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Abstract  This paper describes the various frequency domain methods which may be used to
analyze experiments data on the force experienced by a circular cylinder in wave and current to
estimate drag and inertia coefficients for use in Morison’s equation. An additional approach, system
identification techniques (SIT) is also introduced. A set of data obtained from experiments on heavily
roughened circular cylinders in waves and simulated current has been analyzed by all these
techniques. The resulting force coefficients are then used to predict the force from separate
experiments-results, which have not used in the analysis. The root mean square error and bias in the
estimation of maximum force in each wave cycle is used a measure of predictive accuracy and as a
basis for comparing the analysis techniques. The case when wave particle kinematics must be inferred
from water surface elevation is also considered. It is found that when water particle kinematics are not
possible to be measured directly and have to be inferred from surface elevation then using a system
identification approach, the predictive errors increase considerably.

Key Words  Morison’s Equation, System Identification Techniques, Stokes Theory, Wave
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1. INTRODUCTION

There has been a considerable volume of experimental
research undertaken to estimate the force coefficients
in Morison's equation, which parallels the growth
in the number of tubular jacket structures used for
offshore oil and gas recovery. Much of the early
work was undertaken at small-scale and the results
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from these small-scale experiments are not directly

applicable.

The 3-dimensional random waves found offshore
can be reproduced in multi-directional wave basins
in the laboratory but this is usually on too small
scale to achieve post-critical flow conditions for
large a wide range of KC for circular cylinders
unless the relative roughness coefficient (k =
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average roughness height / cylinder diameter) is

very large. To achieve the required Re experiments

have been undertaken in various flow conditions
using various techniques including:

* steady flow obtained using a cylinder suspended
beneath a carriage in a towing tank, oscillating
water in a large U-tube past a fixed cylinder
(e.g. [1])

¢ moving cylinders using a bi-directional carriage
[2]

¢ regular and random long-crested waves in a 2-
dimensional wave flume (e.g. [3]).

The last provides the most realistic representation
of offshore conditions currently available in the
laboratory and the experiments described and
discussed in this paper were undertaken in a large
2-D wave flume.

Experiments have been undertaken offshore in
real sea waves, notably at the Christchurch Bay
Tower (CBT) off the south coast of England [4]
and at the Ocean Test Structure (OTS) in the Gulf
of Mexico. Unfortunately measurements offshore
at the time of these experiments were difficult and
accurate simultaneous measurements of wave
particle kinematics, wave surface elevation and
wave force close to the axis of a test cylinder with
a well-defined surface roughness have not all been
obtained. However these experiments have
provided some very useful data obtained in the
most realistic possible conditions.

A variety of procedures have been used to
analyze experiment data in the context of
Morison's equation and to predict Cd and Cm. The
methods used in frequency domain analysis are
described in Section 3 of this paper.

To reflect the usual offshore design and
assessment procedure the above test can be altered
by ignoring the measured particle kinematics and
just using the surface elevation from the second
part of the experimental data. The particle
kinematics is then predicted using a wave theory to
provide the input into the predicted Morison force
time series. In this case it is appropriate in the
analysis stage to estimate the particle kinematics
from the surface elevation (using the same wave
theory) and to use these estimates to obtain
corresponding force coefficients.

On this basis it has been possible to compare
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both the various analysis procedures, and the
ability of the various wave theories to predict
particle kinematics for this particular set of
experiments. It is also possible to give some
measure of the uncertainty and bias involved in
using Morison's equation for the prediction of in-
line forces which should be helpful in structural
reliability calculations and structural assessments.

The next section of the paper describes the
experiments that were undertaken as part of an
EC/MTD funded project in the Delft Hydraulics
Laboratories (DHL) long wave flume at DeVoorst
in Holland. The third section describes the various
methods for the prediction of force coefficients
from experiment data. The fourth section deals
with the prediction of wave particle kinematics
from different wave theories. The fifth section
presents a discussion of the results from the
analysis of the experiment data using the various
approaches and the associated mean errors and
bases. Finally some conclusions are drawn.

2. DESCRIPTION OF THE EXPERIMENTS

A series of experiments were done to examine the
wave loading on two large-scale circular cylinders
in the Delft Hydraulic Laboratory’s (DHL) Delta
wave flume on the northeast Polder near Emmeloord
in Holland. The flume is 230m long, Sm wide,
7m deep and during all tests was filled with water
to a depth of about 5m. The waves were
generated either in regular or random form by a
programmable piston-type wave maker. Most of
their energy was dissipated at the other end of the
flume through the use of a compound concrete
beach and a little part of energy was reflected so
that the maximum reflection coefficient was about
10%. The beach consists of three different slopes,
1:4, 1:6 and 1:16 with horizontal lengths, 12m,
18m and 16m respectively.

Regular random waves were generated with the
range of periods from about 3 to 10 seconds. The
wave heights were up to about 2m over most of the
range of periods and at some frequencies breaking
waves occurred occasionally. The results presented in
this paper are for experiments in long crested
random waves with a significant wave height of
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1.5 m and a peak period of 5.9 second.

For simulating the effects of current and
combined wave/current flows the flume was
equipped with a towing carriage system with
dimensions of about 8m by 6m in plan. It runs on a
set of rails fixed on the top of the flume walls and
can attain steady velocities up to lm/s. For the
experiments analyzed here the carriage speed was
Im/s and 0.5m/s and the towing distance was
approximately 110m. The two vertical cylinders
used for the experiments described in this paper
had diameters of 0.21m (small) and 0.5m (large)
and were mounted in turn on the towing carriage
and at a fixed location (16m from the toe of the
beach and 164m from wave maker) in the flume. A
mobile cylinder in the flume mounted on the
carriage is given in [5, 6]. Both cylinders were
manufactured from stainless steel and were
covered with the roughness pattern. The roughness
elements were cast in fiberglass in the form of two
semi-circular shells which were strapped to the
cylinder giving an effective roughness ratio k, /D

(where k, 1is average height of roughness

projections and D is cylinder diameter) was 0.038
and a corresponding effective diameter of the large
and small rough cylinders of 0.513m and 0.216m
respectively.

In the mobile cases the cylinder was rigidly
fixed to the carriage at the top and had a heavy
horizontal plate rigidly attached at the bottom. The
instruments important to the author's work are the
force sleeves, wave height gauges, the water
particle velocity meters and static pressure probes.

Measurements of the wave force time series for
both cylinders were obtained using two-component
strain-gauged transducers, each 0.5D long and
capable of measuring both the in-line (in the
direction of wave propagation) and transverse
forces (orthogonal to the in-line force).

The small cylinder had 5 forces sleeves of
which four were below the mean water level
(MWL), and the large cylinder had two force
measuring sleeves below the MWL. The upper two
force sleeves on the small cylinder were close to
the free surface and, dependant upon the wave
conditions used, were not continuously immersed
in the waves. The author has examined the data
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from all the force sleeves but the results presented
in this paper were derived from force
measurements at position 2 as shown in [5] for
both the small and the large cylinder. This decision
was made so that any water free surface effects
and bottom effects on the results presented were
negligible.

Water surface elevation was measured using
two wave gauges, resistance wave gauge and
follow wave gauge. Water particle velocities were
always measured at the eclevation of the force
sleeves by means of two different kinds of
instrumentation i.e. electromagnetic flow meters
(EMF) and perforated ball velocity meters (PVM).

The A/D converter digitized the analogue
voltages from the wave probes and load cell. A
sampling frequency of 40 Hz was used in the
experiments for all the data has been stored in
binary format as 2 byte integers.

3.METHOD FOR ESTIMATING FORCE
COEFFICIENTS

3.1 Estimating of Force Coefficients from
the Kinematicsand M easurement Force Using
System Identification Techniques (SIT)
The basic object of system identification for an in-
put/output physical system is to obtain a functional
which maps the input or excitation to the output or
response. The different techniques of this method
are widely used in parameter estimation of non-
linear systems [7].

Kaplan et al. [8] used a method of system
identification for determining the Morison's
equation coefficient values. A slightly different
method based on a block structural system that has
been developed in [9] was used in [10, 11] for non-
linear frequency modeling of random wave force
on a pile.

Assuming that u is normally distributed with
mean zero and standard division 0, Borgman [12]
determined the best linear, cubic and quintic
approximation for ufu| term in the least square
sense. He showed that the linear approximation
offers a reasonable solution only to about two
standard deviations whilst the cubic is good to
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more than three and the quintic to about four
standard deviations. The quintic approximation is
thus only slightly better than the cubic, which is
quite an improvement over the linear expression.
Considering the least square approximation to u|ul
by a third-order polynomial [9] the resulting
linearization in the Morison's equation for velocity
is given as:

uluj=c [JE ] (Lincad
m o,
— 2 1 ug, .
uluj=c {F ()] (Cubic)
m 30,

EE FIOR PR IS
- [4(0u)+2(0u) 60(0u) I} (Quintic)

)

ulul=0y{

where 0, is standard deviation of u. In a co-
existing wave and current field u has a non-zero
mean normal distribution (M, = U where U is the

current speed) and the least-square linear estimate
for ujul is determined [12] by minimizing:

- 1 (u-0)?
E= -b, —b -
Jo;(u | u | 0 lu) O'u \/E'[ exp[ 20_121 hu
2)
where b, and b, are given by:-
by = 02[(1=Y*)2Z(Y) = 1)+ 2v2(Y)] o)

b, =20, [Y2Z(y) —1) +2z(y)]

where y=p,/0, is a parameter measuring the
strength of the current, Y, is mean value of water

particle velocity which is equal with current speed
and

2(y) = (21 exp(-0.5y%)

Y
Z(y)= IZ(X)dX “4)

In a linear wave force model using the linear
approximation (Equations 1), the Morison's equation
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(with no current) can be written as:

£(t) = Ci(t) + Ku(t) (5)
where
K:pDCdJ%GHmM(3=EpD%%l (6)

where D is cylinder diameter and « is density of
water. For the linear system described by Equation
5 if a constant amplitude harmonic input given by

£(t) = foe™ (M

is applied, the corresponding output u(t) will be
given by

u(t) = T(f)f,e?™ (8)

Substituting the Equations 7 and 8 into the
Equation 5, then the system frequency response
function (FRF) is given

1
T(f)_1<+iznfc ©)

Therefore in the frequency domain
U(f) =T()F(T) (10)

where U(f) and F(f) are the Fourier transfer func-
tions of water particle velocity and measured force
respectively.

Or

—L = = 1
Hﬂ-Tﬁfxﬂ T, (£)U() = (K + i2TfC)U(f)
(11)

where T, (f) is the linear transfer function

between velocity (u) and force (f).
Now by choosing two non-dimensional real
parameters C_(f) andC ()

Re[ T, (f)] = pDC df(f)\/%o-u (12)
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2
[T, (£)]= 270p T2 C.y (1) (13)

and using suitable experiment data from random
wave experiments for measured force and
corresponding water particle velocity one can
estimate (e.g. [13, 14]) the transfer function:

Guf (f)

Tuf(f): G (f)

(14)

where G, (f) is the one-sided spectral density

function of the input i.e. measured particle velocity
and G (f) is the cross-spectral density of the

input and output i.e. measured particle velocity

and measured force. Finally by using Equations 12

and 13 estimates of the hydrodynamic coefficients

can be found as functions varying with frequency.
Furthermore as

G..(f)?
Gy (£) = Ty (£) > G (F) =% (15)

then the ordinary coherence function is

_ 1Gu()P
Guu (f)fo(f)

2
uf

(16)
and the corresponding noise output spectrum is

G () =[1= Vo (DG () 7

This gives a measure of the correctness of the
model in describing the experiment data. Obviously
the noise spectrum will be small for a good fit.

This model can be extended for a non-linear
form of Morison's equation where the cubic
approximation is used in this paper.

In this model, a =(L)0'5, T, and T,

9ITCo°

represent the transfer function of the linear and
non-linear parts of Morison's equation.

Morison's equation is then written using the
cubic approximation as:
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£(t) = Ky u(t) + Kpyu(t) + Kppu(t)’ (18)

where

K, =C, prD*/4, K,, =300°C,pD/2
Kp, =aC,pD/2 (19)

In this case, using the harmonic probing of the
Volterra series [15], the second-order frequency
response function can be shown to be zero as the
nonlinearity is an odd power. The first and third
order ones can be determined [16] as:

T,(f) =K, +i2mK,, and T,(f) =K,,/6  (20)

The Fourier transformation of Morison's equation
is then given by:

F(P) = U(FNK p, +i270K ) + (S22 ()
@1)

where U™ (f) is a triple convolution of U(f) with
itself.

Decomposing the Morison force into linear and
non-linear components yields the frequency
response functions of drag and inertial loading (T,
and T, ) which in turn yield the expressions below

for C4 (f) and C ;(f):

Im (T;)
Cmf(f)
2 (PTDY
. T4 22)
Cyr (=2
30(02(%)

The above method may be extended to the case of
combined current and waves.

3.2 Estimating of Force Coefficients from
Wave Surface Elevation and M easurement
Force Using (SIT) Using linear wave theory
the kinematics can be obtained from surface
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elevation as:

u= Z(hr]i ,
_ 2mcoshk;z
4T Sinhkd

n= z%cos(kix -wt)
(23)

where d is the still water depth, z is the elevation
of the measured velocity above the seabed, n is

the surface elevation, q; is the horizontal velocity

transfer function, k is the wave number which is
related to the wave angular frequency w through
the linear dispersion relationship:

w, =2mf; =,/gk; tanhk;d (24)

where g is the acceleration of gravity and f is fre-
quency.

If the wave has one frequency component then
the kinematics can be predicted without any
difficulty from surface elevation as

21t coshkz
u(t) =——
T sinhkd

n(v =qn(t) (25)

In this case in wave-by-wave analysis linear
theory is assumed. Then wusing the linear
approximation Morison's equation can be written
as:

f(t) =Cn(t +Kn(t) (26)

where K = pDCd\/Zqzon and C = ;pquCm.
T

The case when reflection is not negligible,
Equation 26 can be corrected with a coefficient

CrIj [17]. For DHL data analysis it can be

considered as a constant, 0.05 [6].

For a linear system if a constant amplitude
harmonic input is used then the system frequency
response function (FRF) is given by:

1
T(f) = ——— 27
(f) K +i271fC @7
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F(f) = % H(f) = T, (F)H() = (K +i2TfC)H(f)

(28)

where T, (f) is the linear transfer function

between surface elevation and force and H(f) and
F(f) are the Fourier transformations of surface
elevation and force respectively. Then the two
non-dimensional real parameters C .(f) and

C, (f) can be found from the following equations:

Re[ Ty ()] = pDC 4 (f)g\/%cn

nD’ |g
=C, ¢ (f 29
4 d mf( ) ( )

Im[T, ; ()] = 21tf p

From linear wave theory the Fourier
transformation of kinematics can be related to
surface elevation by:

U(f) = Tnu(f)}n(t)e_imdt =T, (OHE)  (30)

where H(f) is the Fourier transform of the surface

elevation.

Using the asymptotic value of the cosh
function, the velocity transfer function q given by
Equation 23 simplifies to a constant and can be

written as q = \/% . This assumption can be made

when the analysis is limited to long waves. By
using this expression for transfer function then the
hydrodynamic coefficients can be determined from
Equations 29 without using wave-by-wave methods.

This model can be extended for the non-linear
form of Morison's equation where a cubic
approximation is used.

3.3 Frequency Domain Analysis Using L east
Squares In the frequency domain the hydrodynamics
force coefficients can be determined from the
spectral density of force using the least square
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method.

Using linearization of the drag term in
Morison's equation and ensemble averaging with
the Gaussian random wave model, Borgman [18]
showed that the corresponding power spectral
density for f(t) is:

2 2
(1) =22, (1) +KES, (1) 31)

where S() denotes the power spectral density
of a record (force, velocity and acceleration
respectively).

When there is a current in addition to waves
then Equation 31 may be shown (Li & Kang,
1992) to take the form:

S¢ () =16(z(y)+| Y| Z(¥))* K0S, (f) 32)
+KyS; ()
where the terms have the same meaning as in
Equation 3.

Using linear wave theory the spectral densities
of velocity and acceleration are related to the spec-
tral density of the sea surface S, (f), by:

_[2nf)? cosh? kz
S.(f _H f
+() H sinh’kd %”( )

S, (f) =(2mf)*S, (f)

(33)

Using the least squares method in the form corre-
sponding to that given in [19], K,, and K is
given by:

N

N
S, (@S, ()Y 8,(6)S;(w)
1 2

M

Ky ==
(34)

N N
Su(w;) ) S, (w)S¢(w,)
S Sis,
M
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N N
z S, (6)S, (W, )Z Sy (@)Se ()

KZD - ( 1=1
M
NN (335)
_Zsu(wi)gsu ((*)i )Sf ((*)i) -
M )(80ﬁ )
where

N N N
_ 2 _ 2 2
M—(; Sy (0)S; (w,)) ;Su(wi)gsu(wi)

where N is the number of discrete frequencies at
which the spectrum is computed from the time
series analysis and all the spectral densities are
determined from the time histories. In laboratory
experiments where the velocity time history is
available the first part of Equation 33 does not
need to be used.

It should be noted that the accuracy of this
method for evaluating C,, and C, may be limited

due to the first order linear approximation of
velocity on the one hand and the possible
unsuitability of the data for the least square
method according to Dean's reliability ratio on the
other hand.

3.4 Cross-Spectral Density Fitting The
hydrodynamic force coefficients can be obtained
from the cross-spectral density between surface
elevation and wave force as indicated in [20].
Using this method and considering a linearization
of the Morison's equation the cross-spectrum of
waves and wave force can be obtained as follows

8

S (F) =4 K00 Snu (1) + Ky Sy (1) (36)

u

nu

where S.((f), S,,(f) and S,,(f) are cross-

spectra of wave surface elevation and force,
velocity and acceleration respectively. These three
cross-spectra may be estimated from measured
data and can be divided into the real and imaginary
parts, so that the force coefficients as functions of
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frequency may be obtained as:

C,(f) = E 2 (Cannf _Qnucnf
‘ 8 pDOu CnﬂQnu _Qnucnu

) (37

4 (Canr]u _Cannf
pTEDZ Cannu _Qnucnu

Cn(f)= ) (3%)

where C;; and Q; indicate the real and imaginary

part of cross-spectra of the two time series (I & j)
and the subscribes of 1N, u, u and f indicate to

surface elevation, velocity, acceleration and force
time series respectively.

In the case of current as well as waves then
Equation 36 may be written as:

Spe (F) =4(z(V)+ | Y Z(Y)K 0, S, ()

39
+ Ky S, (F) 7
and the drag coefficient is given by:
1
Cy(H) =
2pDa, (z(V)+] Y] Z(Y)) 40)
X(Cannf - Qm‘lcnf )

Cannu - Qnucnu

The inertia coefficient remains the same as
Equation 38.

The frequency-dependent parameters of C,(f)
and C,, (f), may only have validity in the range of
frequencies where most of the wave energy (about
90 %) is concentrated. A fuller discussion of these
methods, their approximations and practical
limitations is given in [6].

4. ESTIMATING WAVE PARTICLE KINEMATICS
FROM WAVE SURFACE MEASUREMENTS

The computation of water particle kinematics is
one of the most important tasks in the determination
of force on slender offshore structures where
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Morison's equation is used.

It is shown through this paper that the
uncertainties in the estimation of kinematics can
play an important role in comparing with
uncertainties of hydrodynamic coefficients (Cd
and Cm). These uncertainties are relative to using
different methodology of Cd and Cm and different
wave kinematics models. A comparison in this
paper shows that the choice of wave theory
represents a choice with a large impact on the
corresponding force.

The simplest approach to the prediction of
kinematics is to use linear theory. This method
cannot give good accuracy at the near surface due
to the non-linearity of the free surface boundary
condition.

Stokes' theory is widely used in the design and
analysis of offshore structures, and in this paper
fifth-order, third-order and first-order (Airy theory
or linear theory) Stokes theory are considered. In
this study because the current exists in most of the
experiments, Fenton's method [21] has been used
to predict the wave kinematics from surface
elevation. The details of the description and
formulation of this method are given by (e.g. [22])
and are not repeated here.

Each random wave in a record has been
replaced with a single deterministic wave, and then
the corresponding velocity and acceleration time
series have been obtained through wave-by-wave
analysis using each wave theory in turn. This
predicted kinematics has been compared with the
measured ones.

In the De Voorst wave flume the beach is not
perfect and the coefficient of wave reflection is
about 0.1 over most of the range of frequencies
used in the experiments described here.

Guza, et al. [23] developed a time domain
method to decompose the long waves into seaward
and shoreward propagating components by using a
pressure gage and current meter located on the
same vertical line in the water column. The detail
of this method is given in [24] and in this paper
that method has used for the decomposition of
surface elevation time series into the incident and
reflected wave train. It can be shown that the
incident and reflected wave train (n; and n,) are

given by
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System Identification Technique, Non-Linear Model, (Runl).

n,(t) = %[n(t) u (), |4
g

n.(t) = %m(t) +u(), |9 @1)
g

By using the Airy theory, Stokes' third and fifth
order theory (Fenton method) and using the
incident and reflected wave time series the
corresponding horizontal wave particle kinematics
are estimated.
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5. DISCUSSION OF RESULTS

5.1 Variation of Force Coefficients and
Predictive Accuracy with Analysis Method
Tables 1, 2 show the mean values of Cd and Cm
obtained using the various analysis methods
described in Section 3.

The system identification approach is only con-
sidered here for the cases where there is no cur-
rent. The author obtained very poor results when
attempts were made to include current and these
results are not included. The addition of the non-
linear term makes little difference for the large pile
case, as could be predicted from examination of
the coherence function shown in Figure 1. Interest-
ingly the non-linear term does make a contribution
to the coherence function at the high frequency
and for the small pile, Figure 3, but the overall re-
sult is a very distinct decrease in predictive accu-
racy both in terms of RMSE and bias.

Consider now the results obtained using
frequency domain spectral analysis methods,
which assume linear wave theory and have been
applied to the entire time series of each run rather
than on a wave-by-wave basis. The least squares
(or "auto-spectral") method gives single values of
Cd and Cm irrespective of frequency as can be
seen from Equations 34 and 35.

The "cross spectral " method produces Cd and
Cm values which are functions of frequency as can
be seen from Equations 37 and 38 and in Figures 5
and 6 which shows the results obtained for fixed
large pile and mobile small pile respectively. The
standard deviations quoted in Tables 1-3 relate to
this variation with frequency. The cross-spectral
method consistently gives lower values of Cd than
the "auto-spectral” method and generally has
higher predictive accuracy.

5.2 Predicting Particle Kinematics from
Wave Surface Elevation 1t is just wave height
and period that are available to represent offshore
wave conditions in the majority of cases. The
prediction of wave particle kinematics from the
wave height and period measured during the
experiments using various wave theories has been
compared with the measured particle velocities.
The results are presented in Table 4 for the case
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TABLE 1. Valuesof C,, and C, fromthe Analysis Methodsin the Random Waves for a Fixed Large Pile (Run 1).

Methods of Analysis Cy(mean) Oc, Ci(mean) Oc, | %MNE | %rmse

Linear 1.41 0.40 1.93 0.44 | 11.03 14.70

System non-linear 1.42 0.58 1.93 0.44 | 10.93 14.63

Identification  f o ¢ eley. C*=0 1.66 028 |1.96 081 [7.56 |12:67
Method

surf. elev. C,=0.05 2.02 034 |2.17 0.90 | -4.16 12.69

Spectral auto-spectrum 2.26 -—- 1.87 -—- 1.94 14.54

Analysis cross-spectrum 1.57 0.69 1.95 1.08 | 8.70 13.24

mean value 1.72 0.46 1.97 0.73 | 6.00 13.75

TABLE 2. Valuesof C, and C, fromthe Analysis M ethods in the Random Waves for a Mobile Large Pile (Run 2).

Methods of Analysis Cy(mean) Oc, Cp(mean) Oc, %MNE rmse%o
Spectral auto-spectrum 1.14 -—- 2.32 - 22.6 23.4
Analysis cross-spectrum 1.10 0.49 2.34 1.31 24.81 25.55

Mean value 1.12 0.49 2.33 1.31 23.70 24.47

TABLE 3. Valuesof C_ and C, fromthe Analysis M ethodsin the Random Waves (Aver aged in the Six Runs).

Methods of Analysis % bias | % RMSE | Cy(mean) | C,(mean)

linear 8.35 15.83 1.58 1.82

Frequency Domain (System | non-linear 16.43 | 19.68 1.35 1.89
Identification Method) surf. elev. C, =0 1442 | 18.55 1.52 1.81
surf. elev. C, =0.05 5.32 14.49 1.86 2.00

Spectral Analysis auto-spectrum 24.14 | 30.80 1.82 1.79
cross-spectrum 15.93 | 20.6 1.47 1.98

mean value 14.10 | 19.99 1.60 1.88

TABLE 4. Accuracy of Prediction of Water Particle Velocity and Acceleration in the Random Waves with Different Current

Speeds (Reflection was Consider ed).

Data Wave theo velocity error acceleration error
Yo [MNE% %RMSE MNE% RMSE%
linear 7.90 17.50 6.23 17.18
Runl Stokes 3rd 8.07 18.35 9.43 18.24
Stokes 5th 8.53 18.45 9.67 18.21
linear 1.30 811 11.39 20.76
Run2 Stokes 3rd -0.70 8.40 12.03 20.57
Stokes 5th -0.45 8.36 12.57 20.82
vMean errop | LIn€AT 5.67 13.25 12.35 21.26
( o ZRufls)o Stokes 3rd 6.60 14.96 14.22 21.87
Stokes 5th 6.73 14.81 14.75 2224
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Figure 3. Coherence function for Run 4 (using system
identification technique, non-linear model).
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Figure 4. Variation of C4 and C,, with frequency using system
identification technique, non-linear model, (Run 4).

where reflection is considered using the linear
approach discussed in Section 4. The reflection
coefficient is around 0.1 for the range of
frequencies over which at least 90% of the wave
energy is concentrated. In these Tables the reference
acceleration has been obtained by differentiating
the smoothed measured velocity signal.

When no correction for reflection is made the
velocity predicted from the wave height and period
is in all cases (except Run6) larger than the
measured velocity. Interestingly both the average
bias and the RMSE are least, by a small margin,
for linear wave theory. When a correction for
reflection is made the particle velocities are
underestimated with bias of around 6% and the
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Figure 5. Variation of Cy4 and C,, with often frequencies using
cross-spectral density fitting (fixed large pile Runl)
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Figure 6. Variation of Cd & Cm with often frequencies using
cross-spectral density fitting (mobile small pile, U=-0.5 m/sec)
Run6.

RMSE for the velocities are lower. Interestingly
linear theory appears to give the best results
whether or not reflection is considered. This might
in part be attributed to the fact that the correction
for reflection is based on linear theory. What the
results illustrate is the difficulty in predicting wave
particle kinematics from surface elevation even
when there is just a relatively small amount of
wave reflection in a wave flume. In real sea
conditions, where the wave energy may be spread
all a wide range of directions, prediction of
particle kinematics will probably result in errors of
at least these magnitudes. This highlights the value
of direct measurement of water particle kinematics
in the wavetank (and offshore).
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6. CONCLUSIONS

It is clear that the method used to analyze experiment
data in terms of Morison’s equation has a significant
affect on both the force coefficients obtained and
their predictive accuracy. It is found that no single
method is consistently better under all circumstances.
The other analysis methods whilst a little poorer
worked satisfactorily except for the auto- and cross-
spectral analysis approaches which gave some
extreme results are susceptible to numerical
instability and should be avoided.

When particle kinematics are not available and
have to be inferred from surface elevation the errors
increase. The additional error associated with particle
kinematics prediction is not significantly reduced
when account is taken of reflected waves using linear
correction. Linear wave theory was significantly
better than Stokes’ third order and marginally better
than fifth order theory at predicting particle
kinematics. The average bias and RMSE in predicted
force, for all methods and all experiment runs, were -
8% and 29% respectively, indicating that if at all
possible water particle kinematics should be
measured directly. If this is not possible then using a
Systems Identification approach as outlined in
Section 3.2 seems to give the best result as can be
seen from the bias and RMSE given in Table 3.
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