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Abstract   ParLeda is a software library that provides the basic primitives needed for parallel 
implementation of computational geometry applications. It can also be used in implementing a 
parallel application that uses geometric data structures. The parallel model that we use is based 
on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced 
here. ParLeda uses two main libraries that are widely used: MPI for its message passing in the 
parallel environment and LEDA for its data structures and computations. Dynamic load 
balancing and replicating C++ objects are two key features of this library. This library was 
implemented after a survey in research on parallel computational geometry algorithms and 
selection of their common primitives. 
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پارلـيدا كتابخانه اي است كه عملگرهاي پايه اي براي پياده سازي موازي هندسه محاسباتي را فراهم                 چكـيده       چكـيده       چكـيده       چكـيده       

هاي اين كتابخانه، يك مدل موازي نا همگن به نام اچ بي اس پي را               براي طراحي و پياده سازي عملگر     . آورد مي
دو كتابخانه ليدا و ام پي آي به ترتيب براي فراهم آوردن امكانات     . بـر اسـاس مدل بي اس پي پيشنهاد كرده ايم          

گير اجراي موازنه پوياي بار در پردازنده هاي در   . هندسـي و موازي در پياده سازي پارليدا به كار گرفته شده اند            
.  ها از ويژگيهاي ديگر اين كتابخانه است هدر اين پردازند  ++ كاربـرد مـوازي و توانايي تكرار شي هاي زبان سي          

شوند،  بر سيستم عامل لينوكس براي استفاده در كاربرد هايي كه به اين زبان نوشته مي         ++ پارلـيدا بـه زبـان سـي       
 .پياده سازي شده است

 
 
 

1. INTRODUCTION 
 
Researchers in many fields of science and 
engineering have a never-ending demand for more 
processing power and for increase in the 
computation efficiency. Computational Geometry 
(CG) problems with extensive amount of 
computation and huge input/output size are 
excellent candidates for parallel implementation. 
For example, DARPA Architecture Workshop 
Benchmark Study inserted four computational 
geometry problems in the eleven-problem list, 
which they had provided for performance 
evaluation of parallel architectures [7]. 
      Implementation of parallel CG applications is a 
quite time consuming job and needs good attention 
to many details. The purpose of this paper is to 

present issues involved in implementing a software 
library, called ParLeda, that provides a set 
of general parallel primitives to be used in 
parallel implementation of most applications 
with geometry data structures, specially CG 
applications. The primitives are selected such that 
the programmers are relieved from some details of 
the parallel implementation. 
     To select a good set of basic parallel primitives, 
we have studied efficient parallel algorithms used 
for different classical CG problems (such as 
convex hull, triangulation, etc.) and recognize their 
basic common parallel primitives. These 
primitives are then defined in a general setting 
and are implemented as programming API for 
the proposed software library. 
     The parallel computation model which ParLeda 
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is based on is a heterogonous model named 
Heterogeneous Bulk Synchronous Parallel (HBSP) 
which uses heterogeneous computation units in 
BSP1 model. 
     Most parallel  computational geometry 
algorithms use some computational phases, which 
share common algorithmic behavior but differ in 
input data types. Most of these phases are not 
computational geometry specific and are used in 
another parallel algorithms too. In designing 
ParLeda, we have suggested an abstract definition 
for such phases, which is data and algorithm 
independent. This idea has been taken from 
Morin’s research in [4] where he has suggested an 
API for a library named PLeda and has defined 
some basic parallel operators for computational 
geometry problems. However, the design and 
implementation of this library has been done from 
scratch. 
     As ParLeda works on a heterogeneous network 
of UNIX machines, we have designed and 
implemented algorithm specific load balancing 
methods in the library, which will be explained 
later in this article. At the end of this paper, we 
will show a sample of programming with ParLeda 
API. 
 
 
 

2. PREVIOUS WORKS 
 
In this section, we present some research on 
parallel CG problems we have considered in our 
survey. 
     Puppo, et al. developed a parallel algorithm for 
terrain Delaunay triangulation and implemented 
their algorithm on a CM-2 machine [12]. Several 
other authors in the literature had addressed the 
problem but they have had an actual parallel 
implementation for the first time. Y. Ding and P.J. 
Densham [13] presented a parallel algorithm for 
constructing Delaunay triangulation, which uses a 
dynamic, recursive and altering bisection approach 
to compose a rasterized space into partitions of 
which localized triangulation are constructed. The 
algorithm was implemented on a distributed 
memory transputer and the results were presented 
for a range of problem sizes. 

                                                 
1. Bulk Synchronous Parallel. 

     G. Hristescu [10] addressed the problem of 
efficient parallel triangulation methods for a finite 
set of points in the plane and presented two 
approaches for the problem and implemented them 
on a hypercube. P. Magillo and E. Puppo [11] 
reviewed examples of parallel algorithms for 
different problems of terrain modeling and 
visualization. They have considered different 
programming paradigms and different architectures 
and have considered both the theoretical and 
practical aspects of this problem. 
     As another research in parallel terrain modeling 
problems, Y. Ansel Teng, et al. [16] presented a 
parallel algorithm with O(log2n) time complexity 
for computing the visible points of a polyhedral 
terrain from a given viewpoint. They improved the 
algorithm proposed by Katz, et al. 
     A. Clematis, et al. [14] presented their 
experience in parallelizing in a systematic way, a 
class of Geographical Information Systems (GIS) 
applications. They used PVM and Linda as 
communication libraries for spatial data handling. 
     In a research article, S. C. Roche and B. M. 
Gittings [15] discussed the effectiveness of both 
automatic and manual parallelizing techniques in 
GIS applications. They have used these techniques 
in a polygon line-shading algorithm and considered 
the results. 
     M. J. Atallah and M. T. Goodrich [7]  
considered some well-known CG algorithms like 
convex hull, intersection of half-planes, kernel of a 
simple polygon, distance between two convex 
polygons, 3-dimensional maxima, and the visibility 
problem in the framework of parallelism. They 
have reminded that as many of CG problems arose 
in real time applications related to GIS, 
CAD/CAM, etc., we need to solve them as fast as 
possible and for many of these problems, however, 
we already are at the limits of what can be 
achieved through sequential computation. Thus, it 
is natural to study what kinds of speed-ups can be 
achieved through parallel computing. 
     M. J. Attallah in [5] studied some typical CG 
problems and the parallelization of their best 
algorithms on parallel machine models like 
PRAM, Mesh, hypercube and some hybrid models. 
He stated that previous work in parallel CG had 
been mostly theoretical and only some researchers 
have developed special purpose parallel CG 
algorithms for special parallel machines. 
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     As the first general experimental work on 
parallel CG, Patrik Morin [4] defined the API 
of a general parallel CG library to be used by 
CG programmers in order to develop parallel 
CG algorithms. He has called his LEDA [2] 
based library PLEDA. 
     In context of replicable objects that we use 
in our implementation, many ideas have been 
developed in order to provide parallelism for an 
object-oriented language like C++. Their 
approach is based on implementing classes, 
which can provide parallelism in their methods 
and can be used for sending and receiving data 
in a parallel object oriented environment. In 
this way, some libraries like Para++ [19] have 
been developed. Many of these libraries are in 
fact software shells on communication libraries 
like MPI or PVM and only some of them, like 
Dome [20], provide a distributed environment 
for sending and receiving large data structures 
as vectors or arrays. Some approaches for 
parallelism has been developed in language 
structures. So, the modifications have been 
done in the original language to generate a 
paral le l  programming language.  As we 
know, none of  these approaches have 
primitives for communicating C++ objects 
between nodes of a parallel machine. Only 
some of them have features for special data 
types like arrays and lists [21,22,23]. 
 
 
 

3. PARLEDA IN APPLICATION 
DEVELOPMENT 

 
ParLeda has been designed after studying many 
classical parallel CG algorithms with the purpose 
of retrieving common basic primitives. The 
library provides basic primitives for partitioning 
the domain of problem and features for load 
balancing between computation units. ParLeda’s 
design and implementation concepts are platform 
independent and it is portable. MPI library, in 
situation of a message passing standard that has 
been implemented on several different platforms 
and portability is one of its design goals, plays a 
basic role in ParLeda’s functionality and 
prepares an environment for message passing 
over a TCP/IP based network. Some API 

functions of this library have been changed to be 
used in parallel CG applications. 
     ParLeda is also based on a public domain 
software library called LEDA1 [2], which 
provides efficient implementation of many data 
structures and algorithms on CG and other 
common areas. Basic ParLeda primitives that 
provide data partitioning use LEDA’s data types 
and can easily be used in data parallel programs 
that use LEDA data types as the building blocks 
of their data area. Developers in other relevant 
fields like GIS can use ParLeda in conjunction 
with their application specific libraries. In other 
words, one can build special purpose libraries 
for CG related applications like GIS or fluid 
dynamics applications over ParLeda. In the role 
of an interface, ParLeda provides parallel 
processing concepts (data partitioning, load 
balancing, etc.) and programmers can be relieved 
from the parallel implementation details and 
concentrate on application specific areas of the 
solution. 
     Figure 1 depicts a layer structure for 
developing a portable and modular parallel CG 
related application in ParLeda. Using separate 
related modules and an efficient implementation 
of the interfaces between layers can result in an 
efficient design of the solution. 

                                                 
1 Library of Efficient Data structures and 
Algorithms. 

 
Figure 1. ParLeda in Parallel Application Development. 
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4. COMPUTATIONAL MODEL 
 
ParLeda is based on a heterogeneous parallel 
computational model, named HBSP that is an 
extension to BSP model. The idea of design and 
using such model has been originated from [3] that 
used a similar model (HCGM) based on CGM. 
HBSP uses heterogeneous processors with 
different speeds. The speed of processors is 
considered as model parameters. This speed is a 
function of all software and hardware parameters 
like its virtual memory and processor speed 
involved in processor’s overall performance. A 
Heterogeneous Bulk Synchronous Parallel (HBSP) 
machine has p different processing units P0, P1, ... , 
Pp-1 with different speeds of S0, S1, … , Sp-1, which 

are integer numbers. The parameter S = ∑ −
=

1p
0i iS  

is denoted as the machine’s total speed. 
     Each Pi processes a work with amount of W 
units, in time W/Si. In this model, each processor is 
aware of the speeds of other processors. The 
speeds of the fastest and the slowest processor are 
denoted as Smax and Smin, respectively. 
     In this way, Pmax = Pmin { i : Si = S

max
} and Pmin = 

Pmin{ i : Si = S
min

} are identified as fastest and slowest 
processors. A typical HBSP with 4 processors has 
been shown in Figure 2. In this machine Pmax = P1., 
Smax = 2, Pmin = P0 and Smin = 1. In a special case, 
that S0= S1 = …  = Sp-1 the machines is BSP. 
     Two parameters g and l from BSP model are 
different in HBSP and should be defined as 
averages on different processing units in parallel 
machine. Each processor has its own local memory 
with a size dependent to its speed. As speeds of 
processors are not the same, a unified distribution 
of problem data causes an unbalanced processing 
load. So, a good distribution method should send 
more data to the faster processors to gain better 
performance. We will explain data partitioning 
methods for heterogeneous processors in Section 5. 
 
 
 

5. DATA PARTITIONING/MOVING 
TECHNIQUES 

 
Most parallel CG algorithms are data parallel in 
nature. In these algorithms, partitioning of problem 
data set is an important issue and the relation 

between two neighboring data subsets and the size 
of each are as important. 
     In each partitioning method, a relation ≤  exists 
between each two neighboring partitions. This 
relation is defined based on domain type. As an 
example, when we divide 2-dimensional points 
into two right and left subsets with a vertical line, 
we use a relation ≤  for x-coordinate of points. 
     For a balanced partitioning, we should consider 
the size of each resulting subset. Some methods 
use regular shaped partitioning but others use 
unique data sizes in partitions, which have no 
common shapes. 
     ParLeda provides data partitioning methods for 
common cases, which we have observed in parallel 
CG problems. These methods are explained below. 
We have determined no shape for the area 
including selected geometric data sets in ParLeda; 
the only computed parameter is the size of 
partitions. 
 
5.1 Random Sampling   Random parallel 
algorithms use random sampling as an efficient 
tool. Random sampling is choosing random subset 
with size O(r) of a data set with size n. This subset 
is sent to one of the processors and that processor 
sends the results to other processors after the 
required computation. As Pmax is the fastest 
processor in HBSP machine, it would be better to 
send the random sample to this processor. The 
algorithm is something like the following: 

 
 
Figure 2. An HBSP with 4 processors. 
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Algorithm 1 
 
1. Each processor Pi chooses each data item in its 

local set for random set with the probability of 
n
r . 

 
2. Chosen subsets in each processor are sent to 
one of them (Pmax). 
 
5.2 Linear Partitioning   If we assume that 
S is the set of problem data and the relation ≤  is a 
partial ordering on S, the linear partitioning of S is 
dividing it to p individual subsets S0, S1, … , Sp-1 
so that for all iSx ∈ and jSy ∈  that i < j and we 
have x ≤  y. 
     Most parallel algorithms use linear partitioning 
as an initial stage. Sorting is a special case of linear 
partitioning which all subsets reside on one 
machine’s local memory. The following algorithm 
for HBSP model is a typical linear partitioning 
method: 
 
Algorithm 2 
 
1. Each processor chooses a random sample of its 
data set with size O(r) (r is a constant) using 
Random Sampling algorithm and sends it to 
processor Pmax. 
 
2. Pmax sorts received subsets. We assume that the 
received data are inserted in sorted list K0, K1, ... , 
Kpr-1. 
 
3. Pmax computes p + 1 splitters s0, s1, … , sp 
among the list data items. 
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rj is the share of processor Pj  of a data set with size 
pr. 
 
4. Pmax sends splitters to all other processors. 
 
5. Each processor Pi puts data item x of its subset 

into bucket Bij if and only if sj ≤  x ≤  sj+1. 
 
6. Each processor Pi sends the data items in 
bucket Bij to Pj. 
 
5.3 Random Permutation   Random 
permutation is an approach for load balancing 
between processors of a parallel machine in which 
the problem data are sent to involved processors 
randomly. If the involved processors are similar, 
we should apply a homogeneous data distribution. 
But in HBSP uses the processor speeds in data 
distribution. The algorithm is: 
 
Algorithm 3 
 
1. Each processor Pi sends each data item to one 
of p buckets Bi0, ... Bip-1 in a random way. The 
probability of sending each data item to bucket Bij, 

is equal to Probj , ∑ −
= =1p

0j j )1obPr( . 

 
2. Each processor Pi sends the data items in 
bucket Bij to Pj  
 
     The probability Probj is computed based 
processor’s workload. By means of a load 
balancing method from time complexity of the 
computation algorithm, which will be applied on 
defined data sets, we can determine each processor 
workload. In this case the probability of sending 
data to a processor with a high workload is more 
than another processor. 
 
5.4 Global Sorting   Sorting local data sets is the 
next step after partitioning of problem domain and 
distributing defined subsets. The following parallel 

 
Figure 3. Scatter and Gather operators. 
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sorting algorithm, which is a combination of linear 
partitioning and sequential sorting and has been 
used in [10], is implemented in ParLeda. 
 
Algorithm 4 
 
1. Problem data is partitioned into p subsets using 
linear partitioning algorithm. 
 
2. Each processor sorts its own data set in a 
sequential way and synchronous with other 
processors. 
 
5.5 Scatter/Gather   Two dual primitives scatter 
and gather are used in distributing of a partitioning 
algorithm defined subsets and gathering local 
results by the root processor. In both operators one 
processor is in a special role named root and is 
responsible for sending and receiving of data sets. 
These operators are shown in figure 3. 
 
 
 

6 REPLICABLE OBJECTS 
 
LEDA has implemented the geometrical objects as 
C++ objects. So ParLeda must be able to exchange 
these objects between different processors in a 
parallel machine. As API functions of MPI are 
implemented in C, we cannot use them to operate 
on C++ objects. In other words, this library and 
MPI library cannot be used in packing, sending 
and receiving C++ objects and programmer should 
manually pack and send their data parts to other 
processors and rebuild them from their data parts 
in the target processor. In this way, we can 
restructure a new version of an object similar to 
original object only in data parts not in behavior. 
     As C++ objects have combined the methods 
and some control tables like inheritance table 
beside data parts, we cannot use MPI transfer 
functions, which have been implemented to work 
on basic data types. Some object properties like 
inheritance and polymorphism cannot be moved 
from original object to its new version in another 
processor. 
     In contrast with suggested works, ParLeda 
has implemented a general approach and 
provided a procedure for converting a C++ 

class to an equivalent replicable C++ class. 
Programmer can drive his/her class based on a 
replicable class and define class virtual 
methods for packing and sending class objects 
to use MPI functions in order to send and 
rebuild objects in remote processors. He/she 
can set the number of sent buffers and their 
sizes to minimize the size of message 
including object data. 
     The main idea is that we should implement 
classes named replicable to provide data items 
needed for constructing a copy of an object based 
on an original object in their interfaces. These data 
is defined by class virtual methods. Two packing 
and rebuilding methods, which are data 
independent and use these virtual methods, have 
also been implemented. Any C++ class, which is 
inherited from a replicable object and define its 
virtual methods, can be used in MPI functions for 
sending and receiving in processors. 
     Every C++ object has a data part and some 
methods. For replicating this object on a different 
process or processor we need to know the data part 
and the dynamic part of its methods (we call theses 
parts extents). So if we have these data in the target 
process, we can rebuild the object. As an example 
for a LEDA point object, its x and y coordinates 
are the data we need to rebuild it. So for its 
replication or immigration (destructing original 
object) we pack its x and y coordinate, pack them 
and send them to the target process. In the target 
process we should unpack the received buffer, 
construct a point object and set its x and y 
coordinates to the data stored in the received 
buffer. This scenario is repeated for each object. 
     Now, we have a general replication method, but 
the programmer should need details about extents 
of the object, which he wants to replicate. If LEDA 
stores a control data in its point class, replicated 
object that uses only x and y coordinate of the 
original point for it’s constructing is not the same 
as the original. So, we define two general classes 
for all replicable classes: 

One, basic replicable class, which is replicable 
but has no replicable object in its data part. 

Two, composite replicable classes, which its 
data part is composed of replicable objects. 

     Each replicable class has virtual methods for the 



IJE Transactions B: Applications Vol. 16, No. 2, July 2003 - 129 

following: 
 
(1) providing information about extents and their 
sizes [e.g., value of x (size = 4 bytes), value of y 
(size = 4 bytes)]. 
(2) providing number of extents (e.g. 2). 
(3) pack and unpack methods which pack extents 
in buffers or unpack them from received buffers.  
 
     The following example shows replicating a 
basic replicable object named rpoint in a process: 
 
#include <PARLEDA/RPoint h> 

point p(3,5); 
rpoint rp (p, MPL_COMM_WORLD); 
 
(void) rp.pack( ); 
MPI_Send (rp.pbuff ( ), rp.ppos ( ), 
MPI_PACKED, 1, BUFFER_SIZE, 
rp.getcomm ( )); 

 
     Rebuilding object in the target process: 
 
#include <PARLEDA/RPoint h> 

point p; 
rpoint rp (p, MPI_COMM_WORLD); 
 
MPI_Recv (rp.pbuff ( ), rp.plen ( ), 
MPI_PACKED, 0, BUFFER_SIZE, 
rp.getcomM ( )); 
rp.unpack ( ); 

 
     It is interesting to know that in ParLeda each 
process replicates an object named Node-Info, 
which has information about its running processor 
like its speed in other processes. This information 
is used for load balancing. 
 
 
 

7 LOAD BALANCING 
 
In a parallel environment with homogeneous 
processors, partitioning of data domain into subsets 
of equal size will cause an equal load balance for 
processors. Examples of data domain can be the 
number of 2-dimensional points in a 2-d convex 
hull problem or the surface of partitions in a 
triangulation problem. 
     In a heterogeneous parallel machine, however, 
an equal size partitioning of data would result in 

unbalanced loads between processors. In this way, 
faster processors finish their work faster than the 
slower ones and should wait for possible 
synchronization. 
     Processor P with speed S can finish 

computation W in time 
S
W

. (S is the parameter we 

considered in HBSP model definition). This time 
has been considered in ParLeda as a parameter for 
partitioning the problem domain. W is interpreted 
as the algorithm complexity of a computation step 
and is a function over n (problem input size) (W = 
W(n)). This parameter is defined for each 
processor based on its data subset and the 
computation needed for this subset. If all 
processors have the same value for this parameter, 
we hope that all of them finish computation W in 
the same time. 
     Given that Pi works on a data of size ni  and Wi = 
W(ni) is the time complexity of this work, in order 
to have all processors finish the work on their local 
data subsets concurrently and at the same time. we 
should have: 
 

1p

1p

1

1

0

0
S

)n(W
...

S
)n(W

S
)n(W

−

−===  

 
For example, in a parallel sort we should locally 
sort local data in each processor after distributing 
global data between processors. As the best time 
complexity of this phase is W(n) = n log n we 
should construct subsets of size n1, n2, ... np-1 so 
that: 
 

1p

1p1p

1

11

0

00
S

nlogn
...

S
nlogn

S
nlogn

−

−−===  

 

Since the amount of ∑ −
= =1p

0i i nn  and the values 

of Si for each processor are known, we can solve 
this set of p equations and p variables and 
determine the value of ni for each Pi. 
 
Lemma 1   In an HBSP machine with p 
processors P0, P1, ... , Pp-1 with speeds S0, S1, ... , 
Sp-1 respectively, a concurrent computation phase 
with time complexity W = W(n) on a data of size n 
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which is distributed between processors will be 
finished at the same time in all processors if and 
only if: 
 

1p

1p

1

1

0

0
S

)n(W
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S
)n(W

S
)n(W
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Proof: 
 

We know that 
i

i
S

)n(W
 is the time for completion 

of work W on data with size ni in processor Pi 
which its speed is Si. So the equation in the above 
lemma is clear. 
     In order to find ni, we should solve this set of p 
equations and determine the value of p variables: 
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n and Si are fixed. 
     It is difficult to solve the set if W (n) is a 
complex formula. So, we use a way to determine 
values close to problem solution in ParLeda. 

Determining a range for the parameter 
i

i
S

)n(W
 

and using divide and conquer method is the main 
idea of the solution. 
     We assume that: 
 
S0 ≤  S1 ≤  … ≤  Sp-1 
 
So we have: 
 
n0 ≤  n1 ≤  … ≤  np-1 
 
It is clear that the following relation is true: 
 

n0 ≤  
p
n ≤  np-1 

 
As W(n) is an incremental function of n so this 

relation is true too: 
 

W (n0) ≤  W (
p
n

) ≤  W (np-1) 

 
Now we can determine the range for value of 

i

i
S

)n(W
: 

 

0

0
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0S

)
p
n(W
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1pS
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Or in another word: 
 

1pS

)
p
n(W

−
≤

0

0
S

)n(W
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1p

1p

S
)n(W

−

− ≤
0S

)
p
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     The following divide and conquer algorithm 
finds the share of each processor in a balanced data 
partitioning using these two limits for parameter 

i

i
S

)n(W
: 

 
Algorithm 5 
 
1. Initialize two parameters Pt1 and Ptp as the 
following: 
 

Pt1 = 
1pS

)
p
n(W

−
 

 

Ptp = 
0S

)
p
n(W
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2. Initialize Pt = 
2

PtPt p1 +
 

 
3. Determine ni for i = 0, ..., p - 1 in relation W 
(ni) = Si Pt. 
 

4. If ∑ −
= >1p

0i i nn , then Ptp = Pt and follow the 

algorithm from step 2. 
 

5. If ∑ −
= <1p

0i i nn  then Pt1 = Pt and follow the 

algorithm from step 2. 
 

6. In this step we have ∑ −
= =1p

0i i nn  and the 

value of ni are the solution for our problem. 
 
 
 

8. PROGRAMMING API 
 
ParLeda has been based on a C++ class named 
ParLeda, which has implemented all ParLeda’s 
functionalities as its methods. A programmer uses 
these functionalities with creating an object-based 
oil this class. Calling ParLeda’s methods is valid 
after calling its Init method and is invalid after 
calling Finalize method in source code. Init 
initializes ParLeda and Finalize gracefully shuts it 
down. Programmer should initialize MPI before 
calling Init with MPI API function MPI_INIT. 
ParLeda computes the speed of each processor 
using number of jobs in its run queue and some 
parameters like size of virtual memory and swap 
space for load balancing. Two methods SetAlg and 
UnsetAlg are used before and after data 
transmission phase. These methods set time 
complexity of the next computation step in 
ParLeda. 
     As an example, the following is a global sort 
which has been implemented using a serial sorting 
algorithm which time complexity of O(nlogn): 
 
ParLeda pl (MPI_COMM_WORLD); 
 
void GlobalSort (list<int> data) { 

p1. SetAlg (PL_NLOGN); 
pl.Partition(data, int_cmp); 

pl.UnsetAlg( ); 
data. sort ( ); 
} 

 
     Algorithm’s time complexity can be set in 
ParLeda using constants like PL_NLOGN, which 
have been defined in the library. 
 
 
 

9. EXPERIMENTAL RESULTS 
 
We have implemented a parallel Delaunay 
triangulation algorithm using ParLeda operators. 
The algorithm uses a method named “Dividing 
Wall” for partitioning the whole set of points in 2-
dimensional space. In another phase, we determine 
the triangles of final triangulation, which intersect 
with the dividing wall. Then, we triangulate two 
partition resulted by the wall. The algorithm is a 
parallel master/slave algorithm in which a master 
process gathers final results from another 
processes. 
     In original version of the dividing wall 
algorithm separates the original set into two 
subsets of equal size. But using ParLeda load 
balancing operators we divide the set according to 
the appropriate processor loads. 
     It’s interesting to say that ParLeda 
implementation of the algorithms is 20% less that 
its original implementation in case of program 
lines. 

TABLE 1. The Run Time of Parallel Delaunay 
Triangulation Using ParLeda (Second). 
 

 
 
 
TABLE 2. The Speed-Up Resulted by Running Parallel 
Delaunay Triangulation Using ParLeda. 
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10. SUMMARY AND CONCLUSION 
 
We have explained the process of design and 
implementation of a software library named 
Parleda for developing parallel CG applications. 
We have identified common primitives, which are 
used in parallel CG algorithms. These operators 
can be used in computational data transmission and 
for the balanced distribution between processors. 
ParLeda has implemented typical processor data 
interchange methods. Programmers use a global 
object, which has defined these methods in its 
interface, and can dynamically balance processor 
loads. We have defined a parallel model for our 
parallel machine named HBSP, which has 
heterogeneous processors. 
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