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Abstract In the present investigation transient, G*/G/m queuing model with balking and reneging
has been studied. The diffusion process with elementary return boundary has been used for modeling
purpose. The probability density function (p. d. f.) for the number of customersin the system has been
obtained. In specia case, the steady state results that tally with those of Kimura and Ohsone have
been established as alimiting case.
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1. INTRODUCTION

Although multi-server bulk queuing systems with
general service time distribution have a number of
applications to various practical problems e. g.
inventory, production processes, data transmission
systems, it is extremely difficult to investigate
transient behavior of such systems analytically.
The approximation can play a maor role in
understanding the complex queuing systems for
which exact anaytical results are not known.
During last two decades diffusion approximation
has received considerable attention in literature to
analyze general queuing modelsin different frame-
works. In real life, we come across the situations
where it is essential to know the transient behavior
of the queuing models. Duda [1] studied the
transient diffusion approximation with elementary
return boundary (E. R. B) for single server.
Sivazlian and Wang [2] developed diffusion
approximation to the G/G/R machine repair
problem with warm standby spares. Choi and Shin
[3] gave the transient diffusion approximation for

IJE Transactions A: Basics

M/G/m system. Jain [4] derived some performance
measures for a G*/G/m machine interference
problem with spare machines by using diffusion
process with reflecting boundaries. Di Crescenzo
et a. [5] discussed diffusion approximation for
finite caling population model based on two
boundary policies; the elementary return boundary
and the instantaneous return boundary. Jain [6]
developed (m, M) machine repair problem with
spares and state dependent rates by using
diffusion approximation technique with reflecting
boundaries. Recently, Jain [7] considered the
G*/G"/1 double-ended queue by using diffusion
process. Jain and Singh [8] gave diffusion process
for optimal flow control of a G/G/c finite capacity
queue. Jain et al. [9] anayzed G*/G'/R machine
repair system with group failure, group repair
and additional repairmen using diffusion
approximation approach.

Due to real life applications in many
congestion situations, queuing models with balking
and reneging have attracted the researchers
working in the field of queuing theory. Some
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research works have been reported on queuing
systems with balking and reneging using diffusion
process. Varshney et a. [10] suggested diffusion
approximation for G/G/m queue with discouragement.
Garg et al. [11] provided approximate solution
based on diffusion process with reflecting boundary
for G*/G/m queue with discouragement. Jain [12]
developed G/G/1 double-ended queue with balking
by using diffusion approximation technique. Jain et
al. [13] developed the diffusion process for multi-
repairmen machining system with spares and
balking.

This paper studies G*/G/m queuing system
with balking and reneging. The diffusion process has
been established by using elementary return
boundary in Section 2. The transient diffusion
approximation for the number of customers in the
system has been obtained in Section 3. In particular,
for M/G/1 queue, our model reduces to Choi and
Shin [3] model. In Section 4, we discuss the steady
state results, which tally for special case with those
of Kimura and Ohsone [14]. Finaly, the concluding
remarks and noble features of the investigation are
outlined in Section 5.

2. THE MODEL DESCRIPTION AND
DIFFUSION PROCESS

We analyze G*/G/m queuing system with balking
and reneging in which customers arrive in batches
with random sizes at the service facility with a

distribution {gd}, k = 1, 2, ... Let X and 0%
denote the mean and variance of batch size
distribution. The customers are assumed to arrive
in general fashion with mean rate A and sguare
coefficient of variance C;2 When al servers are
busy, the customers may balk with probability 1-
B. The customers are served by one of the m
serversin order to their arrivalsi. e. in FIFO order.
The service times of the customers are independent
and identically distributed (i. i. d.) random
variables with mean rate pand finite square
coefficient of variance CZ The customers while
waiting in the queue may renege exponentially
with parameter v. We assume that Q (t) denotes the
number of customersin the system at timet (= 0).
We consider diffusion process {X(t): t =0}
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which approximates the process { Q(t): t=0}. The
process X(.) is represented by two diffusion
parameters b(x) and a(x) caled infinitesimal mean
and variance respectively, and are defined as

b(x) = lim  E[X(t+At) - X(t)/ X(t) =x]
At -0 At

a(x) = lim  var[X(t+At) - X(t)/ X(t) = X]

For G*/G/m model with balking and reneging,
we propose mean and variance of the diffusion
process as follows:

. 0sx<m
b(x) =AX —xu
a(x) =A (C2X +03)+xu C2

ii. Xx=m
b(x) = ABX —[mu + X-m)v]
ax) =AB(CZX +02)+[mu+ (xmpy] G

Since the underlying process Q(.) cannot take a
negative value, some impenetrable boundary
should be placed at the origin of X(.).

It is well known that E. R. B. at the origin is
more suitable for queuing systems with batch
arrivals; we adopt it for our model. The trajectory
of {X(t): t =20}with the state space [0, ] having
an E. R. B. behaves in such a way that when it
reaches the boundary at x = 0, it remainsthere for a
random interval of time ( i.e. sojourn time). The
sojourn time at the origin is taken to be
exponentially distributed. Thereafter, the trajectory
jumpsinto the interior of the region and starts from
scratch. The time intervals during which the
system is empty are also exponentially distributed
and the path Q (.) jumps from the originto Q () =

k with probability g« according to the arrival of a
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new k- sizegroup (k =1, 2,...).

The diffusion process { X (t): t =0} withtheE.
R. B. satisfies the following differential equations
(see Feller [15])

af 1 92

a_t 26)(2

‘;Lx{b(x)f(x,t/xo)}+

{a(x) f(x,t/x0)} -

N 0o
(t)k—l (X )
(1)

and
oP(t 10
# =-Ap(t) +E&{a(x) F(x,t/xg)) -

b(x) f(x,t/X,)

x10
(2

where f(x, t/xo) denotes the probability density
function of X (t), P (t) is the probability that the
process X (t) is at the origin at timet and o (.) is
the Dirac delta function. The conservation of
probability leads to the following conditions:

P(t)+}f(x,t/xo)dx =1 (©)

The boundary condition at x = 0 and the initial
condition at t = 0, are given by

lim f(x,t/x,) =0 (4)
f (X, O/Xg) = O (X-Xo) (5a)

L0 if x>0 o5
PO=E i x, =0 (5b)

It is evident that there exits a continuous
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solution of Equation 1 even if the functions b(x)
and a(x) are piecewise continuous with a finite
number of first order discontinuities.

For k = 1, 2,..., we introduce the following
notations:

a, =a(k)
b, =b(k)

and

_ k-1

gy = P(X 2Kk) =1-Zgi
1=

Because of the continuity of f(x, t/xy), we
impose the following smoothing conditions:

lim  f, (x,t/x,) =f, 4 (k=1t/X,) (6)
x1 k-1
k=2,3,....

For notational convenience, we denote

Ok (U%o) = fic (K, t/xo)

k=12, ...,m1.

and

f(k=1t/xq) =1lim f (x,t/xq)
x1 k-1

k=12, ..., m

From the condition (4), we have qo(t/xo) = 0 for
al t =20. Now the problem of solving the
differential Equation 1 reduces to the following
initial boundary value problem,

of, _1_ 9%, . of,

a,——b, —<+A P(t o(k —k
2% a2 < oax ()Z'gk ( )

(7)
fi (K=1t/X0) =0y (t/Xo) (89)

fie (k,t/x0) = Qi (t/Xo) (8b)
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f, (K,0/X,) = 8(X—X,) (80)

fork—1<x<k,t>0, k=1, 2, ....., m-1.

3. TRANSIENT SOLUTION

We rewrite the above system of Equations 7 — 8 (a-
C) as

f of

9. 3 -b—+H 9)
ot 2 ox

f(x,0) =3(x —X,) (10a)
f(k=11) =q.4(t) (10b)
f(k,t)=q,(t) (100)

H(x,t) = A P(t)i 9.5(x-kK) (100
=1
Let us assume that

W(y,t) = F(y,t)exp% b y+%tE

H.(y.t) = H(y, t)exp%—w—t%

wherey = x-k+1 and F(y, t) = f (y + k-1), O<y<1
and t = 0. Then from Equations 8 and 9, we have

oW _ad*w

=22 " 4H,; (0<y<1, t>0

(11)
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W(.0) =8y +k-1-xp) ety ; 0<y<1

(129)

b2
W (O, t) = q,_(t tH,;, t=20
0.1 =80,() el t

(12b)

W (I, - 1,,0) = g, () exp %—};’—atg

t=0
(12¢)

Solving Equation 11 by taking Laplace
transform with respect to t of both sides, we have
(see Carrier and Carl [16] )

W (y,s) =

25
A o
pe— (1, —1,-1)
th((l —|1)D 2ag Ua .

_ql%—z_a%:oshg/%(lz —II)E

+\Eﬁ6(i+l1—xo)exp5~965
as 4 a
+H;(&,9)}Sinh

-&) EJED
. b?
+ qk—l%_z_a%OSh E\/;y
2”7 b
_\/;‘([{6(5 +1 _Xo)eXpE'EEE"'

Hi(z,s>}smh§/§(y—z) Eﬁ

Simplifying Equation 13 in the same manner as
done by Choi and Shin [3], we have

(13)
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fo(X,S/X,) =

ex P (x —K) [BinhA, (x —k +1)

- (s/
a H SinhA, i (S/%,)

U1 (57 X,)

b, (x —k +1) [Sinh A, (k —X)
TEPETTL T H sinha,

fork-1<x<k, k=1,2, ..... (14
where
2a, s+ b2
A = 252 Tk k=12 ...
ag
(15)

Now we will determine g, (s/ X,) in the above

expression in terms of known parameters. Taking
Laplace transform of Equation 2 with respect to t
and then integrating with respect to x, we get

%{ (" (x,5/ %)} ~b (F (x5,

2
= [ersf*]xio-i-
S f*(y,s/x )dy—U(x—x )—)\P*(s) S g, Ux-k)
JO' 0 0 g k

(16)
where

V. f =
10

Ea_x{a(x)f (X,5/X,)} = b(X)F " (X,5/,)

Making use of Equation 14, we have

IVXvSfIJ X k—l:
Vedidd AP0 -gial -1 (Xo=k-1)

for k=1 a7

Taking Laplace transform of Equation 2, we get
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Vet ], = (s+ )P () - P(0) (18)

From Equations 14 and 17, we have

(9 = Bi(s+ NP (9)7, —Bi (19)
1 1

Similarly from Equations 14 and 18, we get

=~

o

. C, .- B,._ [Pb, . L«
fi(s)=—-F (- El(leXp_ak : %k—z(s)

k k LI ™k-1

A — - .
+B_(gk _gk—l)P (S)
k

(20)
where
a,A b 1
B, ==k "k —k
“ 2 exp% a, ESinh A, (21)
k=12,...
and
C,=- b, + 8 1A C_OShAk—l +
2 2  SinhA,,
b, Cosh A,
—~+a A —, k=12,...
2 M ginhA, (k=12..)
(22)
The normalizing condition (3) leads to
* ® 1
P (s)+If (X, 8/ %) dx==, s>0
0 S
(23)

Using Equation 14, P (s) can be determined in
terms of known parameters.
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4. STEADY STATE DIFFUSION
APPROXIMATION

Kimura and Ohsone [14] have considered diffusion
approximation for M*/G/m queuing system in the
steady state. Now we derive the steady state results
for G*/G/m queuing system with balking and
reneging by lettingt - 0 in the transient solution
obtained in Section 3.

We shall show that in particular case our
results are similar to those of Kimura and Ohsone
[14]. For steady state whent - « , we define

i
Ot Xg) =, ()
— 00
[im

9. (t/x0)=0,
00

—

and

lim P(t) =P

-

From Equations 15, 21 and 22, we have

lim Ak(S):M’ k=12,.....
- 0 k
(24)
li
im B (9=— e =12,.....
S >
expELE‘
(25)
and
| ma%”%
ImOCk(S)_ D, .
S o ex P %1 ex by —l%
4 &
k=12,.....
(26)
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Using Equation 21, the results become

lim
= S) =
O s OSCIk()

exp
by E pl:ij %_2_
by eXpEZbH% Ha

ak—l
2b, [ [Pb, ~
1 —_

a, E:)(p:ak E‘ @k gk—l):)
if b, %0

=) b

if b, =0

I

(27)

Now using Equation 14, we get

[im .
f(x)  Sfelxis/xo) =

e

—gk, if b, 20

b,
(28)

From Equation 3, the steady state probability P is
given by

g mil — 0

P=0+ Dak Ay 41 %:] Z A 9,0

0 & 2wad &G '8
(29)

In case when b, = 0 for some k (it should be noted
that it is unique if it exists), P can be obtained by
letting by tends to zero in Equation 29.
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5. DISCUSSION

In this paper, we have analyzed a multi-server
transient queuing system with group arrivals via
diffusion approximation. The considered model
is of interest from the view of its practical
applications in real life. Using Laplace transform,
the p. d. f. for the number of customers in the
system is derived. Finally by letting t — «in the
transient solution, results for the steady state are
obtained.

For discretizing the continuous probability
density function f (x, t/Xo), we can adopt any one of
the following methods:

(i) P.(6) =F(x,t/X,)

@iy P (t)= }f(x,t/xo)dx

n+l

(iii) Pn(t):J'f(x,t/xo)dx

n+0.5

iv) R(D)= [f (x,t/x, )dx

n-0.5

But it is more convenient to choose method (i).

To obtain approximate numerical inversion f(t) of f

(s) at timet, we can use Stefest’s[17] result given
by

_In2& ., ..0n2.
(=13 Vi QT'@
where

V =

|
Min(i,N/2)

_T\N/2+ kN/Z(Zk)I
= k; (N/2-K)!Ik!(k =D)!(2k ~1)!
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The novel feature of suggested diffusion
approximation lies in the fact that explicit results
can be obtained for relatively complex situation in
terms of means and variances of inter-arrival
service time and group size distributions.
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