB

00 0 O 0 0 1 Op

Ho o o o o o 1
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