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Abstract   This paper describes the application of static var compensators, (SVC) on an 
electrical distribution network containing two large synchronous motors, one of which is 
excited via a three-phase thyristor bridge rectifier. The second machine is excited via a 
diode bridge rectifier. Based on linear optimization control (LOC), the measurable feedback 
signals are applied to the control system loops of SVC and the excitation control loop of the 
first synchronous motor. The phase equations method was used to develop a computer 
program to model the distribution network. Computer results were obtained to demonstrate 
the system performance for some abnormal modes of operation. These results show that 
employing SVC based on the LOC design for electrical distribution networks containing 
large synchronous motors is beneficial and may be considered a first stage of the system 
design. 
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 بر يك شبكه توزيع كه شامل دو موتور          SVCبكارگيري جبرانسازهاي استاتيكي    اين مقاله      چکيدهچکيدهچکيدهچکيده
يكي از اين ماشينها توسط يك پل سه فاز تايريستوري و ماشين            . دهد سنكرون بزرگ است را شرح مي     

بر پايه روش كنترل بهينه سازي      . گردند دوم از طريق يك يكسو كننده پل سه فاز ديودي تحريك مي            
 و سيستم تحريك موتور     SVCهاي فيدبك قابل اندازه گيري بر حلقه هاي كنترلي            سيگنال LOCخطي  

بر پايه معادلات فازي، يك برنامه كامپيوتري براي شبيه سازي شبكه مذكور نوشته . گردند اول اعمال مي
اين نتايج  . آيد نتايج كامپيوتري براي بعضي از شرايط كاري غير نرمال سيستم بدست مي             . شده است 

 سودمند بوده و حتي لازم است كه در          LOC بر پايه روش طراحي      SVCدهند كه بكارگيري      مي نشان
 .مرحله اول طراحي چنين سيستمهايي مورد توجه قرار گيرد

 
 
 

1. INTRODUCTION 
 

General idea of applying a voltage regulator is to 
optimally stabilize the equipment voltage during 
and immediately after the momentary disturbance 
of supply voltage, so that a satisfactory functioning 
of the equipment is composed of a motor load group 
for which operation continuity is to be maintained 
when subjected to unavoidable momentary sags of 
the supply voltage, which is of particular interest to 
continuous process plants [1,2]. The technique of 
“riding” through voltage dips by keeping motors 

connected to their sources during a voltage sag can 
minimize potential harmful effects to the motors 
and enhancing operation continuity can be further 
improved by voltage stabilization at the point of 
service. 
     Previous researchers have reported about the 
applications of SVC in large induction motors [1-
4]. During last decade applications of SVC in 
combination with PSS (Power System Stabilizer) 
to the power systems were reported, too [5-7]. 
Although, the SVC systems have been applied to 
the power systems as well as to the distribution 



236 - Vol. 16, No. 3, October 2003 IJE Transactions B: Applications 

networks containing large induction motors 
however, little attention have been paid to applying 
the SVC compensators on large synchronous 
motors [8]. 
     The application of synchronous motors in 
electric drives has the advantage of constant speed 
operation, and of being capable to operate at a 
leading power factor. In large sizes, these motors 
also operate more efficiently than induction 
motors to maintain operation continuity in the 
presence of momentary voltage sags [8]. A method 
has been presented in [8] to determine the 
minimum capacitive SVC rating necessary for 
operational continuity of a critical synchronous 
motor load group. The critical load is driven by a 
group of synchronous motors for which the 
dynamic characteristics were justifiably assumed 
to be co-herent so that they were represented by a 
single equivalent synchronous motor. In the 
proposed method, the utility-related voltage 
disturbances were reflected in the model by abrupt 
momentary voltage sags at the source end, while 
the system was operating under steady state rated 
load conditions. In addition, the well-known equal 
area criterion was used in order to determine the 
minimum capacitive SVC rating necessary for the 
motor to be transiently stable in the first swing. 
The method described in [8] can only be applied to 
coherent synchronous motor load groups and not to 

the stiffer distribution systems containing large 
incoherent synchronous motor loads. In addition, 
the transient and nonlinear nature of the dynamic 
system was not taken into account. It may be 
noted that the operational continuity of a critical 
synchronous motor load group heavily depends not 
only on its own characteristics but on those of the 
remaining system as well. 
     The present paper describes the application of 
SVC on a typical distribution network containing 
two large synchronous motors as illustrated in 
Figure 1. This figure shows that synchronous 
motor A is excited via a three phase thyristor 
converter, and motor B via a diode bridge rectifier. 
A SVC is directly connected to busbar B. 
     Based on the LOC method, using the reduced 
order equations of the synchronous machines, the 
measurable signals are applied to the control 
system loops of the SVC and excitation control 
loop of the synchronous motor A. Using the phase 
equation method, a computer program was written 
to predict the system dynamic performance, 
especially during abnormal conditions such as 
motor starting or shunt or series faults. 
     Thyristor-switched capacitors (TSCs) are used 
to survive the immediate effects of the voltage sag 
(transient stable), although the thyristor-switch 
reactor (TSRs) may also be added to the TSCs to 
improve damping of the ensuing system oscillations 
(oscillatory stable). 
     In this study, the three single-phase compensators 
are designed which can be individually used to 
deal with voltage sags in any of the three phases. It 
may be noted that three phase voltage sags have 
the most severe effect on the operation continuity 
of synchronous motors. 
 
 
 

2. NETWORK SYSTEM WITH TWO 
MOTORS 

 
Consider motor A in a distribution network as in 
Figure 1. To design the LOC signals for the motor 
it is assumed that motor B is disconnected from the 
busbar C. Then motor A is directly connected from 
the busbar C. then motor A is directly connected to 
an infinite busbar via an equivalent reactance eX  
as shown in Figure 2. 
     Consider the IEEE SVC model (with an 
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Figure 1. The distribution network. 
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integrator block of 
s
k

 added) and the synchronous 

machine excitation systems as shown in Figures 3 
and 4, neglecting the step-down transformer time 
constant T. Therefore 
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where fdE  = open circuit induced emf of the 
machine, trt VVV −=∆  and lΒ  i s  the SVC 
capacitive suseptance. 

     With reference to Appendix I, using the reduced 

order equations of the three phase synchronous 
machines (including torque equation) and Equation 
1, the linearized matrix state equations of the 
system shown in Figure 2, with respect to the initial 
steady state are 
 

BUAxx +=&  (3) 
 
where A is the state matrix, B is a vector control 
matrix and 
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Referring to Appendixes II and III, the state 
variables kqfdfd ,, ψψψ  are not measurable and 
therefore are replaced for measurable variables 
terminal voltage tV , developed power eP , and 
field current fdi . As a result, the modified matrix 
state equations is 
 

GUFZZ +=&  (5) 
 
where 
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Figure 3. IEEE model of excitation system. 
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Figure 2. Power circuit configuration of motor A connected 
to Busbar A. 
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MXZ =  (7) 
 

1MAMF −=  (8) 
 

MBG =  (9) 
 
U is the vector of control effort. 
     It may be noted that in our study, the LOC design 
is based on the linearized seventh order equations 
given in (5). In order to achieve a zero steady state 
in lB  as well as to reduce the steady state error of 
busbar voltage on A, an integrator block is used in 
Figure 4. However, if the LOC damping signals are 
designed based on the complete linearized matrix 
state equations of the distribution network then, in 
that case no need to include the mentioned block in 
the SVC model. 
 
 
 

3.OPTIMAL CONTROL DESIGN 
 
With reference to [9], the main aim of our LOC 
design is to minimize a performance index or the 
performance function of the quadratic form given 
as 
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where [ ]71 q...qdigQ =  is the weighting 

matrix of the state variables deviations Z  and R  in 
that of the control effort. 
     By introducing a co-state variable vector P, 
the system dynamics Equation 5 and the Cost 
Function 10 are appended to form the 
following Hamiltonian generalized co-energy 
function [9]. 
 

]GUFZ[P]URUZQZ[
2
1H TTT +++=  (11) 

 
Applying Pontryagin’s maximum principle [9] to 
Equation 11 and solving the resultant equations for 
vector U , it gives 
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which are the combined state and co-state equations 
for the system. 
     The co-state variable vector P  can be related to 
the state variable vector Z as 
 

KZP =  (13) 
 
Where K is called the Riccati matrix, which is a 
square matrix. Therefore, the solution of P can be 
found if k is found. 
     Combining Equation 13 with Equation 12, the 
Riccati matrix equation is obtained as: 
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Figure 4. SVC model. 
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ttanconsK0QKSKFKKF TTTTT ==+−+
 (14) 
 
where S is a symmetric matrix and is given by 
 

T1 GRGS −=  (15) 
 
The Reccati symmetrical matrix K can be calculated 
from the eigenvectors of the state and co-state system 
matrix of 14. The eigenvector equations of N may be 
written in matrix form [9] as 
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where [ ]+Λ  represents the eigenvalues of the right 
hand side and [ ]−Λ  those on the left hand side of 
the complex variable plane respectively. 
     Here [ ]Λ  is a diagonal eigenvalue matrix with 
14 elements, and [ ]X  is a 14 column eigenvector 
with 14 elements per column. 
     Let the eigenvector matrix be partitioned into 
four 7 by 7 matrices such that 
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In [9] has been described that )XX( 1

III
−  satisfies 

the Riccati matrix equation of 14, therefore matrix K is 
 

1
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In addition, from Equations 12 and 13, the vector 
of LOC signals is obtained as 
 

x)KGR(U T1−−=  (18) 
 
With reference to [8], the incremental deviations of 
damping and synchronizing torque components of 
a synchronous machine are given as 
 

δ∆=∆ω∆=∆ SSDD KT,KT  (19) 
 
where DK  and SK  are the synchronizing and 

damping torques coefficients. 
     From 20, it can be seen that in order to have a 
nearly high damping torque component, one 
solution may be to choose a nearly high positive 
value for second element 2q in diagonal weighting 
matrix Q . This value is usually obtained by trial 
and error method. Also in Reference 9, it has been 
described that the values of other elements in 
matrix Q  can be very small even equal to zero. 
 
 
 

4. SYSTEM SIMULATION 
 
Referring to Figure 1, for simplicity, it was assumed 
that the neutral points of synchronous motors, SVC 
and infinite busbar are connected to imaginary 
neutral points of busbars A and B via very large 
impedance, (theoretical equal to infinity). Having 
made this assumption, the a,b,c phase equations of 
the distribution network can easily be written. 
Based on applying the LOC signals only to motor 
A, and using the phase equations for sequence 
ABC, a step by step computer program was 
developed to model the system of Figure 1. In this 
simulation, the commutation overlap was considered 
for both the SVC and excitation systems of motor 
A. 
     Typical parameters of the system may be found 
with reference to [10], in which parameters of a 
typical distribution network are given as: f=60Hz, 
p=2, 9.0)cos( =ψ  (leading), and  
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Also, the typical parameters of the SVC and 
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synchronous machine excitation systems of Figures 2 
and 3 are given as 
 

50K,s15.0T,2500k arr ===  and .s05.0Ta =  
 
From Appendixes I and II, using the above 
parameters, the numerical values of Matrixes A 
and M were obtained as 
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Also, from Equations 7and 8, the numerical values 
of Matrixes G  and F  were obtained as 
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For Q and R given by 
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Matrix Equation 14 was solved for the Riccati 
Matrix K 
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Consequently, using Equation 18, the vectors of 
control signals EU  and SU  were obtained as 
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Computer results were obtained for a few system 
abnormal conditions, such as starting of motor B 
while A is in steady state initially, the three and 
single phase faults on busbar A, occurring at zero 
second and clearing at 0.07 s and 0.015 s 
respectively. The results from these simulations are 
shown in Figures 5-7 respectively. Figures 5, 6 and 
7 demonstrate that if damping signals are not 
applied to the control loop of the SVC as well as 
the excitation system of synchronous motor A, 
then both motors would be hunting and also the 
busbar voltage on A would remain in a transient 
state. In addition, due to the system low frequency 
oscillations (for a nearly long duration of time), not 
only a mechanical damage could cause to the 
motors shafts but also it could effectively change 
the system dynamic stability conditions [11]. 
     From Figure 7, a slight steady state error (roughly 
less than five percent) is seen in the busbar voltage 
on A. That is because of our LOC design, which is 
based on using the seventh order linearized 
Equations 5 and not based really on using the 
complete linearized equations of the system. 
However, an integrator block has been used in the 
SVC model in order to achieve a zero steady state 
error in SVC state variable lB  and also to reduce 
the above-mentioned error. 
 
 
 

5. CONCLUSIONS 
 
Based on the LOC design, a SVC is applied to a typical 
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Figure 5. Phase to earth fault on Busbar A. 
 
 
 
 

 
Figure 6. Starting motor B with motor A in steady state. 
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distribution network containing two incoherent 
large synchronous motors. 
     The abc-s phase equations method has been 
used to model the distribution network and 
therefore, both types of series and shunt faults can 
be studied. A transformation matrix has been 
derived which can be used to transform the 
machine state variables directly in terms of 
machine measurable quantities. As a result, the 
measurable LOC damping feedback signals can be 
designed for applying to the SVC and synchronous 
machine excitation systems. The computer results 
obtained show that for operational continuity of a 
critical synchronous motor load group during 
system abnormal condition, applying the damping 
signals to the SVC and motor excitation systems is 
beneficial and therefore this should be considered a 
first stage of the system design. It was also found 
that based on the LOC design, the minimum 
capacitive rating required could easily amount to 
the same order of the critical load.  If the feedback 
damping signals are not applied to the distribution 

system, this rating is considerably increased and 
may provide a cost effective solution or even none 
feasible technical solution. In addition, because of 
the low frequency oscillations existing in the 
system nearly for a long time, therefore, both the 
motors would be hunting and as a result a 
mechanical damage could cause to the motors’ 
shafts. Furthermore, these oscillations could also 
change the system dynamic stability conditions. 
We also applied a SVC and a SVC in combination 
with a PSS to the distribution network of Figure 1. 
Comparing to the method described in this paper, 
the computer results obtained by these methods has 
effectively shown the less damping effects on the 
system low frequency oscillations. 
 
 
 

APPENDIX I 
 
From Reference 12, the reduced order equations of 
the three phase salient pole synchronous machines 
(including torque equation) are 

 
 

Figure 7. Three phase fault on Busbar A. 
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where 

=dsds i,v  direct axis stator voltage and current 
=qsv quadrature axis stator voltage and current 

=ψfd  field winding flux linkage 
=ψkd  direct axis dumper winding flux linkage 
=ψkq  quadrature axis damper winding flux linkage 

=kqkdfd i,i,i  rotor winding currents 
=δ  torque angle 
=ω  rotational angular speed 
=ωb  synchronous base angular speed 
=ω0  synchronous angular speed 
=sR  stator resistance 
=lsX  stator leakage inductance 
=mdX  direct axis magnetization inductance 

=fdE  transformed field voltage 

APPENDIX II 
 

Derivation of X-Model of a Three-Phase 
Synchronous Motor Connected to an Infinite 
Busbar   Linearization of Equations 1, 2, 3 and 29 
gives 
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The results is expressed in Park’s parameters 
which are more familiar to engineers [10] 
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where 
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 (39) 
 

In above Equations, )X,X,X( qdd
″″′  and 

)T,T,T( 0q0d0d ′′′′′  are the standard d  axis and q  axis  

transient and subtransient reactances and time 
constants of a three-phase salient pole synchronous 
machine [12]. 
     Following procedure may be followed from 
Park’s equations [6], in order to eliminate the 
current vector I∆  in Equation 28. 
 

fd2kq3dsdqssqs

kq4qsqdssds

SSiXiRV
SiXiRV

ϕ+ϕ∆−=∆′′−∆−∆

ϕ∆−=∆′′+∆−∆
 

 (40) 
 
From Figure 8, the steady state Equations for the 
external system are 
 

δ∆δ+∆−=∆

δ∆δ−∆−=∆

)cos(ViXV

)sin(ViXV

00dscqs

00qscds
 (41) 

 
Also in Equations 33-38, the parameters with 
subscript zero denote the motor A initial steady 
state condition. 
     From Equations 39 and 40 
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I
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where 
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Figure 8. A three phase synchronous motor connected to an
infinite power system. 
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)XX()XX(RD qede
2
s ′′+′′+−=  

 (44) 
 
Combining Equation 27 with Equation 40, it gives 
 

BUAXX +=&  (45) 
 
where 
 

CB~A~A +=  (46) 
 
 
 

APPENDIX III 
 
Derivation of Transformation Matrix M   The 
vector X can be expressed in terms of directly 
measurable machine terminal equations as 
 
Terminal Voltage 
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0q
ds

0t

0d
t V

V
V

V
V
V

V ∆+∆=∆  (47) 

 
From Equations 39 and 40 
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 (48) 
 
where 
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 (49) 
 
Electrical Power   From Figure 8, the incremental 

deviation of electric power eP∆  is 
 

qs0qds0dqs0qds0de VIVIiViVP ∆+∆+∆+∆=∆  
 (50) 
 
Again from Equations 40 and 41 
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 (51) 
 
where 
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4231632515 KKKKS,KKKKS +=+=  (53) 

 
Field Current   Consider the linearized form of 
Equation 25 
 

)iii(XiX fdkddsmdfdlfdfd ∆+∆+∆+∆=ϕ∆  (54) 
 

)iii(XiX fdkddsmdkdlkdkd ∆+∆+∆+∆=ϕ∆  (55) 
 
Solving Equations 53 and 54 for fdi∆  and kdi∆  in 
terms of fdϕ∆ , kdϕ∆  and dsi∆ , it gives 
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 (56) 
 
Substituting for dsi∆  from Equation 40 into Equation 
54, it follows that 
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kq55kd54fd5351fd mmmmi ϕ∆+ϕ∆+ϕ∆+δ∆=∆  
 (57) 
 
where 
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 (58) 
 
As a result, the transformation matrix M is 
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