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Abstract   The problem of unbounded uniaxial chiral omega media in the presence of both static 
electric and magnetic point charges is investigated. For this purpose scalar electric and magnetic 
potentials in these media are introduced. Using these potentials, the corresponding electric and 
magnetic fields are determined. The similar problem of static electric and magnetic current sources 
with the goal of finding the electromagnetic fields is carried out. It is observed that either static 
electric or magnetic point charges produce both electric and magnetic fields. 
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براي اين  .  كايرال تك محوري با حضور بارهاي الكتريكي بررسي شده است           �محيط نا محدود امگا        چکيدهچکيدهچکيدهچکيده
كار پتانسيلهاي عددي الكتريكي و مغناطيسي معرفي شده و با استفاده از اين پتانسيلها ميدانهاي الكتريكي و                      

ت الكتريكي و مغناطيسي با هدف بدست       مساله مشابه براي منابع جريان ثاب     . مغناطيسي متناظر تعيين شده است    
شود كه در اين محيطها هر يك از بارهاي ساكن  مشاهده مي. آوردن ميدانهاي الكترومغناطيسي بررسي شده است

 .كنند الكتريكي يا مغناطيسي هر دو نوع ميدانهاي الكتريكي و مغناطيسي را ايجاد مي
 

 
 

1. INTRODUCTION 
 

In past decades; much attention has been given to 
the electromagnetic properties of complex materials. 
Several applications of quasi-static image theory in 
analyzing EM fields were considered by many 
authors, among which are: quasi-static image theory 
for bi-isotropic microstrip structures [1], static 
image theory for bi-isotropic sphere and isotropic 
and bi-isotropic cylinders [2,3] and static image 
theory for bi-isotropic media with parallel 
interfaces [4]. However an analysis of quasi-static 
theory is not reported for uniaxial chiral omega 
medium. Such a medium can be realized by putting 
two types of particles in a dielectric host medium. 
One of these is two orthogonal sets of small omega 
shaped metals with planes normal to x- and y- 
axes. The other is two orthogonal arrays of small 
metal helices with their axes along x- and y [5]. 
     Media involving omega shaped metal particles 
were applied as phase shifters [6]; pseudochiral 
point-source antennas [7] and nonradiative dielectric 
waveguides [8]. Recently the constitutive parameters 

of complex media consisting omega particles were 
studied [9]. 
     In present article, the problem of static 
electromagnetic fields due to the presence of both 
static electric and magnetic point charges in an 
unbounded uniaxial chiral omega medium is studied. 
Introducing the appropriate scalar electric and 
magnetic potentials and using the constitutive 
relations of the medium identify the corresponding 
electric and magnetic fields. In the next section a 
similar problem, but due to arbitrarily oriented static 
electric and magnetic current sources, with the goal 
of finding the electromagnetic fields is carried out. 
It is observed that due to the anisotropic feature of 
the corresponding parameters of the medium, 
electromagnetic fields produced by static and 
magnetic charges are a linear combination of two 
different scalar functions such that the fields 
associated with point charges do not have any 
spherical symmetry in uniaxial chiral omega 
media. A similar result is obtained for the case of 
static electric and magnetic current sources, but in 
this case the fields involve different vector functions. 
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Generally speaking, we conclude that the physical 
behavior of electromagnetic fields in uniaxial 
chiral omega media is properly different from a 
similar problem but with general isotropic media [4]. 
     Uniaxial chiral omega media, while is best 
described by its constitutive relations given by 1 
and 2 in the next section, can be realized by 
combining two types of uniaxial media with a 
common axis. One of these media is called, uniaxial 
omega (or pseudochiral) and the other, uniaxial 
chiral media. Uniaxial omega medium with z- axis, 
can be realized by embedding two orthogonal sets 
of small omega shaped metals with planes normal 
to x- and y- axes. In this medium a coupling 
between electric and magnetic fields along x- and 
y- axes is present and the electric field along x- axis 
generates a magnetic field along y- axis and 
vice versa. Therefore, in this medium, with 
respect to omega particles, there is no preference in 
the x – y directions and there exists only one particular 
direction, normal to x – y plane, i.e., the z direction 
[8]. The other type of medium namely uniaxial chiral 
medium along z- axis, can be implemented by 
arranging small metal helices in two orthogonal 
arrays with their axes along the x- and y- axes. In 
this medium, induced electric current in a short 
helix, while located in a high frequency electric 
field, produces a magnetic field, which has both 
longitudinal (along the helix axis) and transverse 
components. In such a medium the field coupling 
due to chirality is effective only for the fields in the 
x – y plane. 
     Uniaxial chiral omega medium which is a 
combination of the above mentioned media, can 
therefore be realized by embedding the above 
mentioned two types of particles in a dielectric 
host medium i.e., two orthogonal sets of small 
omega shaped metals with planes normal to x- and 
y- axes and two orthogonal arrays of small metal 
helices with their axes along x- and y [5]. 
     Uniaxial omega media features the coupling 
between electric and magnetic field components 
with similar directions in the x – y plane. This 
property is due to the presence of metal helices in 
the medium. In addition, due to the existence of 
omega particles in the medium, another coupling 
occurs between electric and magnetic field 
components in the x – y plane that is different 
from that of metal helices. The electric field along 
x- axis produces magnetic field along y- axis and 

vice versa. 
 
 
 

2. STATIC SCALAR POTENTIALS 
 
Consider both static electric and magnetic point 
charges eρ  and mρ  located in an unbounded 
uniaxial chiral omega medium, with the following 
constitutive relations [5]: 
 

H.)JkIk(jE.D tt00

rrr
+−µε+ε=  (1) 

 
E.)JkIk(jH.B tt00

rrr
+µε+µ=  (2) 

 
Where ε  and µ  refer to permittivity and 
permeability tensors respectively. These dyadics 
are uniaxial with transverse component ,t, and the 
normal component ,n, 
 

)ẑẑI(

and

)ẑẑI(

ntt0

ntt0

µ+µµ=µ

ε+εε=ε

 (3) 

 
Where ẑ  denotes the unit vector parallel to the 
axis (orthogonal to the plane including the stems of 
omega particles). ŷŷx̂x̂It +=  is the transverse 

unit dyadic, ŷx̂x̂ŷIẑJ t −=×=  is 90- degree 
rotator in the x – y plane and k is the magneto-
electric coupling parameter ( dimensionless) due to 
omega particles of the medium and tk  is the 
chirality (dimensionless) due to small metal helices 
of the medium, which is effective for the fields in 
the (x-y) plane [5]. 
     The electric and magnetic charge densities 
satisfy; 
 

me B.,D. ρ=∇ρ=∇
rr

 (4) 

 
With regard to the coupling between electric and 
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magnetic fields generated due to the omega 
particles and helices in the uniaxial chiral 
medium, it is observed that magnetic charge mρ  
produces both electric and magnetic potentials, 

eΦ  and mΦ  and the corresponding fields. 
     The static electric and magnetic fields can be 
expressed in terms of scalar electric and 
magnetic potentials eΦ  and mΦ  respectively, 
i.e.; 
 

me H,E Φ∇−=Φ∇−=
rr

 (5) 
 
With regard to the expressions 5 and making 
use of static relations, one can derive a 
system of two coupled partial differential 
equations in terms of the scalar potentials, 

eΦ  and mΦ ; 
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 (7) 
 
In order to solve Equations 6 and 7, we assume 

eΦ  and mΦ  as a linear combination of two 
auxiliary functions 1Φ  and 2Φ . 
 

2211m

21e

XX Φ+Φ=Φ

Φ+Φ=Φ
 (8) 

 
Where 1X  and 2X are unknown constants 
depending on the medium parameters. Substituting 
for eΦ  and mΦ  from Equation 8 in Equations 6 
and 7, one can obtain two equations for 1Φ  and 

2Φ , i.e. 
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 (9) 
 
and 
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where; 
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With 
 

nt0

tnnt
2,1

0

0
0 k2

)(
jX,

µη
∆±µε−µε

−=
ε
µ

=η  (14) 

 
and 
 

nn
2
t

2
tnnt k4)( εµ+µε−µε=∆  (15) 

 
It is concluded that for any charge distributions eρ  
and mρ , 1Φ  and 2Φ  can be obtained from 
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Equations 9 and 10. Once these auxiliary 
potentials are known, the potentials eΦ  and 

mΦ  can be determined from Equation 8 and 
the electric and magnetic fields follow from 
Equation 5. 
     Consider a uniaxial chiral omega medium with 
the constitutive Relations 1 and 2, in the presence 
of both static electric and magnetic point charges, 
i.e. 
 

)z()y()x(qee δδδ=ρ  
 
and (16) 
 

)z()y()x(qmm δδδ=ρ  
 
Equations 9 and 10 are thus transformed to 
 

)z()y()x(
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and 
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By choosing a new Cartesian coordinates in the z 
direction in the form zz 11 α=′ and some algebraic 
manipulations, one can conclude; 
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Where 
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Similarly, using zz 22 α=′ , Equation 18 reduces 

to: 
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The integration of Equations 19 and 21 yields; 
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22
1

22
1 zyxr α++=′  (26) 
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in which 
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2
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using 1Φ  and 2Φ , the potentials eΦ  and mΦ  

and therefore the E
r

 and H
r

 fields can be 



IJE Transactions A: Basics Vol. 16, No. 3, September 2003 - 251 

determined from Equation 5. 
 
 
 
3. FIELDS OF STATIC CURRENT SOURCES 
 
Consider a uniaxial chiral omega medium with 
static electric and magnetic current sources J

r
 and 

mJ
r

 respectively. These sources are related to E
r

 

and H
r

 fields by: 
 

JH
rr

=×∇  (29) 
 

mJE
rr

−=×∇  (30) 
 
Furthermore, in this case we can write: 
 

0B,0D =⋅∇=⋅∇
rr

 (31) 
 
Similar to magnetic charges in section 2, it is observed 
that magnetic current source mJ

r
 produces both 

electric and magnetic fields. Therefore a magnetic 
current source acts as both magnetic and electric 
current sources. In addition, one can consider that a 
magnetic dipole mJ

r
 acts as a small electric current 

loop with an identical magnetic moment. 
     Using the Relations 29 through 31 and 
constitutive Relations 1 and 2, one can obtain 
Equations 32 through 35 in Cartesian coordinate 
system as follows; 
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For simplicity, we decompose the vectors and 
vector operators into longitudinal components 
along the z axis and transverse components in the 
plane perpendicular to the z axis in Cartesian 
coordinates system throughout the analysis. Therefore; 
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ẑAAA zt +=
rr

 (37) 
 
Where; 
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Applying partial derivative 
z∂

∂
 in Equations 34 

and 35 and making use of Expressions 32-33 and 
with regard to the operator and vector notations 
36 through 38 and tedious algebraic 
manipulations, for longitudinal components of 
fields a set of coupled differential equations is 
obtained; i.e. 
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with: 
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with: 
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Using Equations 32 and 33 and 36 through 38 and 
some algebraic manipulations to eliminate the 
longitudinal field terms, one can eliminate the 
tangential field terms and obtain a set of coupled 
wave equations for the transverse components of 
the fields. 
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ẑẑJ

JkjẑJkj
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A solution of Equations 39 and 41 as well as the 
coupled Equations 43 and 44 yields longitudinal 
and transverse field components respectively. To 
find the longitudinal components, we assume zE

r
 

and zH
r

 as a linear combination of two auxiliary 
vector functions 1f  and 2f ; 
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Where 1X′  and 2X′  are unknown constant 

coefficients. Substituting zE
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 from 47 in 
39 and 41, two partial differential equations for 1f  
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and 2,1X′ are the same as 2,1X  in Equation 14. 

Further more 2
1
∗∇  and 2

2
∗∇ are in Equations 12 

and 13. 
 

nt0

tnnt
2,1 k2

)(
jX

µη
∆±µε−µε

−=′  (51) 

 
With: 
 

( ) nn
2
t

2
tnnt k4 εµ+µε−µε=∆ , 

0

0
0 ε

µ
=η  (52) 

 
and 1β  and 2β  are given in 40 and 42. 
It can be seen that for any current source, 
Equations 48 and 49 together with 40 and 42 can 
be transformed to conventional Poisson's equation, 
the solution of which yields, 1f  and 2f . The 
longitudinal field components, zE  and zH  can 
therefore be obtained from the corresponding 
equations in 47.  
     In a similar manner, to obtain the transverse field 
components tE
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The operators 2

1
∗∇  and 2

2
∗∇  and the values of 

1X ′  and 2X′  are given by Equations 12, 13 and 51 
respectively. It can be seen that for a current 
source, Equations 54 and 55 together with 45 and 
46 can be transformed to conventional Poisson's 
equation, the solution of which yields 1Ψ

r
 and 2Ψ

r
. 

The transversal field components, tE
r

 and tH
r

 can 
therefore be obtained from the corresponding 
equations in 53. 
 
 
 

4. ELECTROMAGNETIC FIELDS OF 
LOCALIZED CURRENT SOURCES 

 
Consider a uniaxial chiral omega media with 
constitutive relations given by 1 and 2 in the 
presence of constant localized current sources 
(Figure 1); 
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In order to obtain the EM fields, the functions 
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Figure 1. A localized current source at origin in a uniaxial 
chiral omega medium. 



254 - Vol. 16, No. 3, September 2003 IJE Transactions A: Basics 

and 39 through 42 and denoting operators 1L  and 

2L  as follows; 
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and 
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After laborious manipulations one can finally find 

1f  and 2f  as: 
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Where 
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Then the longitudinal field components can be 
found from the following expressions 
 

2211z21z fXfXH,ffE ′+′=+=  (63) 
 
In a similar manner the field components tE

r
 and tH

r
 

require the evaluation of 1Ψ
r

 and 2Ψ
r

, functions. 
Using the source Expressions 56 and 57 together 
with Expressions 45 and 46 in Equations 54 and 55 
and denoting the vector operators  

1L′
r

 and 2L′
r

 as: 
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Which finally yields 1Ψ

r
 and 2Ψ

r
 as: 
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Then the field components tE

r
 and tH

r
 can be 

obtained from 53 and the total E
r

 and H
r

 fields are 
expressed as 
 

ẑHHH,ẑEEE ztzt +=+=
rrrr

 (68) 
 
 
 

5. SPECIAL CASES 
 
5.1 Medium With k = 0   In this case, omega 
particles do not exist and the medium has only 
chiral helices with chiralities in the x̂  and ŷ  
directions. Such a medium can be called anisotropic 
transverse chiral medium. In view of preceding 
sections with regard to k = 0, we have two types of 
sources: 

1. Electric and magnetic charges: In the presence 
of only electric and magnetic charges, 
potential functions mΦ  and eΦ  do not 
depend on omega parameter k. Thus, all 
equations and presented solutions in Section 2 
corresponding to potential functions mΦ  and 
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eΦ  and E
r

 and H
r

 fields are valid in this 
case. Although it is observed that omega 
parameter, k has not any effect on 
electromagnetic fields in the presence of 
electric and magnetic charges, but there exists 
cross coupling between electric and magnetic 
fields via the chirality parameter tk . 

2. J and Jm as sources: Setting k = 0, in the 
equations of Sections 3, 4 involving current 
sources, the equations and solutions for E

r
 and 

H
r

 fields can be obtained. In spite of 
suppression of magneto-electric cross 
coupling effects due to the absence of omega 
particles ( k = 0 ), it is observed that the 
existing cross coupling between electric and 
magnetic fields through the chirality parameter 
of the medium, tk , remains unchanged. 

     To verify the analysis, consider the special case, 
0k t =  and 0k = , in which the medium will 

transform into a conventional isotropic dielectric 
medium with 1nt =ε=ε  and 1nt =µ=µ . 
     With regard to Equations 23 through 28 and 14-
15, one can obtain the potentials eΦ  and mΦ  
from (8) as 
 

r4
q

0

e
e επ

=Φ            and          
r4

q
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m
m µπ

=Φ  

 
with: 
 

222 zyxr ++=  
 
with regard to the distance variable, r , the above 
potentials, eΦ  and mΦ , are completely in agreement 
with the well-known static electric and magnetic 
potential solutions for ordinary isotropic dielectric 
medium. 
 
5. 2 Medium with kt = 0   In this case the chiral 
helices do not exist ( 0k t = ) and the medium has 
only omega particles which affect in x̂  and ŷ  
directions. Such a medium can be called anisotropic 
transverse omega medium. By considering the 

previous sections, and with 0k t = , it is concluded 
that in a medium with 0k t =  and in the presence 
of only electric and magnetic charges ( eρ  and 

mρ  or eQ  and mQ ), the potential function eΦ  
or )( mΦ depends only on the electric charges and 
variable 2r′  (or only on the magnetic charges and 
variable 1r′  ). Where, 2r ′  and 1r′  are completely 
different. This difference between 2r ′  and 1r′  is 
due to the fact that 2r′  depends only on the medium 
permittivity tensor ε  and space coordinates, while 

1r′  is related only to the medium permeability 
tensor µ  and space coordinates. On the other 
hand, according to the anisotropy present in terms 
ε  and µ , one can see that similar to section 2, in 
the presence of electric and magnetic point charges, 

eΦ  and mΦ  potentials, and consequently E
r

 

and H
r

 fields do not have any spherical 
symmetry. Furthermore for 0k t = , potentials 

eΦ  (and the corresponding E
r

 field) and mΦ  

(and the corresponding H
r

 field) depend on 
electric charges and magnetic charges. 
Consequently there is not any coupling between 
electric and magnetic fields in this case. This is 
in contrast to the similar problem in previous 
case (k = 0), where cross coupling exists 
between electric and magnetic fields through 
chirality parameter, tk . 

 
kt = 0, with only Current Sources Present (J 
and Jm)   Similarly; either of the fields E

r
 or H

r
 

depend on both electric and magnetic current 
sources. This magneto-electric coupling occurs due 
to omega parameter k of the medium through the 
current sources. In comparison to the similar 
problem in k = 0 case (5.1, part b), in the 0k t =  

case, the E
v

 field depends on a single distance 
variable 2r′ , while H

r
 depends on the distance 

variable 1r′  which is completely different from the 
similar problem in 0k =  case, in which due to the 

chirality parameter tk  either of the fields E
r

 and 
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H
r

 relates to both distance variables 1r′  and 2r′  
simultaneously. 
     As an example, we determine eΦ  and mΦ  in a 
special case. By setting 0k t =  and 0q m =  in 
Equations 23 and 24 and with regard to 25 through 
28, 14-15 and 8, one can obtain the potentials eΦ  
and mΦ , as 
 

ent0

e
e r4

q
εεεπ

=Φ  , 0=Φm  (69) 

With: 
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n
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As a numerical example, 1k,2,0k tt ==ε= , 

1tn =µ=µ  and C01.0q e µ= , with regard to 69, 

the equipotential contours for eΦ  and mΦ  in yoz 
plane are obtained to be elliptic, as is shown in 
Figure 2. A further investigation reveals, that with 
increasing the chirality parameter, tk , of the 

 
 

Figure 2. Equipotential contours for Cqe µ01.0=  in yoz plane for the special case: 1,2,3,0 ==== kk ntt εε , 1== tn µµ .  
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medium, the magnitude of both electric and 
magnetic potentials eΦ  and mΦ  will increase. An 
adequate treatment for these special cases is 
intended for a future article. 
 
 
 

6. CONCLUSION 
 
The electromagnetic fields due to both static 
electric and magnetic charges and current sources 
in an unbounded uniaxial chiral omega medium 
were studied and the special cases of the medium 
with 0k =  or 0k t =  was briefly pointed out in 
this work. Two scalar electric and magnetic 
potentials eΦ  and mΦ  as a linear combination 
of two different scalar functions 1Φ  and 2Φ  
were introduced. The difference between 1Φ  and 

2Φ  is due to anisotropic feature of the 
permittivity ε  and permeability µ  and the 
chirality parameter, tk . These parameters appear 
in the distance variables 1r′  and 2r′  (26 and 28) via 

1α  and 2α  in 11. This is in contrast to the general 
isotropic media, in which, these potentials involve 
only a single function proportional to (1/r), where 
r  is the distance between the point charge and the 
observation point [3]. Therefore the fields E

r
 and 

H
r

 associated with point charges do not have 
spherical symmetry in anisotropic media. With this 
respect the magneto-electric cross coupling 
parameter of omega particles of the k medium; has 
not any effect on the functions 1Φ  and 2Φ  in 
Equations 23 and 24. According to 11, the terms 

1α and )( 2α  which exist in variables 1r′  and 
)r( 2′  do not depend on the omega parameter k. In 

the case of current sources, it is observed from 62 
that 1g  and 2g  are different. The differences 
between 1g  and 2g  are due to the terms 1r′  and 

2r′  as before and the terms 1m′  and 2m′  in 50. 
Therefore according to 60, 61, 66 and 67, the 
functions 1f  and 2f  which depend on the 

functions 1g and 2g , are different, as well as 1Ψ
r

 

and 2Ψ
r

. Hence, because of anisotropy of permittivity, 

permeability, and chirality parameters ( µε,  and 

tk ); the physical behavior of E
r

 and H
r

 fields 
are properly different from that of a similar 
problem but with general isotropic media [4]. 
Furthermore, it is evident from 26, 28, 50 and 62, 
that the magneto-electric cross coupling parameter 
of omega particle k, cannot contribute to the 
functions 1g  and 2g  via the terms 121 m,r,r ′′′  
and 2m′ . Only omega parameter k, contributes to 

the fields E
r

 and H
r

 through 2121 ,,, β′β′ββ  and 
operators 121 L,L,L ′  and 2L′  in corresponding 
relations in Sections 3, 4. Therefore this is another 
significant property of such a medium, which is 
fundamentally related to identical contributions of 
parameter k on fields E

r
 and H

r
 in constitutive 

Relations 1 and 2. For the special case (5. 1, part 
(a)) where k = 0, it can be seen that in the presence 
of electric and magnetic charges ( eρ , mρ  or 

eQ , mQ ), all solutions for potentials me ΦΦ ,  

and the fields E
r

 and H
r

given in section (2), are 
valid. With the existence of only current sources, 
some terms involving current sources given in 
Sections 3, 4, such as 2121 ,,, β′β′ββ  and operators 

121 L,L,L ′  and 2L′ have been changed for k = 0 

and  other terms related to E
r

 and H
r

 such as 1r′  
and 2r′  and the terms 2121 X,X,m,m ′′′′ , 1α  and 

2α  remain unchanged. For this case, cross 
coupling between electric and magnetic fields 
occur due to the chirality parameter tk . For 

0k t = , in the presence of electric and magnetic 
charges, potentials )( me ΦΦ  and related fields; 

)H(E
rr

 depend only on the electric charges and 
distance variable 2r′  (magnetic charges and 
distance variable 1r′  ).Where )r(r 12 ′′  is different, 
with the dependencies of 2r ′  to permittivity tensor 
ε  and 1r′  to permeability tensor µ . In this case, 

potential eΦ  and the corresponding E
r

 field 
depend on electric charges but potential mΦ  

and the corresponding H
r

 field depends on 
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magnetic charges. Therefore there is not any 
cross coupling between electric and magnetic 
fields. 
     For a medium with 0k t = , in the presence of 

only current sources ( eJ
r

 and mJ
r

), either field, 

E
r

 or H
r

 depends on both electric and magnetic 

current sources eJ
r

 and mJ
r

. This magneto-
electric coupling occurs due to omega parameter k 
of the medium via current sources. Furthermore for 
all kinds of sources with 0k t = , E

r
 depends on a 

single distance variable 2r′ , while H
r

 depends on a 
single distance variable 1r′ , which is completely 
different from the similar problem in the case k = 
0, in which case due to chirality parameter tk , 

either of fields, E
r

 or H
r

 is related to both 
distance variables 1r′  and 2r′  simultaneously. 
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