
IJE Transactions B: Applications Vol. 16, No. 2, July 2003 - 123

PARLEDA: A LIBRARY FOR PARALLEL PROCESSING
IN COMPUTATIONAL GEOMETRY APPLICATIONS

Mohammad Ghodsi and Mehdi Sharifzadeh

Computer Engineering Department, Sharif University of Technology
ghodsi@sharif.edu – shzadeh@yahoo.com

(Received: January 2, 2000 – Accepted: May 15, 2003)

Abstract ParLeda is a software library that provides the basic primitives needed for parallel
implementation of computational geometry applications. It can also be used in implementing a
parallel application that uses geometric data structures. The parallel model that we use is based
on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced
here. ParLeda uses two main libraries that are widely used: MPI for its message passing in the
parallel environment and LEDA for its data structures and computations. Dynamic load
balancing and replicating C++ objects are two key features of this library. This library was
implemented after a survey in research on parallel computational geometry algorithms and
selection of their common primitives.

Key Words Computational Geometry, Parallel Processing, Load Balancing, LEDA, MPI

پارلـيدا كتابخانه اي است كه عملگرهاي پايه اي براي پياده سازي موازي هندسه محاسباتي را فراهم چكـيده چكـيده چكـيده چكـيده

هاي اين كتابخانه، يك مدل موازي نا همگن به نام اچ بي اس پي را براي طراحي و پياده سازي عملگر . آورد مي
دو كتابخانه ليدا و ام پي آي به ترتيب براي فراهم آوردن امكانات . بـر اسـاس مدل بي اس پي پيشنهاد كرده ايم

گير اجراي موازنه پوياي بار در پردازنده هاي در . هندسـي و موازي در پياده سازي پارليدا به كار گرفته شده اند
. ها از ويژگيهاي ديگر اين كتابخانه است هدر اين پردازند ++ كاربـرد مـوازي و توانايي تكرار شي هاي زبان سي

شوند، بر سيستم عامل لينوكس براي استفاده در كاربرد هايي كه به اين زبان نوشته مي ++ پارلـيدا بـه زبـان سـي
 .پياده سازي شده است

1. INTRODUCTION

Researchers in many fields of science and
engineering have a never-ending demand for more
processing power and for increase in the
computation efficiency. Computational Geometry
(CG) problems with extensive amount of
computation and huge input/output size are
excellent candidates for parallel implementation.
For example, DARPA Architecture Workshop
Benchmark Study inserted four computational
geometry problems in the eleven-problem list,
which they had provided for performance
evaluation of parallel architectures [7].
 Implementation of parallel CG applications is a
quite time consuming job and needs good attention
to many details. The purpose of this paper is to

present issues involved in implementing a software
library, called ParLeda, that provides a set
of general parallel primitives to be used in
parallel implementation of most applications
with geometry data structures, specially CG
applications. The primitives are selected such that
the programmers are relieved from some details of
the parallel implementation.
 To select a good set of basic parallel primitives,
we have studied efficient parallel algorithms used
for different classical CG problems (such as
convex hull, triangulation, etc.) and recognize their
basic common parallel primitives. These
primitives are then defined in a general setting
and are implemented as programming API for
the proposed software library.
 The parallel computation model which ParLeda

124 - Vol. 16, No. 2, July 2003 IJE Transactions B: Applications

is based on is a heterogonous model named
Heterogeneous Bulk Synchronous Parallel (HBSP)
which uses heterogeneous computation units in
BSP1 model.
 Most parallel computational geometry
algorithms use some computational phases, which
share common algorithmic behavior but differ in
input data types. Most of these phases are not
computational geometry specific and are used in
another parallel algorithms too. In designing
ParLeda, we have suggested an abstract definition
for such phases, which is data and algorithm
independent. This idea has been taken from
Morin’s research in [4] where he has suggested an
API for a library named PLeda and has defined
some basic parallel operators for computational
geometry problems. However, the design and
implementation of this library has been done from
scratch.
 As ParLeda works on a heterogeneous network
of UNIX machines, we have designed and
implemented algorithm specific load balancing
methods in the library, which will be explained
later in this article. At the end of this paper, we
will show a sample of programming with ParLeda
API.

2. PREVIOUS WORKS

In this section, we present some research on
parallel CG problems we have considered in our
survey.
 Puppo, et al. developed a parallel algorithm for
terrain Delaunay triangulation and implemented
their algorithm on a CM-2 machine [12]. Several
other authors in the literature had addressed the
problem but they have had an actual parallel
implementation for the first time. Y. Ding and P.J.
Densham [13] presented a parallel algorithm for
constructing Delaunay triangulation, which uses a
dynamic, recursive and altering bisection approach
to compose a rasterized space into partitions of
which localized triangulation are constructed. The
algorithm was implemented on a distributed
memory transputer and the results were presented
for a range of problem sizes.

1. Bulk Synchronous Parallel.

 G. Hristescu [10] addressed the problem of
efficient parallel triangulation methods for a finite
set of points in the plane and presented two
approaches for the problem and implemented them
on a hypercube. P. Magillo and E. Puppo [11]
reviewed examples of parallel algorithms for
different problems of terrain modeling and
visualization. They have considered different
programming paradigms and different architectures
and have considered both the theoretical and
practical aspects of this problem.
 As another research in parallel terrain modeling
problems, Y. Ansel Teng, et al. [16] presented a
parallel algorithm with O(log2n) time complexity
for computing the visible points of a polyhedral
terrain from a given viewpoint. They improved the
algorithm proposed by Katz, et al.
 A. Clematis, et al. [14] presented their
experience in parallelizing in a systematic way, a
class of Geographical Information Systems (GIS)
applications. They used PVM and Linda as
communication libraries for spatial data handling.
 In a research article, S. C. Roche and B. M.
Gittings [15] discussed the effectiveness of both
automatic and manual parallelizing techniques in
GIS applications. They have used these techniques
in a polygon line-shading algorithm and considered
the results.
 M. J. Atallah and M. T. Goodrich [7]
considered some well-known CG algorithms like
convex hull, intersection of half-planes, kernel of a
simple polygon, distance between two convex
polygons, 3-dimensional maxima, and the visibility
problem in the framework of parallelism. They
have reminded that as many of CG problems arose
in real time applications related to GIS,
CAD/CAM, etc., we need to solve them as fast as
possible and for many of these problems, however,
we already are at the limits of what can be
achieved through sequential computation. Thus, it
is natural to study what kinds of speed-ups can be
achieved through parallel computing.
 M. J. Attallah in [5] studied some typical CG
problems and the parallelization of their best
algorithms on parallel machine models like
PRAM, Mesh, hypercube and some hybrid models.
He stated that previous work in parallel CG had
been mostly theoretical and only some researchers
have developed special purpose parallel CG
algorithms for special parallel machines.

IJE Transactions B: Applications Vol. 16, No. 2, July 2003 - 125

 As the first general experimental work on
parallel CG, Patrik Morin [4] defined the API
of a general parallel CG library to be used by
CG programmers in order to develop parallel
CG algorithms. He has called his LEDA [2]
based library PLEDA.
 In context of replicable objects that we use
in our implementation, many ideas have been
developed in order to provide parallelism for an
object-oriented language like C++. Their
approach is based on implementing classes,
which can provide parallelism in their methods
and can be used for sending and receiving data
in a parallel object oriented environment. In
this way, some libraries like Para++ [19] have
been developed. Many of these libraries are in
fact software shells on communication libraries
like MPI or PVM and only some of them, like
Dome [20], provide a distributed environment
for sending and receiving large data structures
as vectors or arrays. Some approaches for
parallelism has been developed in language
structures. So, the modifications have been
done in the original language to generate a
paral le l programming language. As we
know, none of these approaches have
primitives for communicating C++ objects
between nodes of a parallel machine. Only
some of them have features for special data
types like arrays and lists [21,22,23].

3. PARLEDA IN APPLICATION
DEVELOPMENT

ParLeda has been designed after studying many
classical parallel CG algorithms with the purpose
of retrieving common basic primitives. The
library provides basic primitives for partitioning
the domain of problem and features for load
balancing between computation units. ParLeda’s
design and implementation concepts are platform
independent and it is portable. MPI library, in
situation of a message passing standard that has
been implemented on several different platforms
and portability is one of its design goals, plays a
basic role in ParLeda’s functionality and
prepares an environment for message passing
over a TCP/IP based network. Some API

functions of this library have been changed to be
used in parallel CG applications.
 ParLeda is also based on a public domain
software library called LEDA1 [2], which
provides efficient implementation of many data
structures and algorithms on CG and other
common areas. Basic ParLeda primitives that
provide data partitioning use LEDA’s data types
and can easily be used in data parallel programs
that use LEDA data types as the building blocks
of their data area. Developers in other relevant
fields like GIS can use ParLeda in conjunction
with their application specific libraries. In other
words, one can build special purpose libraries
for CG related applications like GIS or fluid
dynamics applications over ParLeda. In the role
of an interface, ParLeda provides parallel
processing concepts (data partitioning, load
balancing, etc.) and programmers can be relieved
from the parallel implementation details and
concentrate on application specific areas of the
solution.
 Figure 1 depicts a layer structure for
developing a portable and modular parallel CG
related application in ParLeda. Using separate
related modules and an efficient implementation
of the interfaces between layers can result in an
efficient design of the solution.

1 Library of Efficient Data structures and
Algorithms.

Figure 1. ParLeda in Parallel Application Development.

126 - Vol. 16, No. 2, July 2003 IJE Transactions B: Applications

4. COMPUTATIONAL MODEL

ParLeda is based on a heterogeneous parallel
computational model, named HBSP that is an
extension to BSP model. The idea of design and
using such model has been originated from [3] that
used a similar model (HCGM) based on CGM.
HBSP uses heterogeneous processors with
different speeds. The speed of processors is
considered as model parameters. This speed is a
function of all software and hardware parameters
like its virtual memory and processor speed
involved in processor’s overall performance. A
Heterogeneous Bulk Synchronous Parallel (HBSP)
machine has p different processing units P0, P1, ... ,
Pp-1 with different speeds of S0, S1, … , Sp-1, which

are integer numbers. The parameter S = ∑ −
=

1p
0i iS

is denoted as the machine’s total speed.
 Each Pi processes a work with amount of W
units, in time W/Si. In this model, each processor is
aware of the speeds of other processors. The
speeds of the fastest and the slowest processor are
denoted as Smax and Smin, respectively.
 In this way, Pmax = Pmin { i : Si = S

max
} and Pmin =

Pmin{ i : Si = S
min

} are identified as fastest and slowest
processors. A typical HBSP with 4 processors has
been shown in Figure 2. In this machine Pmax = P1.,
Smax = 2, Pmin = P0 and Smin = 1. In a special case,
that S0= S1 = … = Sp-1 the machines is BSP.
 Two parameters g and l from BSP model are
different in HBSP and should be defined as
averages on different processing units in parallel
machine. Each processor has its own local memory
with a size dependent to its speed. As speeds of
processors are not the same, a unified distribution
of problem data causes an unbalanced processing
load. So, a good distribution method should send
more data to the faster processors to gain better
performance. We will explain data partitioning
methods for heterogeneous processors in Section 5.

5. DATA PARTITIONING/MOVING
TECHNIQUES

Most parallel CG algorithms are data parallel in
nature. In these algorithms, partitioning of problem
data set is an important issue and the relation

between two neighboring data subsets and the size
of each are as important.
 In each partitioning method, a relation ≤ exists
between each two neighboring partitions. This
relation is defined based on domain type. As an
example, when we divide 2-dimensional points
into two right and left subsets with a vertical line,
we use a relation ≤ for x-coordinate of points.
 For a balanced partitioning, we should consider
the size of each resulting subset. Some methods
use regular shaped partitioning but others use
unique data sizes in partitions, which have no
common shapes.
 ParLeda provides data partitioning methods for
common cases, which we have observed in parallel
CG problems. These methods are explained below.
We have determined no shape for the area
including selected geometric data sets in ParLeda;
the only computed parameter is the size of
partitions.

5.1 Random Sampling Random parallel
algorithms use random sampling as an efficient
tool. Random sampling is choosing random subset
with size O(r) of a data set with size n. This subset
is sent to one of the processors and that processor
sends the results to other processors after the
required computation. As Pmax is the fastest
processor in HBSP machine, it would be better to
send the random sample to this processor. The
algorithm is something like the following:

Figure 2. An HBSP with 4 processors.

IJE Transactions B: Applications Vol. 16, No. 2, July 2003 - 127

Algorithm 1

1. Each processor Pi chooses each data item in its

local set for random set with the probability of
n
r .

2. Chosen subsets in each processor are sent to
one of them (Pmax).

5.2 Linear Partitioning If we assume that
S is the set of problem data and the relation ≤ is a
partial ordering on S, the linear partitioning of S is
dividing it to p individual subsets S0, S1, … , Sp-1
so that for all iSx ∈ and jSy ∈ that i < j and we
have x ≤ y.
 Most parallel algorithms use linear partitioning
as an initial stage. Sorting is a special case of linear
partitioning which all subsets reside on one
machine’s local memory. The following algorithm
for HBSP model is a typical linear partitioning
method:

Algorithm 2

1. Each processor chooses a random sample of its
data set with size O(r) (r is a constant) using
Random Sampling algorithm and sends it to
processor Pmax.

2. Pmax sorts received subsets. We assume that the
received data are inserted in sorted list K0, K1, ... ,
Kpr-1.

3. Pmax computes p + 1 splitters s0, s1, … , sp
among the list data items.










∑

=∞−

= <<

=∞







=
pi0ifK

piif

i
i

0j jr

0iif

s

rj is the share of processor Pj of a data set with size
pr.

4. Pmax sends splitters to all other processors.

5. Each processor Pi puts data item x of its subset

into bucket Bij if and only if sj ≤ x ≤ sj+1.

6. Each processor Pi sends the data items in
bucket Bij to Pj.

5.3 Random Permutation Random
permutation is an approach for load balancing
between processors of a parallel machine in which
the problem data are sent to involved processors
randomly. If the involved processors are similar,
we should apply a homogeneous data distribution.
But in HBSP uses the processor speeds in data
distribution. The algorithm is:

Algorithm 3

1. Each processor Pi sends each data item to one
of p buckets Bi0, ... Bip-1 in a random way. The
probability of sending each data item to bucket Bij,

is equal to Probj , ∑ −
= =1p

0j j)1obPr(.

2. Each processor Pi sends the data items in
bucket Bij to Pj

 The probability Probj is computed based
processor’s workload. By means of a load
balancing method from time complexity of the
computation algorithm, which will be applied on
defined data sets, we can determine each processor
workload. In this case the probability of sending
data to a processor with a high workload is more
than another processor.

5.4 Global Sorting Sorting local data sets is the
next step after partitioning of problem domain and
distributing defined subsets. The following parallel

Figure 3. Scatter and Gather operators.

128 - Vol. 16, No. 2, July 2003 IJE Transactions B: Applications

sorting algorithm, which is a combination of linear
partitioning and sequential sorting and has been
used in [10], is implemented in ParLeda.

Algorithm 4

1. Problem data is partitioned into p subsets using
linear partitioning algorithm.

2. Each processor sorts its own data set in a
sequential way and synchronous with other
processors.

5.5 Scatter/Gather Two dual primitives scatter
and gather are used in distributing of a partitioning
algorithm defined subsets and gathering local
results by the root processor. In both operators one
processor is in a special role named root and is
responsible for sending and receiving of data sets.
These operators are shown in figure 3.

6 REPLICABLE OBJECTS

LEDA has implemented the geometrical objects as
C++ objects. So ParLeda must be able to exchange
these objects between different processors in a
parallel machine. As API functions of MPI are
implemented in C, we cannot use them to operate
on C++ objects. In other words, this library and
MPI library cannot be used in packing, sending
and receiving C++ objects and programmer should
manually pack and send their data parts to other
processors and rebuild them from their data parts
in the target processor. In this way, we can
restructure a new version of an object similar to
original object only in data parts not in behavior.
 As C++ objects have combined the methods
and some control tables like inheritance table
beside data parts, we cannot use MPI transfer
functions, which have been implemented to work
on basic data types. Some object properties like
inheritance and polymorphism cannot be moved
from original object to its new version in another
processor.
 In contrast with suggested works, ParLeda
has implemented a general approach and
provided a procedure for converting a C++

class to an equivalent replicable C++ class.
Programmer can drive his/her class based on a
replicable class and define class virtual
methods for packing and sending class objects
to use MPI functions in order to send and
rebuild objects in remote processors. He/she
can set the number of sent buffers and their
sizes to minimize the size of message
including object data.
 The main idea is that we should implement
classes named replicable to provide data items
needed for constructing a copy of an object based
on an original object in their interfaces. These data
is defined by class virtual methods. Two packing
and rebuilding methods, which are data
independent and use these virtual methods, have
also been implemented. Any C++ class, which is
inherited from a replicable object and define its
virtual methods, can be used in MPI functions for
sending and receiving in processors.
 Every C++ object has a data part and some
methods. For replicating this object on a different
process or processor we need to know the data part
and the dynamic part of its methods (we call theses
parts extents). So if we have these data in the target
process, we can rebuild the object. As an example
for a LEDA point object, its x and y coordinates
are the data we need to rebuild it. So for its
replication or immigration (destructing original
object) we pack its x and y coordinate, pack them
and send them to the target process. In the target
process we should unpack the received buffer,
construct a point object and set its x and y
coordinates to the data stored in the received
buffer. This scenario is repeated for each object.
 Now, we have a general replication method, but
the programmer should need details about extents
of the object, which he wants to replicate. If LEDA
stores a control data in its point class, replicated
object that uses only x and y coordinate of the
original point for it’s constructing is not the same
as the original. So, we define two general classes
for all replicable classes:

One, basic replicable class, which is replicable
but has no replicable object in its data part.

Two, composite replicable classes, which its
data part is composed of replicable objects.

 Each replicable class has virtual methods for the

IJE Transactions B: Applications Vol. 16, No. 2, July 2003 - 129

following:

(1) providing information about extents and their
sizes [e.g., value of x (size = 4 bytes), value of y
(size = 4 bytes)].
(2) providing number of extents (e.g. 2).
(3) pack and unpack methods which pack extents
in buffers or unpack them from received buffers.

 The following example shows replicating a
basic replicable object named rpoint in a process:

#include <PARLEDA/RPoint h>

point p(3,5);
rpoint rp (p, MPL_COMM_WORLD);

(void) rp.pack();
MPI_Send (rp.pbuff (), rp.ppos (),
MPI_PACKED, 1, BUFFER_SIZE,
rp.getcomm ());

 Rebuilding object in the target process:

#include <PARLEDA/RPoint h>

point p;
rpoint rp (p, MPI_COMM_WORLD);

MPI_Recv (rp.pbuff (), rp.plen (),
MPI_PACKED, 0, BUFFER_SIZE,
rp.getcomM ());
rp.unpack ();

 It is interesting to know that in ParLeda each
process replicates an object named Node-Info,
which has information about its running processor
like its speed in other processes. This information
is used for load balancing.

7 LOAD BALANCING

In a parallel environment with homogeneous
processors, partitioning of data domain into subsets
of equal size will cause an equal load balance for
processors. Examples of data domain can be the
number of 2-dimensional points in a 2-d convex
hull problem or the surface of partitions in a
triangulation problem.
 In a heterogeneous parallel machine, however,
an equal size partitioning of data would result in

unbalanced loads between processors. In this way,
faster processors finish their work faster than the
slower ones and should wait for possible
synchronization.
 Processor P with speed S can finish

computation W in time
S
W

. (S is the parameter we

considered in HBSP model definition). This time
has been considered in ParLeda as a parameter for
partitioning the problem domain. W is interpreted
as the algorithm complexity of a computation step
and is a function over n (problem input size) (W =
W(n)). This parameter is defined for each
processor based on its data subset and the
computation needed for this subset. If all
processors have the same value for this parameter,
we hope that all of them finish computation W in
the same time.
 Given that Pi works on a data of size ni and Wi =
W(ni) is the time complexity of this work, in order
to have all processors finish the work on their local
data subsets concurrently and at the same time. we
should have:

1p

1p

1

1

0

0
S

)n(W
...

S
)n(W

S
)n(W

−

−===

For example, in a parallel sort we should locally
sort local data in each processor after distributing
global data between processors. As the best time
complexity of this phase is W(n) = n log n we
should construct subsets of size n1, n2, ... np-1 so
that:

1p

1p1p

1

11

0

00
S

nlogn
...

S
nlogn

S
nlogn

−

−−===

Since the amount of ∑ −
= =1p

0i i nn and the values

of Si for each processor are known, we can solve
this set of p equations and p variables and
determine the value of ni for each Pi.

Lemma 1 In an HBSP machine with p
processors P0, P1, ... , Pp-1 with speeds S0, S1, ... ,
Sp-1 respectively, a concurrent computation phase
with time complexity W = W(n) on a data of size n

130 - Vol. 16, No. 2, July 2003 IJE Transactions B: Applications

which is distributed between processors will be
finished at the same time in all processors if and
only if:

1p

1p

1

1

0

0
S

)n(W
...

S
)n(W

S
)n(W

−

−===

Proof:

We know that
i

i
S

)n(W
 is the time for completion

of work W on data with size ni in processor Pi
which its speed is Si. So the equation in the above
lemma is clear.
 In order to find ni, we should solve this set of p
equations and determine the value of p variables:










=

===

∑ −
=

−

−

1p
0i i

1p

1p

1

1

0

0

nn

S
)n(W

...
S

)n(W
S

)n(W

n and Si are fixed.
 It is difficult to solve the set if W (n) is a
complex formula. So, we use a way to determine
values close to problem solution in ParLeda.

Determining a range for the parameter
i

i
S

)n(W

and using divide and conquer method is the main
idea of the solution.
 We assume that:

S0 ≤ S1 ≤ … ≤ Sp-1

So we have:

n0 ≤ n1 ≤ … ≤ np-1

It is clear that the following relation is true:

n0 ≤
p
n ≤ np-1

As W(n) is an incremental function of n so this

relation is true too:

W (n0) ≤ W (
p
n

) ≤ W (np-1)

Now we can determine the range for value of

i

i
S

)n(W
:

0

0
S

)n(W
 ≤

0S

)
p
n(W

1p

1p

S
)n(W

−

− ≥
1pS

)
p
n(W

−

Or in another word:

1pS

)
p
n(W

−
≤

0

0
S

)n(W
=…=

1p

1p

S
)n(W

−

− ≤
0S

)
p
n(W

 The following divide and conquer algorithm
finds the share of each processor in a balanced data
partitioning using these two limits for parameter

i

i
S

)n(W
:

Algorithm 5

1. Initialize two parameters Pt1 and Ptp as the
following:

Pt1 =
1pS

)
p
n(W

−

Ptp =
0S

)
p
n(W

IJE Transactions B: Applications Vol. 16, No. 2, July 2003 - 131

2. Initialize Pt =
2

PtPt p1 +

3. Determine ni for i = 0, ..., p - 1 in relation W
(ni) = Si Pt.

4. If ∑ −
= >1p

0i i nn , then Ptp = Pt and follow the

algorithm from step 2.

5. If ∑ −
= <1p

0i i nn then Pt1 = Pt and follow the

algorithm from step 2.

6. In this step we have ∑ −
= =1p

0i i nn and the

value of ni are the solution for our problem.

8. PROGRAMMING API

ParLeda has been based on a C++ class named
ParLeda, which has implemented all ParLeda’s
functionalities as its methods. A programmer uses
these functionalities with creating an object-based
oil this class. Calling ParLeda’s methods is valid
after calling its Init method and is invalid after
calling Finalize method in source code. Init
initializes ParLeda and Finalize gracefully shuts it
down. Programmer should initialize MPI before
calling Init with MPI API function MPI_INIT.
ParLeda computes the speed of each processor
using number of jobs in its run queue and some
parameters like size of virtual memory and swap
space for load balancing. Two methods SetAlg and
UnsetAlg are used before and after data
transmission phase. These methods set time
complexity of the next computation step in
ParLeda.
 As an example, the following is a global sort
which has been implemented using a serial sorting
algorithm which time complexity of O(nlogn):

ParLeda pl (MPI_COMM_WORLD);

void GlobalSort (list<int> data) {

p1. SetAlg (PL_NLOGN);
pl.Partition(data, int_cmp);

pl.UnsetAlg();
data. sort ();
}

 Algorithm’s time complexity can be set in
ParLeda using constants like PL_NLOGN, which
have been defined in the library.

9. EXPERIMENTAL RESULTS

We have implemented a parallel Delaunay
triangulation algorithm using ParLeda operators.
The algorithm uses a method named “Dividing
Wall” for partitioning the whole set of points in 2-
dimensional space. In another phase, we determine
the triangles of final triangulation, which intersect
with the dividing wall. Then, we triangulate two
partition resulted by the wall. The algorithm is a
parallel master/slave algorithm in which a master
process gathers final results from another
processes.
 In original version of the dividing wall
algorithm separates the original set into two
subsets of equal size. But using ParLeda load
balancing operators we divide the set according to
the appropriate processor loads.
 It’s interesting to say that ParLeda
implementation of the algorithms is 20% less that
its original implementation in case of program
lines.

TABLE 1. The Run Time of Parallel Delaunay
Triangulation Using ParLeda (Second).

TABLE 2. The Speed-Up Resulted by Running Parallel
Delaunay Triangulation Using ParLeda.

132 - Vol. 16, No. 2, July 2003 IJE Transactions B: Applications

10. SUMMARY AND CONCLUSION

We have explained the process of design and
implementation of a software library named
Parleda for developing parallel CG applications.
We have identified common primitives, which are
used in parallel CG algorithms. These operators
can be used in computational data transmission and
for the balanced distribution between processors.
ParLeda has implemented typical processor data
interchange methods. Programmers use a global
object, which has defined these methods in its
interface, and can dynamically balance processor
loads. We have defined a parallel model for our
parallel machine named HBSP, which has
heterogeneous processors.

11. ACKNOWLEDGEMENTS

This research was supported by sharif University
of Technology.

11. REFERENCES

1. MPI Forum, “MPI: A Message Passing Interface”, Proc.

of Supercomputing’98, (November 1993), 878-883.
2. Mehlhorn, K. and Naher, S., “LEDA: A Platform for

Combinatorial and Geometric Computing”, (1994),
http://www.mpi-sb.mpg.de/LEDA.html.

3. Morin, P. R., “Two Topics in Applied Algorithmics”,
M.S. Thesis, School of CS., Carleton University, CA,
(1998), Available through URL http://www.scs.carleton.
ca/morin.

4. Morin, P. R., “PLEDA User’s Manual (v0.0)”, Personal
Communication, (12 Dec. 1997).

5. Zomaya, A. Y. H. (Ed.), “Parallel and Distributed
Computing Handbook”, McGraw-Hill, (1996).

6. Healy, R. (Ed.), “Parallel Processing Algorithms for
GIS”, Taylors and E1ancis, (1998).

7. Atallah, M. J. and Goodrich, M. T., “Deterministic
Parallel Computational Geometry”, in J. H. Reif, Ed.,
Synthesis of Parallel Algorithms, Morgan Kufmann
Pub., (1993), 497-536.

8. Dehne, F., Fabri, A. and Rau-Chaplin, A., “Scalable
Parallel Geometric Algorithms for Coarse Grained
Multicomputers”, Proc. ACM 9th Annual
Computational Geometry, (1993), 298-307.

9. Dehne, F., Deng, X., Dymond, P., Fabri, A. and
Khokhar, A., “A Randomized Parallel 3D Convex Hull
Algorithm for Coarse Grained Multicomputers”, (1993).

10. Hristescu, G., “Parallel Triangulation of a Set of Point
for Coarse Grained Multicomputers”, Department of
Computer Science, Rutgers University, (October 1994).

11. Magillo, P. and Puppo, E., “Algorithms for Parallel
Terrain Modeling and Visualization”, Parallel Processing
Algorithms for GIS, Taylors and Francis, (1996), 352-
386.

12. Puppo, F., Davis, L. S., DeMenthon, D. and Teng, A.,
“Parallel Terrain Triangulation”, International Journal
of Geographical Information Systems, 8(2), (1994),
165-128.

13. Ding, Y. and Densham, P. J., “A Dynamic and Recursive
Parallel Algorithm for Constructing Delaunay
Triangulations”, Proceedings 6th International Symp.
on Spatial Data Handling, Edinburgh, UK, (1994), 682-
696.

14. Cleniatis, A., Falcidieno, B. and Spagnuolo, M.,
“Parallel Processing on Heterogeneous Networks for
GIS Applications”, International Journal of
Geographical Information Systems, 10(6), (1996), 747-
767.

15. Roche, S. C. and Gittings, B. M., “Parallel Polygon Line
Shading: The Quest for More Computational Power from
an Existing GIS Algorithm”, International Journal of
Geographical Information Systems, 10(6), (1996), 731-
746.

16. Teng, Y. A., Mount, D., Puppo, F. and Davis, L. S.,
“Parallelizing an Algorithm for Visibility on Polyhedral
Terrains”, International Journal of Computational
Geometry and Applications, World Scientific Publishing
Company, (1995).

17. Floriani, L. Dc, Montani, C. and Scopigno, R.,
“Parallelizing Visibility Computations on Triangulated
Terrains”, International Journal of Geographical
Information Systems, 8(6), (1994), 515-531.

18. Ding, Y. and Denshani, P. J., “Spatial Strategies for
Parallel Spatial Modeling”, International Journal of
Geographical Information Systems, 10(6), (1996), 669-
698.

19. “Para++: C++ Bindings for Message Passing Libraries”,
EuroPvm’95, (Sept. 1995), Lyon, France, http://www.
loria.fr/para++/parapp.html.

20. Arabe, J., Beguelin, A., Lowekanip, B., Selignian,
F., Starkey, M. and Stephan, P., “Dome: Parallel
Programming in a Heterogeneous Multi-User
Environment”, Technical Report CMU-CS-95-137,
School of Computer Science, Carnegie Mellon
University, (April 1995),
http://www.cs.cniu.edu/afs/cs.cniu.edu/project/necta
r-adanib/web/Dome.html.

21. MPC++, http://www.rwcp.or.jp/people/mpslab/mpc++/
mpc++.html.

22. Gannon, D., Yang, S. X. and Becknian, P. “pC++”,
Department of Computer Science CICA Indiana
University, Bloomington, Indiana, U.S.A., http://www.
extrenle.Indiana.edu/sage/.

23. Petitpierre C., “Synchronous C++, a Language for
Interactive Applications”, IEEE Computer, (September
1998), 65-72, http://diwww.epfl.ch/w3lti/scpp.html.

