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Abstract   Complexity is one of the most important issues of any production planning. The 
increase in complexity of production planning can cause inconsistency between a production plan and 
an actual outcome. The complexity generally can be divided in two categories, the static complexity 
and the dynamic complexity, which can be computed using the ant ropy formula. The formula 
considers the probability of a system in different scenarios in which it can happen and based on the 
formula it computes the complexity of the system. However, the method is not able to make a 
difference between the complexities of different scenarios such as busy, idle, setup, etc. This paper 
presents a new algorithm to compute the complexity of a static production planning. Our method 
ranks the importance of the complexity for each scenario and then computes the complexity of the 
overall system.  
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باعث  افزايش پيچيدگی. ت هر مسئله برنامه ريزی توليد استپيچيدگی يکی از مهمترين مشکلا   چکيدهچکيدهچکيدهچکيده
پيچيدگی معمولا به دو گروه ايستا و پويا تقسيم بندی         . گردد ناهمگونی بين برنامه توليد و خروجی عملی آْن می        

س حالتهای اتفاق افتاده در سيستم و در فرمول مزبور بر اسا. شود نتروپی محاسبه میاگـرديده و به کمک فرمول    
با اين وجود اين فرمول قادر به تفکيک . کند نظـر گرفتـن احـتمال وقـوع آنهـا مـيزان پيچيدگـی را محاسـبه می             

اين مقاله يک الگوريتم جديد برای محاسبه پيچيدگی        . باشد سناريوهای مختلف مانند فعال، بيکار و يا تنظيم نمي        
در روش جديد سناريوهای مختلف مورد رتبه . دهد حالت های مختلف سيستم ارايه ميسيستم با در نظر گرفتن 

 .گيرد بندی قرار گرفته و سپس پيچيدگی الگوريتم مورد محاسبه قرار می

 

1. INTRODUCTION 

Flexible Manufacturing System (FMS) is one of 
the most important requirements of a world class 
manufacturing systems. FMS has many advantages 
such as customer satisfaction, better competition, 
etc. The lack of a good FMS can create an 
inefficient decision, impractical programs, high 
inventories that could result an unproductive 
production planning [3,6,8,9]. On the other hand, 
increasing more flexibility itself can lead to a more 
complex production planning and this could result 
to low quality in product scheduling and lack of a 
good degree of reliability [1,7,10]. Therefore, a 

FMS plan is good as long as it can handle a high 
degree of complexity. Although different types of 
complexities have already been discussed but there 
is not a unique and standard way to define the 
complexity. Frizelle and Woodcook [4] are among 
few people who introduce a mathematical model to 
compute the complexity of a system. In their 
implementation, complexity is computed based on 
three basic assumptions. The first assumption is 
that each subsystem is a process of input or output. 
The second one tells us that as the complexity of a 
process increases, the system has less reliability 
and finally it is very likely for a process with high 
complexity to become a bottleneck. Their model 
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considers that the complexity is also a reflection of 
the processes with high setup times. Calinescv et 
al. [2] explain complexity as static and dynamic. 
The static complexity is defined as the following: 
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where M, Nj represent the number of resources and 
scenarios, respectively and Pij denotes the 
possibility of resource i in scenario j. In this paper, 
we use a normalized form of (1) as follows: 
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Next section, we present a new algorithm to 
compute the complexity of a system. The 
implementation of the new algorithm is also 
discussed using some practical examples. 

2. A NEW ALGORITHM TO COMPUTE THE 
COMPLEXITY OF A STATIC SYSTEM 

As we explained in previous section, the 
complexity of a system depends on the number of 
sections (e.g. setup, busy, idle) and their 
likelihoods. According to (1), static complexity 
depends on the variance of the likelihoods. In other 
word, higher complexity represents higher variance 
with the likelihoods [4]. For example, consider a 
system with three subsystems 1, 2, 3 and with the 
same likelihoods of their presentation in system. 
Now consider the same system with three different 
likelihoods of 0.95, .025 and .025, respectively. 
This indicates that an increase to the complexity of 
a system is a direct result of big variances among 
all subsystems. However (1) does not explain how 
important each component can participate in 
system�s complexity. For example, consider a 
system with only one subsystem. In this case, when 
the system is idle, it represents low priority 
whereas when it encounters with a busy status it 
can represents higher complexity regardless 
of the likelihood. In other example, let�s look at a 
system with two components called busy and idle. 
Now, consider two different cases, 1 and 2. For 
case one, the busy and idle occur with the 
likelihoods of 0.9 and 0.1, respectively. For case 

two, the busy and idle occur with opposite 
possibilities of 0.1 and 0.9, respectively. It is clear 
that case one represents higher complexity than 
case two. However, applying (1) yields unique 
results for both cases. Therefore, we need to make 
some additional assumption in (1) in order to show 
the effects of the system�s status. This paper 
presents a new algorithm that incorporates this 
assumption using a linear programming model. In 
our algorithm, we need to change the likelihoods 
as the following form: 
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where ijα  is the modified ijP  which is computed 
as the solution of the following linear 
programming model, 
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where f,t = 1 � N. In (4), t = {1, 2, �, N} 
represents different scenarios in terms of their 
effects on increasing the complexity. In other 
word, t = 1 represents the minimum complexity 
while t = N denotes the maximum complexity. Let 

fP  represent the likelihood of a particular resource 

in case f and ftγ  is a portion of fP  when system is 
in case t. Obviously, an expert can easily set Pf. 
We now start two simple cases in order to show the 
effects of the implementation of our LP 
formulation.  

2.1. Example 1   Consider a production system 
where there are only two situations of busy and 
idle. When the system is busy it has maximum 
complexity and obviously when it is idle, the 
system has minimum complexity. Let BP  and IP  
be the likelihoods of busy and idle, respectively. 
Therefore, we can expect the maximum 
complexity for PI = ε and PB = 1. Also we 
anticipate the minimum complexity when PI =1 
and. PB = ε According to (1) the maximum 
complexity occurs when PI ≈ PB and the minimum 
complexity happens when (PI, PB) = (1,ε) or 
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(PI, PB) = (ε,1). For instance, consider the 
following likelihoods for the two cases: 

! Case 1 .1P,P SI =ε=  In this case we 
consider the following for t1γ : 

.
2
1,

2
1

B1I1 =γ=γ  

! Case 2 .P,1P SI ε==  In this case we 
consider the following for t1γ : 

.,1 B1I1 ε=γ=γ  
Let t = {I,B}, then we write the following LP 

model: 
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Table 1 demonstrates the complexity of the system 
under different conditions. The results indicate that 
the normalized complexity computed based on 
the proposed LP formulation depends entirely on 
the status of the system. For example, when 

90.0=BP  and 10.0=IP  then the system is met 
with 99.27 percent of complexity. Conversely, for 

10.0PB =  and 90.0PI =  the complexity is only 
28.6 percent. We now consider a system with three 
different subsystems. 

2.2. Example 2   Consider a more complicated 
system that contains three situations of Setup, Busy 
and Idle. Let Ps, PB and PI represent the likelihoods 
corresponding to Setup, Busy and Idle,  

respectively. We consider the maximum 
complexity when (PI, PB, PI) = (ε,ε,1) the minimum 
complexity where (PI, PB, PI)= (1,ε,1) and finally 
the medium complexity when (PI, PB, PI) = (1,1,ε,). 
For instance, consider the following likelihood for 
the three cases, 

• Case 1 .1PS =  In this case we consider the 
following for t1γ : 

,
3
1,

3
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3
1

S1B1I1 =γ=γ=γ  

• Case 2 .1=IP  In this case we consider the 
following for t1γ : ,0,0,1 S2B2I2 =γ=γ=γ  

• Case 3 .1=BP  In this case we consider the 
following for t1γ : 

.08.0,08.0,84.0 S3B3I3 =γ=γ=γ  

Applying (4) to example yields, 
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TABLE 1. The Complexity of Example 1. 
 

BP  IP  Bα  Iα  staticH  
1 ε  0.5 0.5 100 
ε  1 0 1 0 

0.5 0.5 0.25 0.75 81 
0.75 0.25 0.375 0.625 95.3 
0.1 0.9 0.05 0.95 28.6 
0.9 0.1 0.45 0.55 99.27 
0.3 0.7 0.15 0.85 60.8 
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and 
 

.1,,0,1 SBISBI ≤ααα<=α+α+α  (9) 

Table 2 summarizes the results of the 
complexities of the system under different 
conditions, which are similar to the results of the 
example (1). 

For instance, when 05.0P,P BI =ε=  and 
95.0PS = , we get 75.99Hstatic =  and conversely, 

when 08.0,9.0 == BI PP  and 02.0PS =  we 
have 07.0Hstatic = . These results are highly 
desirable and can realistically reflect the 
complexity of the system. Therefore, the new 
algorithm provides better results for the complexity 
of the system under different conditions. 

3. CONCLUSIONS 

We have presented a new algorithm to use the 
implementation of linear programming in order to 
compute the complexity of any particular system. 
We have explained that traditional methods cannot 
include the effects of the subsystems under 
different cases on overall complexity. The new 
algorithm presented in this paper is able to 
consider the effects of different cases of a system 
in terms of their priorities on overall complexity. 
Numerical results for two different practical 
examples have been presented in order to show the 
effectiveness of the proposed algorithm. 
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TABLE 2. The Complexity of Example 2. 
 

IP  BP  SP  Iα  Bα  Sα  staticH  
1 ε  ε  1 0 0 0 
ε  ε  1 1/3 1/3 1/3 100 
ε  1 ε  0.84 0.08 0.08 50 

0.2 0.3 0.5 0.668 0.166 0.166 87.5 
0.9 0.08 0.02 0.9868 0.0066 0.0066 7.93 
0.5 0.45 0.05 0.928 0.0036 0.036 30.8 
0.3 0.65 0.05 0.896 0.052 0.0052 40.6 
0.2 0.75 0.05 0.88 0.06 0.06 45 
ε  0.95 0.05 0.848 0.076 0.076 53 
ε  0.05 0.95 0.368 0.316 0.316 99.75 

 


