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Abstract   In this work, Boltzmann transform has been used to analyze the problem of freezing of 
pure Aluminum in semi-infinite domain. The uniqueness of solution (solidification front location) has 
been proved using the characteristics of the functions appeared in solution. The effect of density 
change on temperature distribution and errors resulting from ignoring this change have been 
investigated. The solidification problem in finite media was solved using the boundary element 
method (BEM), with quadratic shape functions. The applicability of the fundamental solution, as 
weighting function in BEM, in finite domain has been investigated. The accuracy of the method is 
illustrated through one-dimensional numerical examples. Some careful experiments were carried out, 
using the facilities of the School of Metallurgy and Materials at the University of Birmingham, UK, to 
obtain the data. Comparison of theoretical, numerical and experimental results revealed that good 
agreement exists between them.  However, minor differences were observed due to imposing of the 
simplifying boundary conditions. The effects of density change may be ignored in small volumes, but 
they must be taken into account in real applications. 
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   در اين مقاله از  تبديل بولتزمان براي تحليل مسئله انجماد آلومينيم خالص در يك محيط نيمه بيكران                       چكيدهچكيدهچكيدهچكيده
. ت گرديده است  استفاده شده و يكتايي جواب مسئله با استفاده از خواص توابع ظاهر شونده در حل مسئله اثبا                 

مسئله انجماد  . اثرات تغيير چگالي روي توزيع دما و خطاهاي ناشي از اغماض اين تغييرات بررسي شده است                 
. آلومينيم خالص در محيط محدود با روش اجزاء مرزي و با استفاده از توابع شكل درجه دوم حل گرديده است                   

ه معادله انتگرال مرزي تبديل شده و انتگرالهاي تلفيقي به          معادله رسانش گذرا با استفاده از تابع زمانمند گرين ب         
 .معادله موازنه انرژي را براي تخمين موقعيت جبهه انجماد بكار برده ايم                 . طور تحليلي حل گرديده اند      

قابليت استفاده از جواب اساسي به عنوان تابع         .  متفاوت در نظر گرفته شده اند        حالت مشخصات ماده در دو   
 فراواني با استفاده از امكانات فني دانشكده مواد و             ياهآزمايش. اء مرزي بررسي شده است     وزني روش اجز  

نتايج شيوه مورد   . متالورژي دانشگاه بيرمنگهام انگلستان براي جمع آوري داده هاي آناليز گرمايي انجام داديم               
از اثرات  .  قابل قبولي است   همخواني جوابها در محدوده   . استفاده با نتايج نظري و عددي مقايسه گرديده است         

توان صرفنظر كرد، ولي در كاربردهاي عملي بايستي اين تغييرات را در نظر               تغيير چگالي در احجام كوچك مي     
 .گرفت

 
 

1. INTRODUCTION 
 
Phase change problems in solidification processing 
originated about 110 years ago when J. Stefan 
formulated the problem of finding the temperature 
distribution and solidification front history of a 
freezing water slab. Over the last century, 
particularly in the last 30 years, the problem 
bearing his name has been extended to include 
such complex phenomena as the solidification of 
alloy systems, supercooling. 
     Analytical or semi-analytical solutions are available 

only for very simple cases such as one-dimensional 
semi-infinite geometry with uniform initial 
temperature and constant imposed boundary 
temperature and constant thermophysical 
properties in each phase [1,2]. Such simplified 
conditions are not of much practical interest. 
However, these solutions form the backbone of all 
phase change models and serve as the only means 
of validating approximate and numerical solutions 
of complex problems. The literature on general 
nonlinear heat conduction is vast (a monograph on 
this problem [3] cites over 900 references). An 
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exhaustive description of nonlinear boundary value 
problems can be found in standard monographs [4-7]. 
Numerical solution of moving boundary problems 
has been of interest during last three decades. The 
last those include: Finite Difference Method (FDM), 
Finite Element Method (FEM) and Boundary Element 
Method (BEM). A general review of different methods 
used in simulation of phase change problems can 
be found in [8-10]. 
     The present paper is concerned with one-
dimensional phase transition problems, with 
particular emphasis on the solidification of castings. 
The method uses the boundary integral equation to 
solve the problem.  
     The governing partial differential equations are 
reviewed and Boltzmann transform is used to solve 
the phase change problem in semi-infinte media. 
The uniqueness of the solution is proved and the 
effects of density change on temperature distribution 
are investigated in the first part of the paper. In the 
second part, the boundary integral equations are 
solved numerically with quadratic time interpolation 
functions and the appearing integrals in the 
formulation are evaluated. Next, experimental 
procedure to obtain data is described. Finally, 
numerical and experimental results are presented 
and discussed. 
 
 
 

2. PROBLEM STATEMENT AND 
ANALYTICAL SOLUTION 

 
We consider a semi-infinite, one-dimensional 
medium, ∞<≤ x0 , which is assumed to be 
occupied originally by a liquid metal of uniform 
temperature min TT ≥ , where mT  denotes the melting 
temperature. By imposing a constant temperature 

mo TT ≤  on the face x=0, solidification starts and 
progresses to the right. Our goal is to determine the 
temperature profile and solidification front location. 
The constancy of density, one of the basic 
assumptions made in the classical Stefan problem, 
is not reasonable in many cases. Frozen phase 
density fρ and unfrozen phase uρ are assumed to 
be constants but uf ρ≠ρ . Usually, fρ > uρ , so the 
volume contracts upon solidification. In order to 
have explicit solution to the problem, it is 
supposed that the contraction is accompanied by 
bulk movement of the existing (semi-infinite) 

phase. The governing equations for the frozen and 
unfrozen phases are [2] 
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where α  is thermal diffusivity and k is thermal 
conductivity, and L is the latent heat of fusion. 

)t(Vu denotes the speed of motion of unfrozen 
phase, which relates the freezing front velocity to 
the density ratio. It can be derived using the 
conservation of the mass between two arbitrary 
points in the frozen phase and unfrozen phase. The 
continuity of temperature and the energy balance 
on the interface must be satisfied. The latter is 
called Stefan’s condition [2]. Using the Boltzmann's 

transformation [4], (similarity variable 
t

x=ζ ), 

one can reduce the above PDEs into ODEs, which 
are much simpler. Solving the ODEs, we get 
 

2
 

0 f

2

1f Adw)
4
wexp(A)t,x(T +
α

−= ∫
ζ

 (4) 

 

4

uu

2 

0 3u

A

dw))1(w
4
wexp(A)t,x(T

+
α

∆−βλ+
α

−= ∫
ζ

 

 (5) 
 

where 
u

f
ρ
ρ

=∆ , 
u

f
α
α

=β , 
t2

)t(X

fα
=λ . 

 
The integration constants are found to be 
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     Stefan condition leads to a transcendental equation 
for the parameter λ  
 

π=
∆βλ∆βλ

−
λλ ∆βλλ )(erfce

St

)(erfe

St
22 )(
uf  (6) 

 

where 
L

)TT(C
St ompf

f
−

=  and 
L

)TT(C
St minpu

u
−

=  

denote the Stefan number of frozen phase and 
unfrozen phase, respectively. It is the ratio of 
sensible heat to the latent heat. Error function 
erf ( ) and complementary error function erfc ( ) 
are defined as follows [11]  
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)x(erf  is increasing function while )x(erfc  is 

decreasing one. Furthermore, 0)0(erf =  and 
1)x(erf →  as ∞→x . The Neumann’s solution of 

the Stefan problem is obtained for conditions 
where the densities are the same, 1=∆ , [2]. 
     The existence theorem guarantees the solution 
for this problem [11,12] and the uniqueness of the 
solution may be proved in the following way: Let 

)x(erf)xexp()x(f 2
1 =  denote the denominator of 

the first term in Equation 6 
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     So, )x(f1 is strictly increasing function, but the 
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denominator of the second term in left-hand side of 
Equation 6 is the product of two functions; namely, 
the decreasing function )x(erfc)xexp()x(f 2

2 = and 
increasing function )x(xf)x(f 23 =  for 0x > . 
Their monotonicity properties may be proved as 
follows: 
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⇒ )x(f3  is increasing function and its inverse 
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     Denoting the left- hand side of Equation 6 by 
)(f λ , it can be written as πλ=λ)(f . The limits 

of the )(f λ  are: 
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which means that, for 0St f > , 0St u ≥  and 0>β , 
the equation πλ=λ)(f  has at least one positive 
root. i.e. the solution is unique. 
     Using Maclaurin series for the exponential and 
error function in Equation 6, one may obtain 
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when min TT = , or when the specific heat is 
considerably smaller than the latent heat, ( 0St u ≈ ), 
we get 
 

2
St f

region1 =λ −  (8) 

 
Thus, region1 −λ > region2 −λ . This of course is 
expected, since it says that the presence of initial 
superheating in the unfrozen phase will slow down 
the solidification process. Because some heat must 
be removed from the liquid phase to bring 
unfrozen phase to melting point )T( m before it can 
solidify. For materials having extremely small 
latent heat, )0L( ≈ , the Equation 6 reduces to 
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     When the initial temperature is equal to melting 
temperature )TT( min = , we have 1-region Stefan 
problem, and Neumman’s solution is obtained for 
the classical 1-region Stefan problem [2]. Stefan’s 
condition gives 
 

)(erf)exp(St 2
f λλπλ=  (10) 

 
     If the Stefan number is small, one may get 
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which means that the temperature profile at each 
time is a straight line joining the point 

)TT,0x( o==  to )TT),t(Xx( m== . The 
Neumann’s solution satisfies the diffusion 
equation and Equation 11 satisfies the steady-
state heat equation. It is an approximate solution 
to 1-phase solidification problem, valid for small 
Stefan numbers and it is called the quasi-
stationary approximation [14]. The quasi-
stationary front overestimates the actual front. 
This overestimation may lead to incorrect results. 
Equation 6 was solved numerically using 
Newton-Raphson method, to inspect the 
dependence of λ on the density ratio ∆ , for some 
values of β,St,St uf  and for a range of ∆ . In 
practical applications, usually β,St,St uf  vary 
between 0.1 and 2, and ∆  changes at most by 
30 %. For these combinations, λ  varies linearly 
with ∆ , having small slope, typically ± 3. 5%, 
(relative to ∆ =1 case) when ∆  changes by 30± %. 
For most materials, including pure Aluminum, ∆  
changes by 10± %, (Table 1), in most cases one 
expects 1% variation in λ . Therefore, any 
quantity proportional to λ is affected very little by 
the change of density. 
     The effects of density change may be ignored in 
small volumes, but they must be taken into account 
in practical applications. The temperature profile in 
the unfrozen phase is changed considerably with 
respect to the ∆ =1 case, since it includes the effect 
of displacement (Equation 5). 
     The change of density can be related to 
shrinkage in castings, which leads to the 
formation of a void at the heat transfer surface. 
This void may be assumed to act as a thermal 
resistance layer, having thermal conductivity, vk , 
which is much smaller than the thermal 
conductivity of the frozen phase, fk . Hence, a 
reduction in freezing rate results because of the 
presence of the void [15-16]. 
 
 
 
3. BOUNDARY INTEGRAL EQUATION AND 

NUMERICAL IMPLEMENTATION 
 
Several investigators [17-20] have obtained the 
boundary integral equation corresponding to moving 
boundary problems. The discretized form of the 

TABLE 1. Properties of Aluminum Used in Simulation. 
 

)C(T o  )m/Kg( 3ρ  )Cm/W(K o  
20 2699 247 
100 2679 245 
300 2645 245 
500 2599 234 
600 2586 232 
635 2579 210 
660 2561 90 
700 2390 110 
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these equations may be written as follows 
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where s denotes the number of time steps. The 
function )t,r;t,r(G ooss  is the fundamental solution 
(Green’s function) to the heat equation given by 
[16,20]: 
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where n denotes the number of dimensions of 
space. )t,r;t,r(G ooss  represents the temperature at 
position or  (observation point or field point) at 
time ot  due to an instantaneous point source of 
unit strength located at sr (source point) releasing 
its energy spontaneously at time ( so tt = )[20]. It 
should be mentioned that although the fundamental 
solution has been obtained for an infinite domain, 
it can be used for a finite domain provided that it  
takes the same values on the boundary of domain 
as they took in the infinite domain on the fictitious 
boundary of the actual domain. Thus reproducing 
on the finite domain the solution of the infinite 

domain. The unknowns )t(T oo and 
o
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assumed to vary within each time step according to 
a quadratic time interpolation function Ψ , 

cbt)t(a *2* ++=Ψ  (14a) 
 

where 
1jj

1jo*

tt
tt

t
−

−

−
−

=  is time station. The interpolation  

function satisfies the conditions, ij
*
ji t δ=Ψ  where 

ijδ is the Kronocker delta and 0t*
1 = , 

2
1t*

2 =  and 

1t*
3 = , (Table2). 

After computing the coefficients in the above 
equation, we obtain 
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where oiq  and oiT  (i=1,2,3) are the values of heat 
flux and temperature at time stations 1jo tt −= , 

2/1jo tt −=  and jo tt = , respectively. 
     The diagram of these interpolation functions is 
depicted in Figure 1. The integrals appearing in the 
boundary integral equations are of the following 
type: 
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TABLE 2. Values of Interpolation Function at Different 
Time Stations. 
 
 0t* =  5.0t* =  1t* =  

1Ψ  1 0 0 
2Ψ  0 1 0 
3Ψ  0 0 1 
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Analytical expressions for the integrals within each 
time step for interpolation functions ot=Ψ  and 

ot=Ψ  have been given in [21,22]. Using shape 
functions in Equation 14b, one can analytically 
calculate the integrals appeared in Equation 14c, 
(see the appendix). 
     Choosing different locations for source point 

)t(X s and field point )t(X o , the following integrals 
can be written for the coefficients of t and q in 
each time step 1jjj ttt −−=∆  
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The application of the above equations to all 

boundary nodes gives 
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jH term of time step jt∆ plus 

3
1jH −  term of time step 1jt −∆ , 3A  is equal to 

3
jH  term of time step jt∆  and 1

1jH +  term of 
time step 1jt +∆ .  The same approach is used 

for the coefficients 1B  and 3B (The influence 
of the common nodes must be taken into 
account). 
     After imposing boundary conditions, the 
resulting equations are arranged such that all 
the unknowns (that is, heat flux and the 
velocity of the solidification front) are on the 
left-hand side of the new matrix equation and 
the knowns are expressed on the right-hand 
side. 
 

}f{]u}[K{ =  (16) 
 
The above set of equations is solved at each time 
step. The location of freezing front is unknown. 
Quasi-stationary approximation was used to find 
the location of freezing front in primary stages of 
BEM solution. So, all the unknowns are determined 
up to the time 1jt − and it is desired to find the 
solution at time jt . Starting with a guess for the 
velocity of freezing front at time jtt = , we may 
calculate the position of the moving boundary from 
following equation 
 

)tt)(t(V)t(X)t(X 1j0j1jo −− −+=  (17) 
 
in which )tt(5.0t j1jj += −  and solve the system 
of integral equations. If the estimated position of 
solidification front were correct, the computed 
values of velocity and temperature gradient would 
satisfy the Stefan condition. However, this may not 
be the case. So, the velocity is to be adjusted using 
the following expression: 
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Figure 1. Quadratic time interpolation function used in 
simulation. 
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and the new position of )(tX  can be determined. 
The iteration may be continued until a prescribed 
condition is satisfied, that is, 
 

ε≤
−
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prcorr

V
VV

 (19) 

where =corrV
dt

)t(dX j  , prV =
dt

)t(dX 1j−  and 

ε denote the corrected velocity, predicted velocity 
of solidification front and specified tolerance, 
respectively. 

4. EXPERIMENTAL WORK 
 
Experiments were carried out, using the facilities 
of the School of Metallurgy and Materials of the 
University of Birmingham, UK. to obtain results 
which would be compared with the solutions of 
BEM.   The overall geometry of the casting, was a 
circular bar with a diameter of 25 mm and 100-mm 
length. The casting was located horizontally to 
minimize convection currents. The surface and the 
back face of the pipe were insulated with fiberfrax 
blanket insulating material and front face was 
exposed to ambient temperature to create 
unidirectional solidification. The mould was made 
from AFS 60 grade washed and dried silica sand, 
bonded with 1.2 mass % Phenolic Urethane resin 
(Ashland Pepset). This is a widely used moulding 
material and it was therefore to be hoped that good 
material properties would be available. Aluminum 
with purity of 99.9% was used as liquid metal. 
This metal has high thermal conductivity, high 
latent heat of fusion and single-point transition 
temperature. Rolls Royce kindly provided materials 
data for mould and casting. Materials data used in 
the simulation are shown in Table 2. The density of 
sand was 1520 )m/kg( 3 . 
     The charge metal 1.5-kg was poured at 
approximately 670 Co into pouring basin. The 
filling time was close to 2.5 seconds. The ambient 
temperature was C20o . The mould was heated up 
to 670 Co in an electric furnace to create boundary 
condition used in simulation. 
     Thermal analysis was carried out using K-type 
thermocouples, a nickel-chromium/nickel aluminium 
conductor combination. The thermocouples (Figure 
1) consisted of a pair of solid wires (a), which were 
each double glass fibre lapped (b) and then glass 
fibre braided and silicone varnished (c). The pair 
was then laid flat and glass fibre braided overall 
and impregnated with silicone varnish (d). 
     Thermocouples were located along the centerline 
of the casting at different distances from one 
another. The diameter of thermocouple wire was 
0.3 mm and crossing the wire and spot welding 
created the junction. The excess wire was trimmed 
off. The wire (with the exception of approximately 
1 mm distance from the junction tip) was insulated 
with white paint (TiO2- containing emulsion paint 
and subsequently fired to burn off volatiles) to 

ba c d

 
Figure 2. Schematic diagram of construction of thermocouple. 
 
 
 
 

 
 
Figure 3. Temperature vs. time (constant shape function). 
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prevent the possibility of a short circuit by the 
liquid metal. An effective internal calibration of the 
thermocouples was performed taking advantage of 
the fact that pure Aluminum was being frozen, thus 
defining a temperature close to 659.0 Co , Thus 
thermocouple readings were adjusted to read about 
659.0 Co , during the early part of the plateau region  

of the cooling curve. Data were logged into a 
computer at rates selected from 10, 20, 50, 100, 
200 and 250 signals per second for different 
experiments. Different boundary conditions were 
created during the experiment. In one experiment 
the front face was maintained at constant temperature 
by the application of a jet of compressed air to the 
back mould. In another experiment ensuring that 
the back of the mould was in relatively still air 
used convection boundary condition. 
 
 
 

5. RESULTS AND DISCUSSION 
 
The example considered is a cylindrical pipe with 
25 mm in diameter and 100 mm in length, which is 
initially filled with liquid metal (Aluminum with 
purity of 99.9%) at the freezing temperature 
( C659TT o

min == ). The surface is cooled suddenly 
to the ambient temperature oT . Solidification starts 
and inwards, the measured and calculated cooling 
curves at different position of thermocouples are 
presented in Figures 2-4, for the cases of constant, 
linear and quadratic elements used in interpolation 
functions, respectively. 
     In the first stages of calculations, the time step 
was chosen 001.0t =∆  seconds, but it was 
changed to 0.02 seconds and then to 0.05 seconds 
at later time steps. Results show that, there exists 
less restriction on time step size. The number of 
elements used in simulation was variable between 
40 and 100 elements. The CPU time for calculating 
the values of temperature has been reduced by 16% 
and 22.5% in the case of linear and quadratic 
elements in comparison with CPU time of constant 
elements, respectively.  
     The calculated values of temperature using the 
BEM and the measured values differ by 3 to 7 
percent in linear elements and quadratic elements, 
respectively. This is due to the use of quasi-
stationary method in the first stage of calculations, 
which assumes that during a time step, the 
movement of solidification front is small relative 
to heat conduction. The difference becomes less 
and less in later time steps. 
     The change of density, yields voids formation 
near the heat transfer surface, between cast and 
mould, which reduces the rate of heat transfer 
considerably. The cooling time may increases up to 

 
Figure 4. Temperature vs. time (linear shape function). 
 
 
 
 

Figure 5. Temperature vs. time (Quadratic shape function). 
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57% of that in case of neglecting this change. The 
BEM results, for location of interface, are 
compared with the analytical solution for semi-
infinite medium [2] and experimental ones, Figure 
6. The agreement between thermal analysis and 
calculated values from the solution of boundary 
integral equation appears to be reasonable although 
some differences may be noted. These differences  
may be associated to inaccuracies in materials data, 

heat transfer parameters, poor calibration of 
thermocouples and different sensitive of 
thermocouples.  
     Cooling curves and derivative first curves can 
be used to identify the end of solidification 
process. The distance between thermocouples is 
known, one may read the elapsed time from time 
axis, to calculate the velocity of freezing front. A 
rapid drop in temperature was recorded at points 
very near to the mould surface (implying that rate 
of solidification is initially high and becomes 
smaller at large times). As distance from the mould 
surface increases, temperature gradient decrease, 
as shown in Figure 7. 
 
 
 

6. CONCLUSION 
 
BEM seems to be a useful general method for the 
analysis of moving boundary value problems. 
Mesh adjustment in this method is easier than other 
numerical methods. There is less restriction on 
time step size compared to other methods. Good 
agreement for temperature fields during solidification 
of pure commercial Aluminum is achieved. 
 
 
 

7. APPENDIX 
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Figure 6. Interface location vs. time. 
 
 
 
 

Figure 7. Velocity of freezing front vs. time. 
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