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Abstract   This paper describes the various frequency domain methods which may be used to 
analyze experiments data on the force experienced by a circular cylinder in wave and current to 
estimate drag and inertia coefficients for use in Morison�s equation. An additional approach, system 
identification techniques (SIT) is also introduced. A set of data obtained from experiments on heavily 
roughened circular cylinders in waves and simulated current has been analyzed by all these 
techniques. The resulting force coefficients are then used to predict the force from separate 
experiments-results, which have not used in the analysis. The root mean square error and bias in the 
estimation of maximum force in each wave cycle is used a measure of predictive accuracy and as a 
basis for comparing the analysis techniques. The case when wave particle kinematics must be inferred 
from water surface elevation is also considered. It is found that when water particle kinematics are not 
possible to be measured directly and have to be inferred from surface elevation then using a system 
identification approach, the predictive errors increase considerably. 
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Reflection, Particle Kinematics 

 استفاده در آناليز داده ها به منظور تخمين ضرايب          مورد   اين مقاله روشهاي مختلف در حوزه فركانسي           چكـيده چكـيده چكـيده چكـيده 
 تشريح  راهاي واقع در امواج و جريانات پايا      هيدروديناميكـي درگ و اينرسـي در معادله موريسون روي استوانه          

داده هاي بدست آمده از آزمايش بر سيلندرهاي استوانه اي با سطح كاملاً            . كندمعرفـي مي     ار SIT روش   نمـوده و  
 سپس ضرايب بدست آمده از      .زبر واقع در امواج و جريانات شبيه سازي شده توسط اين روشها آناليز گرديده اند              

 ـايـن آنالـيز      تلف آناليز در هر سيكل     براي مقايسه روشهاي مخ   . ر يـك سري داده هاي ديگر بكار گرفته شده اند          ب
همچنين حالتي كه در    .  استفاده شده است   MNE و ميانگين خطاي نرمال      RMSEمـوج از جذر ميانگين مربعات       

ملاحظه گرديد كه   . بايست از سطح دريا بدست آيد، مورد بررسي قرار گرفته است           آن سـينماتيك ذرات آب مي     
 ممكن نباشد و بايد از سطح دريا با استفاده از تئوري وقتـي كـه سينماتيك درات آب جهت اندازه گيري مستقيماً     

 .دهد  خطاي نيروهاي تخميني بطور قابل ملاحظه اي كاهش ميSITموج تعيين گردد، استفاده از روش 

1. INTRODUCTION 

There has been a considerable volume of experimental 
research undertaken to estimate the force coefficients 
in Morison's equation, which parallels the growth 
in the number of tubular jacket structures used for 
offshore oil and gas recovery. Much of the early 
work was undertaken at small-scale and the results 

from these small-scale experiments are not directly 
applicable. 
     The 3-dimensional random waves found offshore 
can be reproduced in multi-directional wave basins 
in the laboratory but this is usually on too small 
scale to achieve post-critical flow conditions for 
large a wide range of KC for circular cylinders 
unless the relative roughness coefficient (k = 
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average roughness height / cylinder diameter) is 
very large. To achieve the required Re experiments 
have been undertaken in various flow conditions 
using various techniques including: 
• steady flow obtained using a cylinder suspended 

beneath a carriage in a towing tank, oscillating 
water in a large U-tube past a fixed cylinder 
(e.g. [1])  

• moving cylinders using a bi-directional carriage 
[2]  

• regular and random long-crested waves in a 2-
dimensional wave flume (e.g. [3]). 

     The last provides the most realistic representation 
of offshore conditions currently available in the 
laboratory and the experiments described and 
discussed in this paper were undertaken in a large 
2-D wave flume.  
     Experiments have been undertaken offshore in 
real sea waves, notably at the Christchurch Bay 
Tower (CBT) off the south coast of England [4] 
and at the Ocean Test Structure (OTS) in the Gulf 
of Mexico. Unfortunately measurements offshore 
at the time of these experiments were difficult and 
accurate simultaneous measurements of wave 
particle kinematics, wave surface elevation and 
wave force close to the axis of a test cylinder with 
a well-defined surface roughness have not all been 
obtained. However these experiments have 
provided some very useful data obtained in the 
most realistic possible conditions. 
     A variety of procedures have been used to 
analyze experiment data in the context of 
Morison's equation and to predict Cd and Cm. The 
methods used in frequency domain analysis are 
described in Section 3 of this paper. 
     To reflect the usual offshore design and 
assessment procedure the above test can be altered 
by ignoring the measured particle kinematics and 
just using the surface elevation from the second 
part of the experimental data. The particle 
kinematics is then predicted using a wave theory to 
provide the input into the predicted Morison force 
time series. In this case it is appropriate in the 
analysis stage to estimate the particle kinematics 
from the surface elevation (using the same wave 
theory) and to use these estimates to obtain 
corresponding force coefficients. 
     On this basis it has been possible to compare 

both the various analysis procedures, and the 
ability of the various wave theories to predict 
particle kinematics for this particular set of 
experiments. It is also possible to give some 
measure of the uncertainty and bias involved in 
using Morison's equation for the prediction of in-
line forces which should be helpful in structural 
reliability calculations and structural assessments. 
     The next section of the paper describes the 
experiments that were undertaken as part of an 
EC/MTD funded project in the Delft Hydraulics 
Laboratories (DHL) long wave flume at DeVoorst 
in Holland. The third section describes the various 
methods for the prediction of force coefficients 
from experiment data. The fourth section deals 
with the prediction of wave particle kinematics 
from different wave theories. The fifth section 
presents a discussion of the results from the 
analysis of the experiment data using the various 
approaches and the associated mean errors and 
bases. Finally some conclusions are drawn. 

2. DESCRIPTION OF THE EXPERIMENTS 

A series of experiments were done to examine the 
wave loading on two large-scale circular cylinders 
in the Delft Hydraulic Laboratory�s (DHL) Delta 
wave flume on the northeast Polder near Emmeloord 
in Holland. The flume is 230m long, 5m wide, 
7m deep and during all tests was filled with water 
to a depth of about 5m. The waves were 
generated either in regular or random form by a 
programmable piston-type wave maker. Most of 
their energy was dissipated at the other end of the 
flume through the use of a compound concrete 
beach and a little part of energy was reflected so 
that the maximum reflection coefficient was about 
10%. The beach consists of three different slopes, 
1:4, 1:6 and 1:16 with horizontal lengths, 12m, 
18m and 16m respectively. 
     Regular random waves were generated with the 
range of periods from about 3 to 10 seconds. The 
wave heights were up to about 2m over most of the 
range of periods and at some frequencies breaking 
waves occurred occasionally. The results presented in 
this paper are for experiments in long crested 
random waves with a significant wave height of 
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1.5 m and a peak period of 5.9 second. 
     For simulating the effects of current and 
combined wave/current flows the flume was 
equipped with a towing carriage system with 
dimensions of about 8m by 6m in plan. It runs on a 
set of rails fixed on the top of the flume walls and 
can attain steady velocities up to 1m/s. For the 
experiments analyzed here the carriage speed was 
1m/s and 0.5m/s and the towing distance was 
approximately 110m. The two vertical cylinders 
used for the experiments described in this paper 
had diameters of 0.21m (small) and 0.5m (large) 
and were mounted in turn on the towing carriage 
and at a fixed location (16m from the toe of the 
beach and 164m from wave maker) in the flume. A 
mobile cylinder in the flume mounted on the 
carriage is given in [5, 6]. Both cylinders were 
manufactured from stainless steel and were 
covered with the roughness pattern. The roughness 
elements were cast in fiberglass in the form of two 
semi-circular shells which were strapped to the 
cylinder giving an effective roughness ratio D/k r  
(where rk  is average height of roughness 
projections and D is cylinder diameter) was 0.038 
and a corresponding effective diameter of the large 
and small rough cylinders of 0.513m and 0.216m 
respectively.  
     In the mobile cases the cylinder was rigidly 
fixed to the carriage at the top and had a heavy 
horizontal plate rigidly attached at the bottom. The 
instruments important to the author's work are the 
force sleeves, wave height gauges, the water 
particle velocity meters and static pressure probes.  
     Measurements of the wave force time series for 
both cylinders were obtained using two-component 
strain-gauged transducers, each 0.5D long and 
capable of measuring both the in-line (in the 
direction of wave propagation) and transverse 
forces (orthogonal to the in-line force). 
     The small cylinder had 5 forces sleeves of 
which four were below the mean water level 
(MWL), and the large cylinder had two force 
measuring sleeves below the MWL. The upper two 
force sleeves on the small cylinder were close to 
the free surface and, dependant upon the wave 
conditions used, were not continuously immersed 
in the waves. The author has examined the data 

from all the force sleeves but the results presented 
in this paper were derived from force 
measurements at position 2 as shown in [5] for 
both the small and the large cylinder. This decision 
was made so that any water free surface effects 
and bottom effects on the results presented were 
negligible. 
     Water surface elevation was measured using 
two wave gauges, resistance wave gauge and 
follow wave gauge. Water particle velocities were 
always measured at the elevation of the force 
sleeves by means of two different kinds of 
instrumentation i.e. electromagnetic flow meters 
(EMF) and perforated ball velocity meters (PVM).  
     The A/D converter digitized the analogue 
voltages from the wave probes and load cell. A 
sampling frequency of 40 Hz was used in the 
experiments for all the data has been stored in 
binary format as 2 byte integers.  

3. METHOD FOR ESTIMATING FORCE 
COEFFICIENTS 

3.1 Estimating of Force Coefficients from 
the Kinematics and Measurement Force Using 
System Identification Techniques (SIT) 
The basic object of system identification for an in-
put/output physical system is to obtain a functional 
which maps the input or excitation to the output or 
response. The different techniques of this method 
are widely used in parameter estimation of non-
linear systems [7]. 
      Kaplan et al. [8] used a method of system 
identification for determining the Morison's 
equation coefficient values. A slightly different 
method based on a block structural system that has 
been developed in [9] was used in [10, 11] for non-
linear frequency modeling of random wave force 
on a pile. 
     Assuming that u is normally distributed with 
mean zero and standard division σ , Borgman [12] 
determined the best linear, cubic and quintic 
approximation for u|u| term in the least square 
sense. He showed that the linear approximation 
offers a reasonable solution only to about two 
standard deviations whilst the cubic is good to 
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more than three and the quintic to about four 
standard deviations. The quintic approximation is 
thus only slightly better than the cubic, which is 
quite an improvement over the linear expression. 
Considering the least square approximation to u|u| 
by a third-order polynomial [9] the resulting 
linearization in the Morison's equation for velocity 
is given as: 
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where uσ  is standard deviation of u. In a co-
existing wave and current field u has a non-zero 
mean normal distribution ( Uu =µ  where U is the 
current speed) and the least-square linear estimate 
for u|u| is determined [12] by minimizing: 
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where uu σµ=γ  is a parameter measuring the 
strength of the current, uµ  is mean value of water 
particle velocity which is equal with current speed 
and  
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     In a linear wave force model using the linear 
approximation (Equations 1), the Morison's equation 

(with no current) can be written as: 
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where D is cylinder diameter and • is density of 
water. For the linear system described by Equation 
5 if a constant amplitude harmonic input given by 

ft2i
0ef)t(f π=  (7) 

is applied, the corresponding output u(t) will be 
given by 

ft2i
0 ef)f(T)t(u π=  (8) 

Substituting the Equations 7 and 8 into the 
Equation 5, then the system frequency response 
function (FRF) is given 
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Therefore in the frequency domain  

)f(F)f(T)f(U =  (10) 

where U(f) and F(f) are the Fourier transfer func-
tions of water particle velocity and measured force 
respectively. 
Or 
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where )f(Tuf  is the linear transfer function 
between velocity (u) and force (f). 
     Now by choosing two non-dimensional real 
parameters C fmf ( )  and C fdf ( ) : 
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and using suitable experiment data from random 
wave experiments for measured force and 
corresponding water particle velocity one can 
estimate (e.g. [13, 14]) the transfer function: 
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where )f(G uu  is the one-sided spectral density 
function of the input i.e. measured particle velocity 
and )f(G uf  is the cross-spectral density of the 
input and output i.e. measured particle velocity 
and measured force. Finally by using Equations 12 
and 13 estimates of the hydrodynamic coefficients 
can be found as functions varying with frequency. 
     Furthermore as 
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then the ordinary coherence function is 
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and the corresponding noise output spectrum is 
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     This gives a measure of the correctness of the 
model in describing the experiment data. Obviously 
the noise spectrum will be small for a good fit. 
     This model can be extended for a non-linear 
form of Morison's equation where the cubic 
approximation is used in this paper. 

     In this model, 5.0
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9
2(

πσ
=α , lT  and nT  

represent the transfer function of the linear and 
non-linear parts of Morison's equation. 
     Morison's equation is then written using the 
cubic approximation as: 
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In this case, using the harmonic probing of the 
Volterra series [15], the second-order frequency 
response function can be shown to be zero as the 
nonlinearity is an odd power. The first and third 
order ones can be determined [16] as: 
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The Fourier transformation of Morison's equation 
is then given by:  
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where )f(U 3*  is a triple convolution of )f(U  with 
itself. 
     Decomposing the Morison force into linear and 
non-linear components yields the frequency 
response functions of drag and inertial loading ( 1T  
and 3T ) which in turn yield the expressions below 
for )f(C df  and )f(Cmf : 
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The above method may be extended to the case of 
combined current and waves. 

3.2 Estimating of Force Coefficients from 
Wave Surface Elevation and Measurement 
Force Using (SIT)   Using linear wave theory 
the kinematics can be obtained from surface 
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elevation as: 
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where d is the still water depth, z is the elevation 
of the measured velocity above the seabed, η  is 
the surface elevation, iq  is the horizontal velocity 
transfer function, k is the wave number which is 
related to the wave angular frequency ω through 
the linear dispersion relationship: 

dktanhgkf2 iiii =π=ω  (24) 

where g is the acceleration of gravity and f is fre-
quency. 
     If the wave has one frequency component then 
the kinematics can be predicted without any 
difficulty from surface elevation as 
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     In this case in wave-by-wave analysis linear 
theory is assumed. Then using the linear 
approximation Morison's equation can be written 
as: 
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     The case when reflection is not negligible, 
Equation 26 can be corrected with a coefficient 

∗
rC  [17]. For DHL data analysis it can be 

considered as a constant, 0.05 [6]. 
     For a linear system if a constant amplitude 
harmonic input is used then the system frequency 
response function (FRF) is given by: 
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where )f(T fη  is the linear transfer function 
between surface elevation and force and H(f) and 
F(f) are the Fourier transformations of surface 
elevation and force respectively. Then the two 
non-dimensional real parameters )f(Cmf  and 
C fdf ( )  can be found from the following equations: 
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     From linear wave theory the Fourier 
transformation of kinematics can be related to 
surface elevation by: 
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where )f(H  is the Fourier transform of the surface 
elevation. 
     Using the asymptotic value of the cosh 
function, the velocity transfer function q given by 
Equation 23 simplifies to a constant and can be 

written as 
d
gq ≈ . This assumption can be made 

when the analysis is limited to long waves. By 
using this expression for transfer function then the 
hydrodynamic coefficients can be determined from 
Equations 29 without using wave-by-wave methods. 
     This model can be extended for the non-linear 
form of Morison's equation where a cubic 
approximation is used. 
 

3.3 Frequency Domain Analysis Using Least 
Squares   In the frequency domain the hydrodynamics 
force coefficients can be determined from the 
spectral density of force using the least square 
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method. 
     Using linearization of the drag term in 
Morison's equation and ensemble averaging with 
the Gaussian random wave model, Borgman [18] 
showed that the corresponding power spectral 
density for f(t) is: 
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where S() denotes the power spectral density 
of a record (force, velocity and acceleration 
respectively).  
     When there is a current in addition to waves 
then Equation 31 may be shown (Li & Kang, 
1992) to take the form: 
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where the terms have the same meaning as in 
Equation 3. 
     Using linear wave theory the spectral densities 
of velocity and acceleration are related to the spec-
tral density of the sea surface )f(Sη , by: 
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Using the least squares method in the form corre-
sponding to that given in [19], MK  and DK  is 
given by: 
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where N is the number of discrete frequencies at 
which the spectrum is computed from the time 
series analysis and all the spectral densities are 
determined from the time histories. In laboratory 
experiments where the velocity time history is 
available the first part of Equation 33 does not 
need to be used. 
     It should be noted that the accuracy of this 
method for evaluating MC  and DC  may be limited 
due to the first order linear approximation of 
velocity on the one hand and the possible 
unsuitability of the data for the least square 
method according to Dean's reliability ratio on the 
other hand. 

3.4 Cross-Spectral Density Fitting   The 
hydrodynamic force coefficients can be obtained 
from the cross-spectral density between surface 
elevation and wave force as indicated in [20]. 
Using this method and considering a linearization 
of the Morison's equation the cross-spectrum of 
waves and wave force can be obtained as follows 
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where )f(S fη , )f(S uη  and )f(S u&η  are cross-
spectra of wave surface elevation and force, 
velocity and acceleration respectively. These three 
cross-spectra may be estimated from measured 
data and can be divided into the real and imaginary 
parts, so that the force coefficients as functions of 
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frequency may be obtained as: 
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where ijC  and ijQ  indicate the real and imaginary 
part of cross-spectra of the two time series (I & j) 
and the subscribes of η , u, u&  and f indicate to 
surface elevation, velocity, acceleration and force 
time series respectively. 
     In the case of current as well as waves then 
Equation 36 may be written as: 
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and the drag coefficient is given by: 
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     The inertia coefficient remains the same as 
Equation 38. 
     The frequency-dependent parameters of dC (f) 
and mC (f), may only have validity in the range of 
frequencies where most of the wave energy (about 
90 %) is concentrated. A fuller discussion of these 
methods, their approximations and practical 
limitations is given in [6]. 

4. ESTIMATING WAVE PARTICLE KINEMATICS 
FROM WAVE SURFACE MEASUREMENTS 

The computation of water particle kinematics is 
one of the most important tasks in the determination 
of force on slender offshore structures where 

Morison's equation is used. 
     It is shown through this paper that the 
uncertainties in the estimation of kinematics can 
play an important role in comparing with 
uncertainties of hydrodynamic coefficients (Cd 
and Cm). These uncertainties are relative to using 
different methodology of Cd and Cm and different 
wave kinematics models. A comparison in this 
paper shows that the choice of wave theory 
represents a choice with a large impact on the 
corresponding force. 
     The simplest approach to the prediction of 
kinematics is to use linear theory. This method 
cannot give good accuracy at the near surface due 
to the non-linearity of the free surface boundary 
condition.  
     Stokes' theory is widely used in the design and 
analysis of offshore structures, and in this paper 
fifth-order, third-order and first-order (Airy theory 
or linear theory) Stokes theory are considered. In 
this study because the current exists in most of the 
experiments, Fenton's method [21] has been used 
to predict the wave kinematics from surface 
elevation. The details of the description and 
formulation of this method are given by (e.g. [22]) 
and are not repeated here.  
     Each random wave in a record has been 
replaced with a single deterministic wave, and then 
the corresponding velocity and acceleration time 
series have been obtained through wave-by-wave 
analysis using each wave theory in turn. This 
predicted kinematics has been compared with the 
measured ones. 
     In the De Voorst wave flume the beach is not 
perfect and the coefficient of wave reflection is 
about 0.1 over most of the range of frequencies 
used in the experiments described here.  
     Guza, et al. [23] developed a time domain 
method to decompose the long waves into seaward 
and shoreward propagating components by using a 
pressure gage and current meter located on the 
same vertical line in the water column. The detail 
of this method is given in [24] and in this paper 
that method has used for the decomposition of 
surface elevation time series into the incident and 
reflected wave train. It can be shown that the 
incident and reflected wave train ( iη  and rη ) are 
given by 
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By using the Airy theory, Stokes' third and fifth 
order theory (Fenton method) and using the 
incident and reflected wave time series the 
corresponding horizontal wave particle kinematics 
are estimated. 

5. DISCUSSION OF RESULTS 

5.1 Variation of Force Coefficients and 
Predictive Accuracy with Analysis Method   
Tables 1, 2 show the mean values of Cd and Cm 
obtained using the various analysis methods 
described in Section 3.  
     The system identification approach is only con-
sidered here for the cases where there is no cur-
rent. The author obtained very poor results when 
attempts were made to include current and these 
results are not included. The addition of the non-
linear term makes little difference for the large pile 
case, as could be predicted from examination of 
the coherence function shown in Figure 1. Interest-
ingly the non-linear term does make a contribution 
to the coherence function at the high frequency 
and for the small pile, Figure 3, but the overall re-
sult is a very distinct decrease in predictive accu-
racy both in terms of RMSE and bias. 
     Consider now the results obtained using 
frequency domain spectral analysis methods, 
which assume linear wave theory and have been 
applied to the entire time series of each run rather 
than on a wave-by-wave basis. The least squares 
(or "auto-spectral") method gives single values of 
Cd and Cm irrespective of frequency as can be 
seen from Equations 34 and 35. 
     The "cross spectral " method produces Cd and 
Cm values which are functions of frequency as can 
be seen from Equations 37 and 38 and in Figures 5 
and 6 which shows the results obtained for fixed 
large pile and mobile small pile respectively. The 
standard deviations quoted in Tables 1-3 relate to 
this variation with frequency. The cross-spectral 
method consistently gives lower values of Cd than 
the "auto-spectral" method and generally has 
higher predictive accuracy. 

5.2 Predicting Particle Kinematics from 
Wave Surface Elevation   It is just wave height 
and period that are available to represent offshore 
wave conditions in the majority of cases. The 
prediction of wave particle kinematics from the 
wave height and period measured during the 
experiments using various wave theories has been 
compared with the measured particle velocities. 
The results are presented in Table 4 for the case 

 
 
Figure 1. Coherence Function for Run 1 (Using System 
Identification Technique, Non-Linear Model). 
 
 
 
 

 
 
 
Figure 2. Variation of Cd and Cm with Frequency Using 
System Identification Technique, Non-Linear Model, (Run1). 
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TABLE 1. Values of mC  and dC  from the Analysis Methods in the Random Waves for a Fixed Large Pile (Run 1). 

 

Methods of Analysis Cd(mean) dCσ  Cm(mean) mCσ  %MNE %rmse 
Linear 1.41 0.40 1.93 0.44 11.03 14.70 
non-linear 1.42 0.58 1.93 0.44 10.93 14.63 
surf. elev. *

rC =0 1.66 0.28 1.96 0.81 7.56 12.67 
System 
Identification 
Method 

surf. elev. *
rC =0.05 2.02 0.34 2.17 0.90 -4.16 12.69 

auto-spectrum 2.26 --- 1.87 --- 1.94 14.54 Spectral 
Analysis cross-spectrum 1.57 0.69 1.95 1.08 8.70 13.24 

mean value 1.72 0.46 1.97 0.73 6.00 13.75 
 

TABLE 2. Values of mC  and dC  from the Analysis Methods in the Random Waves for a Mobile Large Pile (Run 2). 

 

Methods of Analysis Cd(mean) dCσ  Cm(mean) mCσ  %MNE rmse% 
auto-spectrum 1.14 --- 2.32 --- 22.6 23.4 Spectral 

Analysis cross-spectrum 1.10 0.49 2.34 1.31 24.81 25.55 
Mean value 1.12 0.49 2.33 1.31 23.70 24.47 

 
TABLE 3. Values of mC  and dC  from the Analysis Methods in the Random Waves (Averaged in the Six Runs). 

 

Methods of Analysis % bias % RMSE Cd(mean) Cm(mean) 
linear 8.35 15.83 1.58 1.82 
non-linear 16.43 19.68 1.35 1.89 
surf. elev. Cr

* =0 14.42 18.55 1.52 1.81 
Frequency Domain (System 
Identification Method) 

surf. elev. Cr
* =0.05 5.32 14.49 1.86 2.00 

auto-spectrum 24.14 30.80 1.82 1.79 Spectral Analysis 
cross-spectrum 15.93 20.6 1.47 1.98 

mean value 14.10 19.99 1.60 1.88 
 
TABLE 4. Accuracy of Prediction of Water Particle Velocity and Acceleration in the Random Waves with Different Current 
Speeds (Reflection was Considered). 
 

velocity error acceleration error Data Wave theory 
MNE% %RMSE MNE% RMSE% 

linear 7.90 17.50 6.23 17.18 
Stokes 3rd 8.07 18.35 9.43 18.24 Run1 
Stokes 5th 8.53 18.45 9.67 18.21 
linear 1.30 8.11 11.39 20.76 
Stokes 3rd -0.70 8.40 12.03 20.57 Run2 
Stokes 5th -0.45 8.36 12.57 20.82 
linear 5.67 13.25 12.35 21.26 
Stokes 3rd 6.60 14.96 14.22 21.87 %Mean error 

(for 6Runs) 
Stokes 5th 6.73 14.81 14.75 22.24 
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where reflection is considered using the linear 
approach discussed in Section 4. The reflection 
coefficient is around 0.1 for the range of 
frequencies over which at least 90% of the wave 
energy is concentrated. In these Tables the reference 
acceleration has been obtained by differentiating 
the smoothed measured velocity signal. 
     When no correction for reflection is made the 
velocity predicted from the wave height and period 
is in all cases (except Run6) larger than the 
measured velocity. Interestingly both the average 
bias and the RMSE are least, by a small margin, 
for linear wave theory. When a correction for 
reflection is made the particle velocities are 
underestimated with bias of around 6% and the 

RMSE for the velocities are lower. Interestingly 
linear theory appears to give the best results 
whether or not reflection is considered. This might 
in part be attributed to the fact that the correction 
for reflection is based on linear theory. What the 
results illustrate is the difficulty in predicting wave 
particle kinematics from surface elevation even 
when there is just a relatively small amount of 
wave reflection in a wave flume. In real sea 
conditions, where the wave energy may be spread 
all a wide range of directions, prediction of 
particle kinematics will probably result in errors of 
at least these magnitudes. This highlights the value 
of direct measurement of water particle kinematics 
in the wavetank (and offshore).  

 
 
Figure 3. Coherence function for Run 4 (using system 
identification technique, non-linear model). 
 

 
 
Figure 4. Variation of Cd and Cm with frequency using system 
identification technique, non-linear model, (Run 4). 

 
 
Figure 5. Variation of Cd and Cm with often frequencies using 
cross-spectral density fitting (fixed large pile Run1) 
 
 

 
 
Figure 6. Variation of Cd & Cm with often frequencies using 
cross-spectral density fitting (mobile small pile, U=-0.5 m/sec) 
Run6. 
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6. CONCLUSIONS 

It is clear that the method used to analyze experiment 
data in terms of Morison�s equation has a significant 
affect on both the force coefficients obtained and 
their predictive accuracy. It is found that no single 
method is consistently better under all circumstances. 
The other analysis methods whilst a little poorer 
worked satisfactorily except for the auto- and cross-
spectral analysis approaches which gave some 
extreme results are susceptible to numerical 
instability and should be avoided. 
     When particle kinematics are not available and 
have to be inferred from surface elevation the errors 
increase. The additional error associated with particle 
kinematics prediction is not significantly reduced 
when account is taken of reflected waves using linear 
correction. Linear wave theory was significantly 
better than Stokes� third order and marginally better 
than fifth order theory at predicting particle 
kinematics. The average bias and RMSE in predicted 
force, for all methods and all experiment runs, were -
8% and 29% respectively, indicating that if at all 
possible water particle kinematics should be 
measured directly. If this is not possible then using a 
Systems Identification approach as outlined in 
Section 3.2 seems to give the best result as can be 
seen from the bias and RMSE given in Table 3. 
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