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Abstract In this work, Boltzmann transform has been used to analyze the problem of freezing of
pure Aluminum in semi-infinite domain. The uniqueness of solution (solidification front location) has
been proved using the characteristics of the functions appeared in solution. The effect of density
change on temperature distribution and errors resulting from ignoring this change have been
investigated. The solidification problem in finite media was solved using the boundary element
method (BEM), with quadratic shape functions. The applicability of the fundamental solution, as
weighting function in BEM, in finite domain has been investigated. The accuracy of the method is
illustrated through one-dimensional numerical examples. Some careful experiments were carried out,
using the facilities of the School of Metallurgy and Materias at the University of Birmingham, UK, to
obtain the data. Comparison of theoretical, numerical and experimental results revealed that good
agreement exists between them. However, minor differences were observed due to imposing of the
simplifying boundary conditions. The effects of density change may be ignored in small volumes, but
they must be taken into account in real applications.
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1. INTRODUCTION

Phase change problems in solidification processing
originated about 110 years ago when J. Stefan
formulated the problem of finding the temperature
distribution and solidification front history of a
freezing water slab. Over the last century,
particularly in the last 30 years, the problem
bearing his name has been extended to include
such complex phenomena as the solidification of
aloy systems, supercooling.

Andytica or semi-anaytical solutions are available

IJE Transactions B: Applications

only for very smple cases such as one-dimensiond
semi-infinite geometry with uniform initial
temperature and constant imposed boundary
temperature and constant thermophysical
properties in each phase [1,2]. Such simplified
conditions are not of much practical interest.
However, these solutions form the backbone of all
phase change models and serve as the only means
of validating approximate and numerical solutions
of complex problems. The literature on general
nonlinear heat conduction is vast (a monograph on
this problem [3] cites over 900 references). An
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exhaustive description of nonlinear boundary value
problems can be found in sandard monographs [4-7].
Numerical solution of moving boundary problems
has been of interest during last three decades. The
last those include: Finite Difference Method (FDM),
Finite Element Method (FEM) and Boundary Element
Method (BEM). A generd review of different methods
used in simulation of phase change problems can
be found in [8-10].

The present paper is concerned with one-
dimensional phase transition problems, with
particular emphasis on the solidification of castings.
The method uses the boundary integral equation to
solve the problem.

The governing partial differential equations are
reviewed and Boltzmann transform is used to solve
the phase change problem in semi-infinte media.
The uniqueness of the solution is proved and the
effects of dendty change on temperature distribution
are investigated in the first part of the paper. In the
second part, the boundary integral eguations are
solved numericdly with quadratic time interpolation
functions and the appearing integrals in the
formulation are evaluated. Next, experimental
procedure to obtain data is described. Finally,
numerical and experimental results are presented
and discussed.

2. PROBLEM STATEMENT AND
ANALYTICAL SOLUTION

We consider a semi-infinite, one-dimensional
medium, 0<x <o, which is assumed to be
occupied originally by a liquid metal of uniform
temperature T, = T,,, where T, denotes the melting

temperature. By imposing a constant temperature
T, < T,, on the face x=0, solidification starts and
progresses to the right. Our goal isto determine the
temperature profile and solidification front location.
The constancy of density, one of the basic
assumptions made in the classical Stefan problem,
is not reasonable in many cases. Frozen phase
density p; and unfrozen phase p, are assumed to

be constants but p; #p, . Usuadly, p; > p,,, sothe

volume contracts upon solidification. In order to
have explicit solution to the problem, it is
supposed that the contraction is accompanied by
bulk movement of the existing (semi-infinite)

184 - Vol. 16, No. 2, July 2003

phase. The governing equations for the frozen and
unfrozen phases are [2]

9T, (x,t) 9T (x,
f afx(zx b_ fa(tx Y oex<x().t>0 (1)
02T, (x,t) _ AT, (x,t) AT, (x,t)
ol a0y, &
Vi () =<1—g—f)>'<<t) 3

where a is therma diffusivity and k is thermal
conductivity, and L is the latent heat of fusion.
V,(t) denotes the speed of motion of unfrozen

phase, which relates the freezing front velocity to
the density ratio. It can be derived using the
conservation of the mass between two arbitrary
points in the frozen phase and unfrozen phase. The
continuity of temperature and the energy balance
on the interface must be satisfied. The latter is
caled Stefan's condition [2]. Using the Boltzmann's

transformation [4], (similarity variable { = % ,

t
one can reduce the above PDESs into ODES, which
are much simpler. Solving the ODES, we get

4 w?
Ti (1) = AlIo exp(- K)dw +A, (4)
f
T,(x,t) = J’Asexp( a B)\V\V/S'_UA))dW
+A,
©)

where

P go f _ X<t)

The integration constants are found to be

—Im=To a7
1/110(f erf (A)

T expl—(BAL-A))2]

Jna erfc(B)\ )
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T,
A, =T, -——" T efdBAA -1

4 in erfc (B)\ A) C[B ( )]

Stefan condition leads to a transcendental equation
for the parameter A

Stf _ Stu
A et () BAACPM erfe(@AA)

=Jm (6)

Cou(Tin ~Trm)

Cot (T T,
pf(m O)andStu= pu

where Sty =
denote the Stefan number of frozen phase and
unfrozen phase, respectively. It is the ratio of
sensible heat to the latent heat. Error function
erf () and complementary error function erfc ()
are defined as follows [11]

_ 2 X w? a1
erf(x)—ﬁfoe dw and erfc(x) =1-erf(x)

erf (x) is increasing function while erfc(x) is
decreasing one. Furthermore, erf(0)=0 and

erf(x) - 1 as X - o . The Neumann’s solution of

the Stefan problem is obtained for conditions
where the densities arethe same, A =1, [2].

The existence theorem guarantees the solution
for this problem [11,12] and the uniqueness of the
solution may be proved in the following way: Let
f(x)= exp(xz)erf (X) denote the denominator of

thefirst term in Equation 6

df 1 (x)

=(1+ 2X2)exp(x2)erf(x)+%>o

forall x>0.

So, f;(x) isstrictly increasing function, but the

function Fl(x)zfi IS decreasing one. The

1
denominator of the second term in left-hand side of
Equation 6 is the product of two functions, namely,

the decreasing function f,(x) = exp(x 2)erfc(x) and
increasing function f5(x)=xf,(x) for x>0.

Their monotonicity properties may be proved as
follows:
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let

2
g(x) = exp(-x )df 209 _ oyerfx) - 22PEX0)
Jr
g(0)=ﬁ<o and g(x) - 0as x — o
490 =2erfc(x) >0 for x>0
dx
Itisseenthat g(x) <0, whence
H209 =g(x)exp(x*)<0 for x>0.
dx
Similarly, let
() = exp(x?) S22
_v2
=(1+ 2X2)erfc(x)—2XL(X)

N

h(0)=1>0 and h(x) — 0 as X — o

we conclude that h(x) > 0. Thus,

df 5 (x)

=h(x) exp(x?)>0 for x>0.
dx

O f5(x) is increasing function and its inverse

F>(x) :f
3

Denoting the left- hand side of Equation 6 by
f(A), it can be written as f(A) =M/, The limits
of the f(A) are:

1 . .
is decreasing one.
X

f(\) > asA -0
f(\) - -® as A - oo

which means that, for St; >0, St, =20 and >0,

the equation f(A) =AJ/Tt has at least one positive

root. i.e. the solution is unique.
Using Maclaurin series for the exponential and
error function in Equation 6, one may obtain

_1 Stu Stu 2
—E[B)\_A"'\/ZStf +(B)\\/¥[) ] (1

A 2-region

Vol. 16, No. 2, July 2003 - 185



TABLE 1. Properties of Aluminum Used in Simulation.

T(°C) p(Kg/ m?) K (W /m°C)
20 2699 247
100 2679 245
300 2645 245
500 2599 234
600 2586 232
635 2579 210
660 2561 90
700 2390 110

when T, =T,,, or when the specific heat is
considerably smaller than thelatent heat, (St,, =0),
we get

St
A 1-region = 7f (8)

Thus, A 1_region™ A 2-region- This of course is

expected, since it says that the presence of initia
superheating in the unfrozen phase will slow down
the solidification process. Because some heat must
be removed from the liquid phase to bring
unfrozen phase to melting point (T,,) before it can

solidify. For materials having extremely small
latent heat, (L =0), the Equation 6 reduces to

Cpf (T =To) _ Cpu (Tin =Tm)

(9)

Maf()  BrAeP erfe(BAA)

When the initial temperature is equal to melting
temperature (T, =T,,), we have 1-region Stefan
problem, and Neumman's solution is obtained for
the classical 1-region Stefan problem [2]. Stefan’s
condition gives

St; = AJTexp(\2)erf (A) (10)

If the Stefan number is small, one may get

Tr (X, 1) = To +(Tp, —To)% (12)
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which means that the temperature profile at each
time is a straight line joining the point
(x=0T=T,) to (x=X({),T=T,). The
Neumann’s solution satisfies the diffusion
equation and Equation 11 satisfies the steady-
state heat equation. It is an approximate solution
to 1-phase solidification problem, valid for small
Stefan numbers and it is called the quasi-
stationary approximation [14]. The quasi-
stationary front overestimates the actual front.
This overestimation may lead to incorrect results.
Equation 6 was solved numerically using
Newton-Raphson method, to inspect the
dependence of A on the density ratio A, for some
values of St;,St,,B and for a range of A. In
practical applications, usually St;,St,,p vary
between 0.1 and 2, and A changes at most by
30%. For these combinations, A varies linearly
with A, having small slope, typically +3. 5%,
(relativeto A=1 case) when A changes by +30%.
For most materials, including pure Aluminum, A
changes by +10%, (Table 1), in most cases one
expects 1% variation in A. Therefore, any
quantity proportional toA is affected very little by
the change of density.

The effects of density change may beignoredin
small volumes, but they must be taken into account
in practical applications. The temperature profilein
the unfrozen phase is changed considerably with
respect to the A =1 case, since it includes the effect
of displacement (Equation 5).

The change of density can be related to
shrinkage in castings, which leads to the
formation of a void at the heat transfer surface.
This void may be assumed to act as a thermal
resistance layer, having thermal conductivity, k,,,

which is much smaller than the thermal
conductivity of the frozen phase, k;. Hence, a

reduction in freezing rate results because of the
presence of the void [15-16].

3. BOUNDARY INTEGRAL EQUATION AND
NUMERICAL IMPLEMENTATION

Severa investigators [17-20] have obtained the

boundary integrd equation corresponding to moving
boundary problems. The discretized form of the
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these equations may be written as follows

To(t) - T, c -
% = -0 JZlItj]_le (01t5101t0)q0i l'IJidtO +
o Jzo !, G Ot X to) to)aix Wik (12)

S
0= Oy Z.[t-l_le (X(ts)lts;X(to)!to)QXinidto

+O(fZIJ

3G,

(X(ts) 150, 85)(To (to) = Tm) Wiclto

(13)

where s denotes the number of time steps. The
function G(rg,ts;ry,t,) IS the fundamenta solution

(Green's function) to the heat equation given by
[16,20]:

(1)
Pt -t)

G(rs, tsi o, to) =
\/{ 4T[a(ts - 1:o)}

where n denotes the number of dimensions of
space. G(Ig,tg;1,,t,) represents the temperature at
position r, (observation point or field point) at
time t, due to an instantaneous point source of
unit strength located at rg (source point) releasing
its energy spontaneoudly at time (t, =tg)[20]. It
should be mentioned that although the fundamental
solution has been obtained for an infinite domain,
it can be used for a finite domain provided that it
takes the same values on the boundary of domain
as they took in the infinite domain on the fictitious
boundary of the actual domain. Thus reproducing
on the finite domain the solution of the infinite
oT(0,t,) are
0X,

assumed to vary within each time step according to
aquadratic time interpolation function ¥ ,

domain. The unknowns T,(t,) and
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TABLE 2. Values of Interpolation Function at Different
Time Stations.

* * *

t =0 t =05 t =1
W, 1 0 0
W, 0 1 0
W, 0 0 1
W=at )2 +bt +c (14a)

* t -
wheet =2 7
tj—tq

istime gation. Theinterpolation

function satisfies the conditions, LIJit’Jf =9;; where

8 is the Kronocker deltaand t; =0, t; =% and

ty =1, (Table2).
After computing the coefficients in the above
equation, we obtain

W o=1-3t +2t2, W, =4t —4t2
Qo () =0qo ¥ , To(t) =Ty¥,

1qJ3 = 2t*2_

(14b)

where q,; and T (i=1,2,3) are the values of heat
flux and temperature at time stations t, =t;,
to =tj1/2 and t, =t;, respectively.

The diagram of these interpolation functions is
depicted in Figure 1. Theintegrals appearing in the
boundary integral equations are of the following
type:

t.
Iy = aJ" G(0,t4;0,t o)W dt,
tj—l

. i 0G(0,t4:0,t,)
2 J;j—l 0Xq

t.
Iy = qﬁ_’ 1G(X(ts), t;0,t,)W;dt,
i

Wdt,

. =a J aG(X(ts)!ts;C)’to)q_,_dt
4 Itj—l aXO 1o
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Interpolation Function

_0.2 L L L |
0 0.2 0.4 0.6 0.8 1

Dimensionless Time (t*)

Figure 1. Quadratic time interpolation function used in
simulation.

t.
Iy :aﬁ_' GX(ts). tsi X(to). to) Wit
N

| —a £ aG(X(ts)utslx(tO)'tO)wdt
6i .rtj—l 0X o o

(14c)

Analytical expressionsfor the integrals within each
time step for interpolation functions W = \/E and
W =t, have been given in [21,22]. Using shape
functions in Equation 14b, one can analyticaly
calculate the integrals appeared in Equation 14c,
(see the appendix).

Choosing different locations for source point
X(tg)and field point X(t,), the following integrals
can be written for the coefficients of t and g in
exchtimestep At; =t; —t;,

Hij — C(J.tj aG(X(tS),tS;X(tO)’tO)Widto
tj-1 0X o

. Li
Mi = qJ:_‘ GX(ts). ts1 X (to). to) Wit
-

The application of the above equations to all
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boundary nodes gives

AT + ATy + AT = BIQ; +B°Qpy, +BQ
(15)

where A" isequal to H}term of time step At; plus
H?_l term of time step At A® is equal to
H® term of time stepAt; and H},, term of
time step At;,;. The same approach is used

for the coefficients B! and B3(The influence
of the common nodes must be taken into
account).

After imposing boundary conditions, the
resulting equations are arranged such that all
the unknowns (that is, heat flux and the
velocity of the solidification front) are on the
left-hand side of the new matrix equation and
the knowns are expressed on the right-hand
side.

{K}[u] ={f} (16)

The above set of equations is solved at each time
step. The location of freezing front is unknown.
Quasi-stationary approximation was used to find
the location of freezing front in primary stages of
BEM solution. So, dl the unknowns are determined
up to the time t; ;and it is desired to find the

solution at time t;. Starting with a guess for the
velocity of freezing front at time t=t;, we may

calculate the position of the moving boundary from
following equation

X(to) = X (tjog) + V() (to ~ tj-) (17)

in which t; =05(t;; +t;) and solve the system

of integral equations. If the estimated position of
solidification front were correct, the computed
values of velocity and temperature gradient would
satisfy the Stefan condition. However, this may not
be the case. So, the velocity is to be adjusted using
the following expression:

dX(t;) 1 dX(tj1) k dT
p _E[ o +(p_L&)tj] (18)
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Figure 2. Schematic diagram of construction of thermocouple.

Temperature (C)

N
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e Hurnerical {C.E.)

0 50 100 150 200 250
Time (Sec)

Figure 3. Temperature vs. time (constant shape function).

and the new position of X(t) can be determined.

The iteration may be continued until a prescribed
condition is satisfied, that is,

M <g (19)
VCOFI’
dX (t;) dX(t ;)
where  V,, = dtJ .V :—dtj

€ denote the corrected velocity, predicted velocity
of solidification front and specified tolerance,
respectively.
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4. EXPERIMENTAL WORK

Experiments were carried out, using the facilities
of the School of Metalurgy and Materials of the
University of Birmingham, UK. to obtain results
which would be compared with the solutions of
BEM. The overal geometry of the casting, was a
circular bar with adiameter of 25 mm and 100-mm
length. The casting was located horizontally to
minimize convection currents. The surface and the
back face of the pipe were insulated with fiberfrax
blanket insulating material and front face was
exposed to ambient temperature to create
unidirectional solidification. The mould was made
from AFS 60 grade washed and dried silica sand,
bonded with 1.2 mass % Phenolic Urethane resin
(Ashland Pepset). Thisis a widely used moulding
material and it was therefore to be hoped that good
material properties would be available. Aluminum
with purity of 99.9% was used as liquid metal.
This metal has high thermal conductivity, high
latent heat of fusion and single-point transition
temperature. Rolls Royce kindly provided materials
data for mould and casting. Materials data used in
the simulation are shown in Table 2. The density of

sand was 1520 (kg/m?).
The charge metal 1.5-kg was poured at

approximately 670°Cinto pouring basin. The
filling time was close to 2.5 seconds. The ambient

temperature was 20°C. The mould was heated up

to 670°Cin an electric furnace to create boundary
condition used in simulation.

Thermal analysis was carried out using K-type
thermocouples, a nickd-chromiumynickel aluminium
conductor combination. The thermocouples (Figure
1) consisted of a pair of solid wires (a), which were
each double glass fibre lapped (b) and then glass
fibre braided and silicone varnished (c). The pair
was then laid flat and glass fibre braided overall
and impregnated with silicone varnish (d).

Thermocouples were located along the centerline
of the casting at different distances from one
another. The diameter of thermocouple wire was
0.3 mm and crossing the wire and spot welding
created the junction. The excess wire was trimmed
off. The wire (with the exception of approximately
1 mm distance from the junction tip) was insul ated
with white paint (TiO2- containing emulsion paint
and subsequently fired to burn off volatiles) to
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Figure 4. Temperature vs. time (linear shape function).
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Figure 5. Temperature vs. time (Quadratic shape function).

200

prevent the possibility of a short circuit by the
liquid metal. An effective internal calibration of the
thermocouples was performed teking advantage of
the fact that pure Aluminum was being frozen, thus

defining a temperature close to 659.0°C, Thus
thermocoupl e readings were adjusted to read about

659.0°C , during the early part of the plateau region
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of the cooling curve. Data were logged into a
computer at rates selected from 10, 20, 50, 100,
200 and 250 dgnds per second for different
experiments. Different boundary conditions were
created during the experiment. In one experiment
the front face was maintained a congtant temperature
by the application of ajet of compressed air to the
back mould. In another experiment ensuring that
the back of the mould was in relatively still air
used convection boundary condition.

5. RESULTSAND DISCUSSION

The example considered is a cylindrical pipe with
25 mm in diameter and 100 mm in length, which is
initially filled with liquid metal (Aluminum with
purity of 99.9%) at the freezing temperature

(T, = Ty, =659°C). Thesurfaceis cooled suddenly
to the ambient temperature T, . Solidification starts

and inwards, the measured and calculated cooling
curves at different position of thermocouples are
presented in Figures 2-4, for the cases of constant,
linear and quadratic elements used in interpolation
functions, respectively.

In the first stages of calculations, the time step
was chosen At=0.001 seconds, but it was
changed to 0.02 seconds and then to 0.05 seconds
at later time steps. Results show that, there exists
less restriction on time step size. The number of
elements used in simulation was variable between
40 and 100 elements. The CPU time for calculating
the values of temperature has been reduced by 16%
and 22.5% in the case of linear and quadratic
elements in comparison with CPU time of constant
elements, respectively.

The calculated values of temperature using the
BEM and the measured values differ by 3 to 7
percent in linear elements and quadratic elements,
respectively. This is due to the use of quasi-
stationary method in the first stage of calculations,
which assumes that during a time step, the
movement of solidification front is small relative
to heat conduction. The difference becomes less
and lessin later time steps.

The change of density, yields voids formation
near the heat transfer surface, between cast and
mould, which reduces the rate of heat transfer
considerably. The cooling time may increases up to

IJE Transactions B: Applications
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Figure 6. Interface location vs. time.
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Figure 7. Veocity of freezing front vs. time.

57% of that in case of neglecting this change. The
BEM results, for location of interface, are
compared with the analytical solution for semi-
infinite medium [2] and experimental ones, Figure
6. The agreement between thermal anaysis and
calculated values from the solution of boundary
integral equation appears to be reasonable although
some differences may be noted. These differences
may be associated to inaccuracies in materials data,

IJE Transactions B: Applications

heat transfer parameters, poor calibration of
thermocouples and different sensitive of
thermocouples.

Cooling curves and derivative first curves can
be used to identify the end of solidification
process. The distance between thermocouples is
known, one may read the elapsed time from time
axis, to calculate the velocity of freezing front. A
rapid drop in temperature was recorded at points
very near to the mould surface (implying that rate
of solidification is initially high and becomes
smaller at large times). As distance from the mould
surface increases, temperature gradient decrease,
asshownin Figure 7.

6. CONCLUSION

BEM seems to be a useful general method for the
analysis of moving boundary value problems.
Mesh adjustment in this method is easier than other
numerical methods. There is less restriction on
time step size compared to other methods. Good
agreement for temperature fields during solidification
of pure commercial Aluminum is achieved.

7. APPENDI X
--1)
({(Jt -, -\t —tjl)(
4t - 2ts—tj_1_ —
o) 1)~ 5(At) S5t -t —gt-tL

1]a 3t 1 _a 3 4( —1)
A I

a

|, =4 |—

12 \fn{(
2t -2t to—t,

t
to—t —fte -t )= E
\/S ] \/S ]l)( (Atj) At )

i
. §/ts -t —\/ts -t
5(At;)?

}

Vol. 16, No. 2, July 2003 - 191



A0t - 2(t, - t,)

e (T T Jg(Atj)z )}

. =\/§{(\/ts—tj —\/ts—tjl)(%‘

2t§+z;tj;24t5trl) 5(At)? Gt gt

1,20 =123

=2+ %)(§+(zttjj‘;z)

'%‘“iiﬂ (m'_)l )_(m) )(tzx+t§;3 o7
x3 2,4

+Kgf 120070 & (MS”

B Zi/(?[ + ?zijl (Zi_)lz)

T )

X{Z (';)n[(u ) ()]

_GOGZXT:(A'[,-) iy )"

+{Jﬁ(zt )2 tsé): 12>(<):(2)

- = 9" = -
24aJ?[(At (At )2)} {Z, [(u)"2 - () 2]
X2 X 2
where U, = ———— U =——————
4a(ts_tj) 40((ts—tj_l)
and X = X(t,)

192 - Voal. 16, No. 2, July 2003

=+

{—=

—(t
+{(Atj)2\/_( s

» ={2X

2

(at,)?
(1)
Jrés (2n+Dn

2

X5

2t
_(i+ !
A'[]-

(12X +

3
+X_)

@)’ )2t X

.,  tX?® L X
30 6002

)}

1

—2_(u,) 2(m4f71

30\/?[0( (At)?

2X

(ﬁ_(m

x{z(-i!)”

()’

odm (@)

x{;

2 (At)

2

1

{20( D))" )

3 5
TSN S
600 2

2t X x3

’1x

(At))?

NN
Kmf7—wmf7n

X2
4a(ts _tj—l)

1

x{i .

Jn& (2n+1)n!
—{(

4,

(tX +

+
2 oAt 2
-1
Atj)
.,  EX® XS

S+
30 600’

)}

O ™ )

1 tX

)t X

(At))?

X

Jmat)?

S W) () )
n!

2t7, L

1

At

2Jm 12af

j-1
At )

3
(t2X +—t;>; +

x5
6002

)}

1

IJE Transactions B: Applications



X? X?
where Uj=—-—F, U =— —
4a(t, -t,) da(ts—t,,)

and X = X(t,)

2

t. 2t
41:{1(1+L1+ L )~
27 At (At)?

J

(T Ryl X, Lo X
At (At)*7°2 4a (At)2 120(2(Atj)2 a(At;)?

2 & (D°
x{_—_
{\/?[nZ;(Znﬂ)nl
4 t2x* x4
24, )20(3\/_ 12J?ra (At;)?
X (8, My
4uﬁ%At (m)

X{ Z)(_r? ()" 2 =(u) 2]y

}

)" 2= (u,) 2]}

X)) cr wd e
TN (n_ ()" 2 =(uy)" 2]
X2 X2
where U, =———, U ; =—
4a(t -t;) 4a(t, -t,,)

and X =X(t,)

_ i hd (—1)" n+% B n+%
e =S ol () )

_ 8t _t _
{(E @)’ )(— —)

2, 2t 2l
At (At)? (At)?

I

L2AX X
aAt? 6o’ (At))?

J

}

x4 o0 (_1)nr n_g ) n—g
+12\/EO(2(At )Z{nzo nl [(u;) (Ui.) 21}
2t2X?

{af(At)

IJE Transactions B: Applications

2x* X? 1

- Jl)}
a’m(At,)? 0(\/_ At (At)
© (=])" n—f n—f
x{n;( D) - )"
X 2 X2
where U =———, U =———
4a(t, —t;) da(t,—t,)
and X =X(t,)
ot th, a4t
43_{2At (At,)? (E (At))
(___) t2 X4 Ot X? )
20 4a’  (At)? 120(2(Atj)2 20 (At )?
2 & (D S ™2
fn;(zm) 1) =) 7 +
‘ ot X?
1202 n(At.)2 0((At-)2
X (LT

" gaym Ot (At )2

<35 ()" () ")
X* D", 2 n_g
T (5 S ) =)
X? X?
where U =————, U =————
da(t, -t;) da(t, -t,)
and X =X(t,)

4,
At (At)?

7)

3t 2t? 2 2
_g(1+ -1 Iy, 2a (40(ts _tg _12a
\% At (A2 (at)? T vEi v Ve

J

)}

IR A B
{\/ﬁn_ 2n+Dn ,[( ) (u) 21
3x® = (- 1) : ne?
(At) vsf{ [(u; ) —(u) 21}

Vol. 16, No. 2, July 2003 - 193



402 ( 3 4tj—1)
V3 At (At;)?
4 2a (240(2 oat

(At v

S)}

n+% n+%
j - (uj—l) 1}

=] (_1)n
n!

2

2 2
Where u = (ts _tj)v _ (ts_tj—l)v
i~ v YT -
4a 4a
— ot
V=V, t =

802 dat,, 1 2tj—1
= - —+
> {(v3 vV AL (Atj)z)
ﬂ(t]_l th, -4 4ats_§_12a2)}
VAL (At)? \VARRVA
PR )
Jn& (2n+Dn!
64a°®
(Ati)zv%/?r
16a 2t 40
{3 (— )=
J?r (At)?" (at)*n
1

D (U R TR
L on

(AtA)Z(V3

2 {(u) 2 - (uy) 2]}

{ Z (_:!) ()" ~(u) 2]}

240?% 6at

VERRRvER

(

(ts_tj)V2 _(ts_tj—l)v2

where U, =———, U, =
4a 4a

t,+t,_

V=V(t),t =

2t.1
(At )?
(4ats_§_120(2
VAR VARRR VA

)

V At

2
o, t i 20

_v((Atj)z ?) (Ot,)?

)}

194 - Vol. 16, No. 2, July 2003

1

2 & (=D Y 5
x T2 @n+Dn ,[( u) z-(u _1) ]}
64a° D", e
u u_,) ?
(At)VS\/_nZ () —(uL) 21}
40?1 Ay, 20 24a® 6ot
{V3JE(A_tj+(Atj)2)+(Atj)2JE( ve v )
= (D" "3
{Z " [(u)) 2-(u) 21}
(ts_tj)V2 (ts_tj—l)v2
where U, =———, U, =— —,
40 4a
—\/(t __tj+t1—1
V=V(t), t = 5
| :{i ZtStJ_l
otaa (At)?
2
= B S
27 A (At)
_a, 40(ts_t§_120(2}
VZ o (At)PVE o (At)? (At.)2V4
2 & (-1 +
D ™ ")

U @n+on

f{ s &) )"
20 ( 3 + 4tj—1 )
vaJmoat, o (At)?
4a
V \/—(30( 1}
{Z )" - ()2
(ts _tj)V2 (ts _tj—l)V2
where u =———— U, =————
. 40 . 40
V:V(t_j),aztj-'-tj—l

IJE Transactions B: Applications



— ti—l 1—1 4tst1—1
Z%ij( )](])
_2t5+ 8th_1 4(]

At (Atj)zv2 At

4 2t tZ
_mmﬂv 2a »
g2 < (D "™
{ﬁ;(Znﬂ)n,[( ) 2= 2D
. 320?

(&t,)*Vv4ym
5 )" - )"

8a

= (6-2t_+2t_VZ+At V2
ﬂmﬂ“ﬂﬁ# 2V AGVOR

~(u) 2]

S NN
(5 1w

(ts _tj)V2
where Uj :4—, uj—l =
0
- tj+tj—1
V :V(t]-), t]- :T

= 2a (2ts_£_6_o(
R (N VA I VA

+2tstj_l+ t, 1

4a

(at)? 24t 2

a 4t
V7 (At) E)}
2 & (-1
2 e
1602
(At) VANEY
o
(At)2V AT

x{ [(u)"2 —(uj_l)”*il}

{Z( W)™~

IJE Transactions B: Applications

(ts _tj—l)V2

(120 -4t  +4t, V> +At,V?)

><{Z)(—ri]l!)”

1 1
n+5 n+5
j - (Uj—1) 1}

(ts_tj)V2 (ts_tj—l)v2
where U, =———, U, =— —,
40 4a
V=V({),t = AT
- i/t 2
8. REFERENCES
1. Carslaw, H. S. and Jaeger, J. C., “Conduction of

10.

11.

12.

13.

15.

16.

Heat in Solids”, Oxford University Press, London,

(1959).

Ozisik, M. N., “Heat Conduction”, 2™. Edition, Wiley and
Sons, New Y ork, (1993).

Kozdoba, L. A, “Methods of Solving Nonlinear Hesat
Conduction Problems’, Nauka, Moscow, (1975) [in
Russian].

Bankoff, S. G., “Heat Conduction or Diffusion with Phase
Change’, In Advances in Chemica Engineering,

Academic Press, (1964).

Rubinstein, L. I., “The Stefan Problem”, Trandations
From Mathematical Monographs, American Mathematical

Society, Rhode Idland, Vol. 27, (1971).

Ockendon, J. R. and Hodgkins, W. R., “Moving Boundary
Problems in Heat Flow and Diffusion”, Oxford University
Press, Clarendon, London, (1975).

Wilson, D. G., Solomon, A. D. and Boggs, P. T., “Moving
Boundary Problems’, Academic Press, New York, (1978).

Crank, J., “Free and Moving Boundary Problems’,
Clarendon Press, Oxford, (1984).

Minkowycz, W. J. et a., “Handbook of Numerical Hesat
Transfer”, Wiley and Sons, New Y ork, (1988).

Salcudean, M. and Abdullah, Z., “On the Numerical

Modelling of Heat Transfer During Solidification
Processes’, Int. J. Num. Meth. Engng., Vol. 25, No. 2,
(1988), 445-473.

Gradshteyn, I. S. and Ryzhnik, I. M., “Tables of Integrals’,
Series and Products, 4™ Ed. Academic Press Inc., London,
(1965).

Tyn Myint U, Debnath, L., “Partial Differential Equations
for Scientists and Engineers’, 3" Edition, Elsevier, North-
Holland, (1987).

Weinberger, H., “A First Course in Partial Differential

Equation”, Blaisdell, Waltham, M assachusetts, (1965).

. Solomon, A. D., Wilson, D. G. and Alexiades, A., “The

Quasi-Stationary Approximation for the Stefan Problem
with Convective Boundary Conditions’, Int. J. of
Mathematics and Mathematical Sciences, 7, (1984), 549-
563.

Alexiades, A., “Void Formation in Solidification”, in
Differential Equations Edited by Dafermos, C.M. and et
a., Lecture Notes in Pure and Applied Mathematics,
(1989a).

Wilson, D. G. and Solomon, A. D., “A Stefan-Type

Vol. 16, No. 2, July 2003 - 195



17.

18.

19.

Problem with Void Formation and Its Explicit Solution”,
IMA J of Applied Mathematics, 37, (1986), 67-76.
Banerjee, P. K., “Boundary Element Method in
Engineering”, 2" Edition, McGraw Hill Book Co.,
(1994).

Banerjee, P. K. and Shaw, R. P., “Boundary Element
Formulation for Melting and Solidification Problems’,
Developments in Boundary Element Methods-2 (Banners,
P.K. and Shaw, RP eds.), Barking, Essex, UK, (1982), 1-
18.

O'Neill, K., “Boundary Integral Equation Solution for
Moving Boundary Phase Change Problems’, International

196 - Vol. 16, No. 2, July 2003

20.

21.

22.

Journal for Numerical Methods in Engineering, 19,
(1983), 1825-1850.

Heinlein, M et ., “A Boundary Element Method Analysis
of Temperature Fields and Stresses During Solidification”,
Acta Mechanica, 59, (1986), 59-81.

Morse, P.M. and Feshbach, H., Methods of Theoretical
Physics, McGraw Hill Book Co., New Y ork, (1953).
Khoshravan, E., Talati, F., “Numerical Simulation of
Solidification Problems by the Boundary Element
Method”, Int’| Conference of Energy, Research and
Development (ICERD 2), (8-10 April 2002),
Kuwait, 256-270

IJE Transactions B: Applications



