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Abstract Laminar natura convection from an array of horizontal isothermal cylinders confined
between two vertical walls, at low Rayleigh numbers, is investigated by theoretical and numerical
methods. The height of the wallsis kept constant, however, number of the cylinders and their spacing,
the distance between the walls and Rayleigh number have been varied. The optima spacing
(confining walls) and the maximum Nusselt number predicted theoretically are validated by means of
numerical simulations. It has been shown that with increasing the number of cylinders or their spacing
the optimal spacing will increase. In addition, increasing the Ra number decreases the optimal spacing
of thewalls.
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1. INTRODUCTION

Natural convection is still a problem of many
engineering applications. Heet transfer from different
geometries has been studied and, due to the low
heat transfer coefficients, techniques have been
developed to enhance the rate of heat transfer.

One of the problems of this group that has
received a good attention in recent years, and has
applications in such areas as electronic cooling and
design of condensers for the household refrigerators,
is natural convection from a single horizontal
cylinder or arrays of horizontal cylinders. Effects
of confining walls on the rate of heat transfer from
asingle cylinder and arrays of cylinders have been
investigated extensively in recent years.

Marsters [1] was the first one who studied the
effects of adiabatic confining walls on the rate of
free convection heat transfer from a horizontal
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isothermal cylinder. He used both experimental
and theoretical methods. His experimental results
cover a vast range of Rayleigh numbers. He
studied the effects of changes in the height and the
spacing of the walls, on the Nusselt number. He
did not observe any optimum wall spacing for the
maximum Nusselt number.

Sadeghipour and Kazemzadeh Hannani [2]
studied the transient natural convection from a
confined isothermal cylinder, numerically. They
observed an optimum wall distance to cylinder
diameter ratio for the maximum Nusselt number.

Tokuraet al. [3] studied the effects of confining
walls on natural convection from arrays of horizontal
cylinders, experimentally. They reported an optimum
spacing for the confining walls that maximized the
heat transfer from the cylinders. They considered

high Rayleigh numbers ( Ra 010°).
Sadeghipour and Asheghi [4] investigated the
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steady state free convection heat transfer from
horizontal isothermal cylindersin vertical array of
two to eight without any confining walls, at low
Rayleigh numbers, experimentally. Results show
that there is an optimum separation distance for the
best overall convection heat transfer of each array.

The other investigation was the theoretical,
numerical and experimental work of Bejan et al.
[5]. They determined the optimal spacing between
horizontal cylinders in vertica arrays under laminar
natural convection, such that the total heat transfer
between the arrays of cylinders and the ambient
was maximized. The volume occupied by the array
was fixed.

Recently, Sadeghipour and Pedram Razi [6]
studied the steady state natural convection from an
isothermal horizontal cylinder confined between
two adiabatic vertical walls, for low Rayleigh
numbers. They observed an optimum wall distance
for the maximum heat transfer, using the idea of
intersection of asymptotes [5].

In the present investigation, natural convection
heat transfer from arrays of horizontal isothermal
cylinders confined by two symmetrically placed
vertical adiabatic walls is studied (figure 1).
Theoretica and numerica approaches are employed
to determine the optimum spacing for the confining
wals. The optima spacing is important particularly
because of its obvious implications on the design
of condensers for the household refrigerators and
electronic packaging.

Thisstudy isconducted intwo steps. Inthefirst
step, atheory is devel oped to show the existence of
an optimum spacing for the confining walls and to
reveal the proper dimensionless groups. In the
second step, natural convection is modeled
numerically to validate the theoretical results and
to optimize the dimensions for the maximum rate
of heat transfer.

2. THEORETICAL APPROACH

In this investigation the idea of intersection of
asymptotes was utilized to show the existence of
an optimum spacing for maximum rate of heat
transfer. This technique was first introduced by
Bejan [7,8] and was used by Bejan et al. [5] and by
Sadeghipour and Pedram Razi [6]. Using this
technique, proper dimensionless groups needed to
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Figure 1. Configuration and the coordinate system.

correlate the optimum spacing can be determined
more accurately.

In the case when the distance between the walls
issmall, the mass flow rate through the wall region
increases with the separation distance between the
walls. This is because of lower average velocity,
causing less pressure drop due to friction, in larger
ducts. In this case, Nu number increases with wall
distance (Figure 2 curve 1). Conversely, in the case
that the wall spacing is large, the mass flow rate

Nu

NUpax| 77

(t/ D)opt t/D
Figure 2. Variation of Nusselt number with theratio t/D .
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variation with wall separation distance is not
significant. However, in this case, the maximum
veocity a the centerline increases and moves towards
the cylinder surface. Decreasing the distance between
the walls will increase this maximum ve ocity, leading
to an increase in Nu number (figure 2, curve 2).
We can conclude from figure 2, then, that the
intersection of the two asymptotic cases will give a
rough estimate of the optimal spacing.

Casel: TheLimit t/D - 1 (Small Values
of t/D)

a)nisLargeand s/D -1 When the number

of cylinders is large and they almost touch, the
temperature of the coolant leaving the wall region

is essentially the same as that of the cylinders, T, .

The heat transfer from the array to the coolant
(ambient) is, therefore, equd to the enthalpy gained
by the coolant, which can be expressed by
Equation 1:

q= mCP(TW _Too) (1

L et us assume that a straight channel can model the
walls confining the array of cylinders. Noting that
the width of the flow varies between a minimum
value (t-D) and a maximum value (t) and

following Bejan [5], the averaged volume
thickness of the equivalent channel can be defined
as.

t.H —-nmD?/4
H

f= @)

If t issufficiently small, the flow rate through the
channel of cross sectional area t x1 and length H
is proportional to the pressure difference between
inlet and outlet. The pressure difference can be
written as, AP=pgHB(T, -T.), or as the
hydrostatic pressure difference between the inlet
and outlet sections, which are at T, and T,
respectively. The mean velocity of the flow, U, can
be approximated using the Hagen-Poiseuille solution
for flow between two parallel plates.
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The total mass flow rate through the channel can
be written now as:

4P

Combining Equations 1 and 4, the total heat
transfer can be expressed as:

| O nm2C0
2078 Tan gHAWRR ©

qd

If the height of the walls is much greater than the
2

cylinders diameter, then will be much

smaller than t, distance between the two walls.
Hence, when t is small compared to H, the heat

transfer increases as (f3), similar to the results of
Bejan et a. [5].

Using the Newton's codling law, q = h(nrDI AT, ,
the Nusselt number is defined as:

_ nmD (7

Nu = B 12n7TE5_ H E . ©

hD 1 0Ot
K

where AT, =T, - T,
We conclude from (6) that Nu increases with t/D
and I/n.

b) n Is Small and S/D - ©  When the
separation distance, t, and the number of cylinders, n,
are amdl, and there is large cylinder to cylinder
spacing, we cannot assume that the outlet temperature
of fluid is equal to the cylinders temperature, T, .

In this situation Marster’s [1] integral method can
be employed to develop a theoretical solution for
the heat transfer behavior of the confined cylinders.
The governing continuity, momentum and energy
equations presented, in integrd form, are asfollows.

Vol. 15, No. 3, September 2002 - 295



Continuity Equation For the conservation of
mass between inlet and outlet, we can write:

V2
m= p1u1t—tIp2u2d3( (7
-2

~ X
Wherex:?

Momentum Equation The momentum equation,
which is a balance between the buoyancy force, the
chimney effects and the friction forces on the walls
and on the cylinders, is written as:

H
1
(R ‘Pz)t‘%’T dy-Cp 5Pt u? D

(8)
P ax

P2 u2 dx—muy
p

=
%N\.-.

N |~

H
- gpl_[
0_

N‘H% N~

(Chimney effect + Friction force + Drag force +
Buoyancy force = Momentum change)
Theinlet and outlet pressures can be expressed as:

1
Pl =P, _Epl u12 9
P,=P -p,gH (10)

Introducing Equations 9 and 10 into 8, and
defining y = IYI the momentum Equation 8 leads

(11)
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In Equation 11, p isdefined as:
p=p,(1-BAT) (12)

where, AT =T -T,_

In the limit if t/D - 1, S/D - o and “n” is
small, (i.e. the confining walls are tall enough),
neglecting the inertia and drag forces against the
buoyancy force, the friction force of walls will
balance the buoyancy force, therefore, from
Equation 11 we have:

Grp Lf pu? &

— (13)
Reoz M I 2 p,u’
The shear stress at the wall is defined as:
" 1 5
1(y)= fou (14)

where, for flow between two parallel plates, the

24 ,and D, = 2t.
Rep,

After rearranging Equation 13 we have:

friction factor isgivenas f =

C
Re, OGr. (t/D) —%
e, 061, (/D)

2

(15)
172 l,OU
wher - (AT gxav ad C, = [—2f
& C, U;ATW dxdy 2 jo'

Energy Equation The energy equation is a
balance between the heat transfer from the cylinders
and changes in the flow energy between the inlet
and outlet. Thisequation is, then, written as:

a; 1 O
O=1Co [ P Ty - jplulT L x
ET[ ’ g2
2 O
L
E[[pz(tb)go&— [ fdagt H[pzquzo& jplthYlo&m
1 _l O
2 2 O 02 2 |:|
(16)
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where, Q =nmDh AT, .

Knowing that y, =y, =H , Equation 16 can be
rearranged as:

(Totd heat transfer = Enthapy difference + Changes
in kinetic and potential energies)

In the energy Equation 17, we neglect the kinetic
and potential energy effects with respect to the
enthdpy gained by the coolant, because, the velocity
change and the mass of the fluid are very small in
free convection. Therefore, Equation 17 simplifies to:

Too
AT,

~ _ t
Nu = D Re, Pr C, (18)

2 T
where, nglj' 2z 2—1%13(
maOp, Uy Ty
2

Substituting Equation 15 for Re, in the energy
Equation 18, leadsto:

N_u:C—n“RaD /D)’ (19)
where, C, = C.Cq X To .
6C, AT,

What is obvious from Equation 19 is the high
dependence of Nusselt number on t/D . Equation
19 is very much similar to what is given by Bejan
[5]. Also, for H/D — oo, Equation 6 takes aform

similar to Equation 19. Equation 19 shows that the
Nusselt number decreases with the number of
cylinders. Note that as the coolant passes over the
cylinders, its temperature approaches to the
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temperature of cylinders.
From Equation 19, we conclude that Nu

increases with (t/D)® and decreases with n.

Casell: TheLimit t/D — oo (Large Values

of t/D) Asdistance between the confining walls
isincreased, their effect on the rate of heat transfer
from the cylinders vanishes, gradually. For
t/D — o the solution of this problem should
eventually approach that of heat transfer from an
array of cylinders in free space. Therefore, the
experimental results of Sadeghipour and Asheghi
[4] can be used. The results of ref. [4] predict
Nusselt number for any array with the number of
cylinders in the range of experiments. Nusselt
number for arrays of the horizontal isothermal
cylindersisgiven as[4]:

Nu = [0.823 +Bxp (- 1.5(s/D )" ] Ra® (20)

500< Ra<700, 35<S/D<275,2<n<8.

In this case, neglecting the inertia and the wall
friction, the buoyancy force should balance the
drag force on the cylinder and Equation 11, which

is also valid for the limiting case of, t/D — o,
can be written as:

Grp H 1 D
—==C, — 21
1 ReD2 D 2 D t ( )
Proper valuefor C, isproposedin [9] as:
Co, = f(Re,)=5.48Re,*® (22)

For “n” cylinders in an array, the average drag
coefficient of the array can be approximated as:

C,, = f(Re,)=5.48nRe, % (23)
Introducing Equation 23 into Equation 21, leads to:

2.74 n bb PrRe,"" (24)

Ra=PrGr, =
C, tH
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For t/D - o, the Nusset number in the
Equation 18 should approach a congant vaue

(Nu O3 to 5). Note that Equation 18 is also valid

for t/D — o . Therefore, Equation 18 can be
approximated as:

-1
t nC'
ReD = BBH T— (25)
Eogu Pr—=-C,
W

where, C' = Nu 03t05.

Substituting Re, from Equation 25 into Equation
24 results:

1 =2.75

2.75 =3 g
T AL

Ra, =C, —— 26
D 5 Pr0'75 DD D DD D ( )
2741C' AT "
where, C, = — W
Cl C3 Too

Finally, combining Equations 26 and 20, leadsto:

0.25 —-0.69

0.5 n0.69 H = 0. Bt_H

Pr*®0DO DO
(27)

Nu = f(S/D,n)C,

where, f($D,n)= l0.823 + Exp(— 1.5(S/D)O.05n)J

Equation 27 shows that, for the limiting case
t/D — oo, Nussdt number isinversdly proportional
to “t”. On the other hand Nu increases with n.

3. THE OPTIMUM WALL DISTANCE

Inspecting the results obtained for the two cases
“I" and “Il", represented by Equations 6, 19 and
27, we observe that for case “1”, Nu increases with

t/D, however, for case “11”, Nu is inversely

proportiond to t/D . Therefore, the results for these
two limiting cases intersect at a point where the
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rate of heat transfer from the array is maximum.

Casea Relation for the optimum distance for the
case when number of cylindersis large and cylinder to
cylinder spacing is small can be obtained by
intersecting Equations 6 and 27:

1.69 =025

025 ™
127f (§/D,n)Cs 0% -

1 -ompgt

D Lyt

(28)

Case b On the other hand, when the number of
cylinders is small and cylinder to cylinder spacing
is large, the optimum distance between the confining
walls can be obtained by intersecting Equations 19
and 27:

HH -
0D Chpt
0.46

0,068
0.25)0-271 0271 N0 [H -0.271
(c405 [f(S/D,n) T EB@ Ra

(29)

Equation 29 shows that, (t/ D)Opt decreases as

Ra increases. Therefore, for large Rayleigh
numbers the optimum wall spacing can hardly be
identified experimentally. In addition, when Pr or

(H/D) increases (t/D),, decreases. Inversely,
(t/ D)opt will increase when number of cylinders

“n” increases, because the drag force on the
cylinder increases and temperature of coolant

approaches to that of the cylinder “ T, " at the top
of the array.

opt

4. NUMERICAL SOLUTION
The governing equations for free convection heat

transfer using Boussinesq approximation are the
following:

IJE Transactions A: Basics



ULy (30)
ox ay

Ga—ﬂ+\76—f=—la—?+ PrO20+BoT  (31)
0X oy p 0X

gV g 1P by (32)
X ay p oy

Ga—T+\76—I:D2f (33)

oX ay

The dimensionless parameters are defined as:

5: Pz, 'F:T_T‘”' U :g,
oU’ T, -T. D
T, -T.)D° ~
Bo—gﬁ(W 2°°) =2 %=X
a D
-~ Y ~_u - _ vV
=—'u:—*'V:—*
y D U U

a- Inlet: G=—=T=0
oy

b - Outlet: a—E:a—X:a—I:O
oy dy oy
o o 9T

c- Confiningwals(adidbatic): U=V = x =0
X

d - Symmetry plane: u :6_\~/ :a—I =0
oX 0X

e - On the cylinder: G=vV=0,T=1

The problem is solved for wall distance to cylinder
diameter ratios of (t/D = 2.5,3,4,...,8,12),cyIinder
to cylinder spacing to cylinder diameter ratios of
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Figure 3. Variation of Nu with Ra for a single unconfined
cylinder.

(S/ D=7, 21), different number of cylinders (2,
3, 5, 7) and Rayleigh numbers (Ra=300, 600, 1000),
using a finite element method. Linear quadrilateral
elements for velocity and temperature are employed.
Pressure is assumed constant in each element. A
penalty function has been employed to eliminate
the pressure term at element level [10].

30

20

17

=20 —

— A Re[4)
—— Present Work
—— Re[12

1 L L L L 1 L L L L
10 20 30
S/D

Figure 4. Heat transfer enhancement for upper cylinder, n=2
Nu, = Nu
(I =—2—=).
Nu,
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5 RESULTSAND DISCUSSIONS

Numerica solutions were generated for Pr=0.7. Figure
3 shows the comparison of the present work with
the results obtained by Sadeghipour and Asheghi
[4] and Badr [11]. Present results agree very well
with those from the numerical solution of Badr
(with less than 2% difference). However, comparing
the results with the experimental solution of
Sadeghipour and Asheghi indicated a difference of
12 to 15%. In figure 4, the results of the present
numerical solution are compared to the existing
literature for the case of two parallél cylinders. In
this figure, notation | represents the heat transfer
enhancement of the upper cylinder, due to the

presence of the lower cylinder. Nu, and Nu, denote

the Nusselt number for lower and upper cylinders,
respectively. The difference between the experimental
and numerical results can be considered acceptable
compared to the discrepencies between the
experimental results of [4] and [12].

For the configuration and geometry of the present
study, caculations are conducted using five different
mesh systems when the cylinder circumference is
divided to 64, 128, 192, 256, and 320 parts,
respectively. Figures 5 and 6 show the velocity and
temperature profiles at y=3D for different mesh

systems, for the case of n=3 and S/ D=7. The

solution for N=192 parts can be considered mesh-
independent.
In figures 7a and 7b, variation of the Nusselt

LA I I B I B N I B BN

200 v b b b by
oo [el007] 003 004 00
X

o

Figure 5. Temperature profile at y=3D for different mesh
systems, Case: S/D =7 and n=3.
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Figure 6. Velocity profile at y=3D for different mesh systems,
Caset S/D =7 andn=3.

NU

—@— Ra=300
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Figure 7. Variation of the Nusselt number with the ratio
t/D for different Rayleigh numbers (Ra=300, 600 and

1000), when n=7 and S/D =21.
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TABLE 1. Maximum Nu and Optimum Wall Spacing for
Different Arrays, Ra=300.

(t/D)opt (m)max
y | (§D=7] (§D)=21, (sD)=7] (§D)=21
2 31 55 3.35 3.58
3 34 6.1 3.10 3.64
4 54 6.6 2.82 3.66
5 6.4 7.2 2.60 3.56

TABLE 2. Maximum Nu and Optimum Wall Spacing for
Different Arrays, Ra=600.

(t/D)opt W)max
\| (§D=7] (§D)=21| (sD)=7] (sD)=21
2 2.9 45 3.90 4.15
3 3.1 52 3.60 4.22
41 34 5.8 3.25 4.30
5 51 6.1 3.02 4.10

TABLE 3. Maximum Nu and Optimum Wall Spacing for
Different Arrays, Ra=1000.

(t/D)opt @)max
\ | (§D=7] (§D)=21| (SD)=7] (sD)=21
2 2.6 31 4.40 4.64
3| 28 45 4.15 4.70
47 30 5.15 3.7 4.73
5/ 31 5.3 342 455

number with the ratio t/D for different Rayleigh
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numbers (Ra=300, 600 and 1000), when n=7 and
S/D =21 are shown. As can be seen from these

figures, the variations of Nu with t/ D for the two

extreme cases of t/D — 1 and t/D — o arein
good agreement with Equations 6, 19 and 27. In
other words, the Nu curves versus t/D shows a

sharp variation for the limiting case of t/D - 1,

while for the extreme case of t/D — o, the
variation of Nu is rather smooth. These behaviors
are represented by the two terms (t/D)® and

(t/D)™°® predicted by Equations 6 and 19, and
(27), respectively. It can be seen from figures 7a
and 7b that a range of t/D will provide nearly the
optimum heat transfer. This is interesting as the
exact location of the maximum point may not be
necessary from a practical point of view. However,
to obtain optimum rate of heat transfer the walls
should be positioned within the range.

The optimal wall spacing and the maximum
average Nusselt numbers for different array of
cylinders and different Rayleigh numbers (Ra=300,
600, 1000) are shown in tables 1, 2 and 3. The
significant point is that increasing the number of
cylinders or the cylinder to cylinder spacing or
decreasing the Rayleigh number will increase the
optimal spacing of confining walls. All the results
obtained from the numerical solution are consi stent
with those predicted by the theoretical analyses
and given in Equations 28 and 29.

6. CONCLUSION

The results of this study reveal that there exists a
distance between the confining walls for which the
Nusselt number is maximum. By increasing the
number of cylinders or their spacing, or, decreasing
the Rayleigh number the optimal spacing will
increase. Moreover, by incressing Rayleigh numbers,
cylinder to cylinder spacing and number of cylinders

(if their spacing “S’ is large), Nu will increase
more than 40%. If it is intended to achieve this
increase, for the case with no confining walls, it
can be redized by increasing the cylinder to cylinder
spacing. However, this would not be a favorable
design option, because of the space limitation.
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7.NOMENCLATURE

Drag coefficient for the cylinders

Thermal capacitance

Diameter of the cylinders
Friction factor

Gravitational acceleration
Grashof number

Height of thewalls

Heat transfer coefficient
Thermal conductivity of air
Length of the cylinders (=1)
Mass flow rate

Nusselt number

Average Nusselt number
Pressure

Prandtl number

Total rate of heat transfer
Heat transfer by convection
Rayleigh number

Reynolds number

Wall spacing

Equivalent wall spacing
Temperature

Cartesian coordinates

Velocity components

Greek Letters

©C N ®wA

Thermal diffusivity

Coefficient. of volumetric thermd expangion

Shear stress on the wall
Kinematic viscosity
Density

Subscripts

1
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Inlet condition

sghm

10

11

12

Outlet condition
Ambient
Wall condition
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