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Abstract   In the present investigation transient, GX/G/m queuing model with balking and reneging 
has been studied. The diffusion process with elementary return boundary has been used for modeling 
purpose. The probability density function (p. d. f.) for the number of customers in the system has been 
obtained. In special case, the steady state results that tally with those of Kimura and Ohsone have 
been established as a limiting case. 
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 با ورودی دسته ای و امتناع کننده از پيوستن به صف  GX/G/mدر تحقـيق حاضـر مدل صف گذاری     چكـيده چكـيده چكـيده چكـيده 
برای مدل کردن اين سيستم از فرآيند پراکنش با شرايط مرزی برگشت استفاده . مـورد مطالعـه قـرار گرفته است       

در حالت خاص  .ده استتعداد مشتری در سيستم به دست آورد ش (.p.d.f) تـابع چگالـی احتمال  . شـده اسـت  
 . در حالت حدی تطبيق داده شده است۱۹۸۴ در سال Ohsone و  Kimuraنتايج حالت پايدار اين مسئله با نتايج 

1. INTRODUCTION 

Although multi-server bulk queuing systems with 
general service time distribution have a number of 
applications to various practical problems e. g. 
inventory, production processes, data transmission 
systems, it is extremely difficult to investigate 
transient behavior of such systems analytically. 
The approximation can play a major role in 
understanding the complex queuing systems for 
which exact analytical results are not known. 
During last two decades diffusion approximation 
has received considerable attention in literature to 
analyze general queuing models in different frame-
works. In real life, we come across the situations 
where it is essential to know the transient behavior 
of the queuing models. Duda [1] studied the 
transient diffusion approximation with elementary 
return boundary (E. R. B) for single server. 
Sivazlian and Wang [2] developed diffusion 
approximation to the G/G/R machine repair 
problem with warm standby spares. Choi and Shin 
[3] gave the transient diffusion approximation for 

M/G/m system. Jain [4] derived some performance 
measures for a GX/G/m machine interference 
problem with spare machines by using diffusion 
process with reflecting boundaries. Di Crescenzo 
et al. [5] discussed diffusion approximation for 
finite calling population model based on two 
boundary policies; the elementary return boundary 
and the instantaneous return boundary. Jain [6] 
developed (m, M) machine repair problem with 
spares and state dependent rates by using 
diffusion approximation technique with reflecting 
boundaries. Recently, Jain [7] considered the 
GX/GY/1 double-ended queue by using diffusion 
process. Jain and Singh [8] gave diffusion process 
for optimal flow control of a G/G/c finite capacity 
queue. Jain et al. [9] analyzed GX/GY/R machine 
repair system with group failure, group repair 
and additional repairmen using diffusion 
approximation approach. 

Due to real life applications in many 
congestion situations, queuing models with balking 
and reneging have attracted the researchers 
working in the field of queuing theory. Some 
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research works have been reported on queuing 
systems with balking and reneging using diffusion 
process. Varshney et al. [10] suggested diffusion 
approximation for G/G/m queue with discouragement. 
Garg et al. [11] provided approximate solution 
based on diffusion process with reflecting boundary 
for GX/G/m queue with discouragement. Jain [12] 
developed G/G/1 double-ended queue with balking 
by using diffusion approximation technique. Jain et 
al. [13] developed the diffusion process for multi-
repairmen machining system with spares and 
balking. 

This paper studies GX/G/m queuing system 
with balking and reneging. The diffusion process has 
been established by using elementary return 
boundary in Section 2. The transient diffusion 
approximation for the number of customers in the 
system has been obtained in Section 3. In particular, 
for M/G/1 queue, our model reduces to Choi and 
Shin [3] model. In Section 4, we discuss the steady 
state results, which tally for special case with those 
of Kimura and Ohsone [14]. Finally, the concluding 
remarks and noble features of the investigation are 
outlined in Section 5.  

2. THE MODEL DESCRIPTION AND 
DIFFUSION PROCESS 

We analyze GX/G/m queuing system with balking 
and reneging in which customers arrive in batches 
with random sizes at the service facility with a 
distribution {gk}, k = 1, 2, .... Let X  and 2

Xσ  
denote the mean and variance of batch size 
distribution. The customers are assumed to arrive 
in general fashion with mean rate λ and square 
coefficient of variance Ca

2. When all servers are 
busy, the customers may balk with probability 1- 
β.  The customers are served by one of the m 
servers in order to their arrivals i. e. in FIFO order. 
The service times of the customers are independent 
and identically distributed (i. i. d.) random 
variables with mean rate µ and finite square 
coefficient of variance Cs

2. The customers while 
waiting in the queue may renege exponentially 
with parameter ν. We assume that Q (t) denotes the 
number of customers in the system at time t ( ≥ 0). 

We consider diffusion process {X(t): t ≥ 0} 

which approximates the process {Q(t): t ≥ 0}. The 
process X(.) is represented by two diffusion 
parameters b(x) and a(x) called infinitesimal mean 
and variance respectively, and are defined as 

t
]x)t(X/)t(X)tt(X[E

0t
lim

)x(b
∆

=−∆+
→∆
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t
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For GX/G/m model with balking and reneging, 
we propose mean and variance of the diffusion 
process as follows: 

i. 0 ≤ x ≤ m 
b(x) = λ X  – xµ 

a(x) = λ ( 2
X

22
a XC σ+ ) + xµ Cs

2 

ii. x ≥ m 

b(x) = λβ X  – [mµ + (x-m)ν] 

a(x) = λ β( 2
X

22
a XC σ+ ) + [ mµ + (x-m)ν] Cs

2 

Since the underlying process Q(.) cannot take a 
negative value, some impenetrable boundary 
should be placed at the origin of X(.). 

It is well known that E. R. B. at the origin is 
more suitable for queuing systems with batch 
arrivals; we adopt it for our model. The trajectory 
of {X(t): t ≥ 0}with the state space [0, ∞ ] having 
an E. R. B. behaves in such a way that when it 
reaches the boundary at x = 0, it remains there for a 
random interval of time ( i.e. sojourn time). The 
sojourn time at the origin is taken to be 
exponentially distributed. Thereafter, the trajectory 
jumps into the interior of the region and starts from 
scratch. The time intervals during which the 
system is empty are also exponentially distributed 
and the path Q (.) jumps from the origin to Q (.) = 
k with probability gk according to the arrival of a 
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new k- size group (k = 1, 2,...). 
The diffusion process {X (t): t ≥ 0} with the E. 

R. B. satisfies the following differential equations 
(see Feller [15]) 

{ }

{ }

∑
∞

=
−δλ

+
∂
∂

−
∂

∂=
∂
∂

1k
)kx(kg)t(p

)x/t,x(f)x(b
x

)x/t,x(f)x(a2x

2

2
1

t
f

0

0

 

 (1) 

and  

{ }

0x)x/t,x(f)x(b

)0x/t,x(f)x(a
x2

1)t(p
t

)t(P

0 ↑

−
∂
∂+λ−=

∂
∂

  

 (2) 

where f(x, t/x0) denotes the probability density 
function of X (t), P (t) is the probability that the 
process X (t) is at the origin at time t and δ (.) is 
the Dirac delta function. The conservation of 
probability leads to the following conditions:  

∫
∞

=+
0

0 1dx)x/t,x(f)t(P  (3) 

The boundary condition at x = 0 and the initial 
condition at t = 0, are given by  

0)x/t,x(flim 00x
=

→
 (4) 

f (x, 0/x0) = δ (x-x0) (5a) 
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It is evident that there exits a continuous 

solution of Equation 1 even if the functions b(x) 
and a(x) are piecewise continuous with a finite 
number of first order discontinuities. 

 For k = 1, 2,..., we introduce the following 
notations: 
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Because of the continuity of f(x, t/x0), we 
impose the following smoothing conditions: 
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For notational convenience, we denote 

qk (t/x0) = fk (k, t/x0) 
k = 1, 2, ....., m-1. 

and 
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From the condition (4), we have q0(t/x0) = 0 for 
all t ≥ 0. Now the problem of solving the 
differential Equation 1 reduces to the following 
initial boundary value problem, 
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)x/t(q)x/t,1k(f 01k0k −=−  (8a) 

)x/t(q)x/t,k(f 0k0k =  (8b) 
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)xx()x/0,k(f 00k −δ=  (8c) 

for k –1< x < k, t >0, k = 1, 2, ….. , m-1. 

3. TRANSIENT SOLUTION 

We rewrite the above system of Equations 7 – 8 (a-
c) as  
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where y = x-k+1 and F(y, t) = f (y + k-1), 0 ≤ y ≤ 1 
and t ≥ 0. Then from Equations 8 and 9, we have 
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Solving Equation 11 by taking Laplace 
transform with respect to t of both sides, we have 
(see Carrier and Carl [16] ) 
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     Simplifying Equation 13 in the same manner as 
done by Choi and Shin [3], we have 
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Now we will determine )x/s(q 0
*
k in the above 

expression in terms of known parameters. Taking 
Laplace transform of Equation 2 with respect to t 
and then integrating with respect to x, we get 
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Making use of Equation 14, we have 
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Taking Laplace transform of Equation 2, we get 

[ ] )0()()( *
0

*
1, PsPsfV

xsx −+=
↓

λ  (18) 

From Equations 14 and 17, we have  

1
1

*

1

*
1

1)()(1)(
B

gsPs
B

sf −+= λ  (19) 

Similarly from Equations 14 and 18, we get 

)s(P)gg(
B

)s(f
a
b2exp

B
B)s(f

B
C)s(f

*
1kk

k

*
2k

1k

1k

k

1k*
1k

k

k*
k

−

−
−

−−
−

−λ+







−=

 

 (20) 

where 

.....,2,1k
ASinh

1
a
bexp

2
AaB

kk

kkk
k

=







−=

 (21) 

and 

....),2,1k(,
ASinh
ACoshAa

2
b

ASinh
ACosh

2
Aa

2
bC

k

k
kk

k

1k

1k1k1k1k
k

=+

++−=
−

−−−−

 

 (22) 

The normalizing condition (3) leads to 
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Using Equation 14, P*(s) can be determined in 
terms of known parameters.  
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4. STEADY STATE DIFFUSION 
APPROXIMATION 

Kimura and Ohsone [14] have considered diffusion 
approximation for MX/G/m queuing system in the 
steady state. Now we derive the steady state results 
for GX/G/m queuing system with balking and 
reneging by letting t → 0 in the transient solution 
obtained in Section 3. 

We shall show that in particular case our 
results are similar to those of Kimura and Ohsone 
[14]. For steady state when t ∞→ , we define 
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Using Equation 21, the results become 
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Now using Equation 14, we get  
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From Equation 3, the steady state probability P is 
given by  
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In case when bk = 0 for some k (it should be noted 
that it is unique if it exists), P can be obtained by 
letting bk tends to zero in Equation 29. 
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5. DISCUSSION 

In this paper, we have analyzed a multi-server 
transient queuing system with group arrivals via 
diffusion approximation. The considered model 
is of interest from the view of its practical 
applications in real life. Using Laplace transform, 
the p. d. f. for the number of customers in the 
system is derived. Finally by letting t ∞→ in the 
transient solution, results for the steady state are 
obtained.  

For discretizing the continuous probability 
density function f (x, t/x0), we can adopt any one of 
the following methods: 
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But it is more convenient to choose method (i). 
To obtain approximate numerical inversion f(t) of f 
* (s) at time t, we can use Stefest’s [17] result given 
by 
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The novel feature of suggested diffusion 
approximation lies in the fact that explicit results 
can be obtained for relatively complex situation in 
terms of means and variances of inter-arrival 
service time and group size distributions.  
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