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Abstract   A formulation and an implementation of two-dimensional Boundary Element Method 
(BEM) analysis for steady state, uncoupled thermoelastic problems is presented. This approach differs 
from other treatments of thermal loads in BEM analysis in which the domain integrals due to the 
thermal gradients are to be incorporated in the analysis via particular-integrals. Thus unlike Finite 
Elements or Field Boundary Elements algorithms the domain discretization becomes unnecessary. 
The algorithm and the formulation are implemented in a general purpose, multi-region two-
dimensional analysis. Isoparametric quadratic elements are employed to represent the geometry and 
the field variables. Examples are presented to demonstrate the accuracy and versatility of the method. 
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. يك روش جديد عناصر مرزي براي مسائل دو بعدي ترموالاستيسيته در اين مقاله ارائه گرديده است                   چكيده

روش ارائه شده براي حل مسائل با توزيع دماي يكنواخت و گذرا در دامنه كاربرد داشته و تفاوت آن با                            
به كمك انتگرالهاي مخصوص در     روشهاي قبلي در آنستكه انتگرالهاي روي دامنه، ناشي از نيروهاي حرارتي              

بدين ترتيب بر خلاف روش عناصر محدود و يا روشهاي متعارف           . شوند سيستم عناصر مرزي در نظر گرفته مي      
 اين روش براي سيستمهاي شامل چند ناحيه نيز بكار          . بندي دامنه نخواهد بود     عناصر مرزي، نيازي به المان     

زوپارامتريك براي نشان دادن توابع و هندسه جسم استفاده شده            رود و در آن از المانهاي درجه دوم و آي            مي 
 .بمنظور نشان دادن توانايي و دقت روش، مثالهايي ارائه شده است. است

 
 

1. INTRODUCTION 
 

Usually the thermoelastic problems may be solved 
using small modifications to the pure elastic 
formulations by treatment of the temperature 
gradients as a kind of body forces. In BEM analysis 
this will include an extra domain integral to the 
resulted boundary-only integrals of elastic formulation. 
Hence the domain of the problem should be 
discretized for the sole implementation of 
thermal forces. This obviously would loose the 
benefits of boundary-only BEM analysis. To 
avoid the domain discretization several 
transforming schemes are proposed and 
implemented. Other methods would include 

the particular integrals that would replace the 
domain integrals by approximate equivalent 
values. Among the transforming schemes is the 
Galerkin vector method, which was introduced 
by Cruse [1] and applied to a limited range of 
body force problems. Danson [2] have also used 
this concept for the transformation of body 
force domain integrals to surface integrals. 
Rizzo and Shippy [3], Karami and Fenner [4], 
Karami and Kuhn [5] and Karami [6] have 
employed an efficient method based on 
replacing the body force and temperature 
changes by a scalar potential function in the so-
called pseudo-body force approach. Nardini and 
Brebbia [7], Wroble et al. [8], Nowak and 
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Brebbia [9] and Neves and Brebbia [10] have 
used Dual Reciprocity and Multiple Reciprocity 
Methods (DRM, and MRM). Other solutions 
include the use of Papkovich and Neuber stress 
functions (see for example Kuhn [11]). Also, 
Sharp and Crouch [12] has developed a formulation, 
which conceptually can be implemented without 
volume integration. 
     The use of particular integrals in BEM was 
tentatively discussed by Watson [13] and Banerjee 
and Butterfield [14], but has received little attention 
thereafter. In 1986, Ahmad and Banerjee [15] successfully 
employed the concept in a two-dimensional free 
vibration analysis. The axisymmetric free vibration 
formulations were developed by Wang and 
Banerjee [16], and Banerjee et al. [17] extended the 
theory to acoustic eigenfrequency analysis. 
Furthermore, particular integral formulations have 
been presented for gravitational and centrifugal body 
forces in axisymmetric, two- and three-dimensional 
stress analysis [17,18]. 
     The particular integral formulation presented 
in this paper is developed for two-dimensional 
uncoupled thermoelastic stress analysis, using 
quadratic isoparametric boundary elements to 
model the geometry and field variables of the 
surface based on the previous work by Karami 
[6] for two dimensional elastic and thermoelastic 
problems. A global shape function is used to 
represent the temperature distribution in the 
region. Using this global shape function, the 
particular integrals are developed for the region. 
At last, the particular integrals are used together 
with the (boundary only) displacement integral 
equation to produce a solution for the thermoelastic 
analysis. Sample problems involving different 
types of temperature gradients are solved to 
prove the accuracy and versatility of the 
method. The uncoupled thermoelastic BEM 
formulation presented is applicable to both 
steady state and transient temperature distributions, 
with heat source and init ial  temperature 
gradients without any need for volume 
integration. 
 
 

2. THE GOVERNING EQUATIONS 
 
In the theory of thermoelasticity the total strain can 
be divided into elastic strain and thermal strain as 

follow, 
 

T
ij

e
ijij εεε +=  (1) 

 
in which for an isotropic material one can express 
the thermal strain in terms of temperature 
difference, T, as Tij

T
ij αδ=ε , where α is the thermal 

coefficient of expansion. The elastic stress strain 
equations or Hooke’s law may be written as, 
 

T
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     In the above equations and subsequently, part 
(a) and (b) of an equation apply to plane stress and 
plane strain, respectively. From Equations 2 and 
(1), the stress may be written in terms of total 
strain as, 
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     Using the above constitutive relations together 
with the total strain-displacement relations and the 
equilibrium equation, one can write the Navier 
Equation in two dimensions as, 
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in which, the value of Poisson’s ratio should take 
its effective value [6].  
     According to Goodier’s body force analogy, the 
thermal loading can be treated as a body force and 
incorporated in the boundary integral equation 
through a volume integral.  Therefore,  the 
displacement integral equation satisfying Equation 
4 can be written as [6,20], 
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 (5) 
where ui (x) is the real displacement; ti (x) = σij nj 
is the real traction; δij is the kronecker delta; Cij 
(ξ) = δij for interior points is dependent on surface 
geometry at ξ for boundary points and ijU  and ijT  
are second order kernels for displacements and 
tractions, respectively [6,20]. The first integral is a 
boundary integral whereas the second integral is a 
domain integral. Note that through an application 
of the divergence theorem, the gradient operator 
has been removed from the temperature variable 
T(x). A similar equation can be written for stress. 
In the above format, the domain discretization is 
necessary in order to evaluate the domain integrals. 
 
 
3. PARTICULAR INTEGRALS APPROACH 

 
If there is no external forces fi , Equation 4 may be 
simplified as, 
 
( ) ( ) i,jj,iji,j T23uu αµ+λ=µ+µ+λ   i,j=1,2 (6) 
 
in which λ and µ are Lame’s constants and T is the 
change in temperature. 
     In operator notation, the thermoelastic, 
inhomogeneous differential Equation 6 may be 
written as, 
 

i,i T)u(L β=  (7) 
 
in which L(ui) is a self-adjoint homogeneous 
differential operator showing the Left-hand side of 
Equation 6 and βT,i is the known inhomogeneous 
quantity with, )23( µ+λα=β . 
     The solution of the inhomogeneous Equation 7 
consists of two parts as follow, 
 

p
i

c
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where c

iu is a complimentary function satisfying 
the homogeneous equation, 
 

0)u(L c
i =  (8) 

     A particular integral p
iu , which satisfies the 

inhomogeneous equation, 
 

i,
p
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is not unique. By adding c
iu  to p

iu and applying 
boundary conditions, a unique solution to the 
boundary value problem produces. The complementary 
functions thus for displacement at point ξ is, 
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where the c

it  and c
iu  are the complementary 

functions for traction and displacement, respectively. 
 
 

4. PARTICULAR INTEGRALS 
 
In according with linear quasi-static thermoelastic 
theory, the particular integral for displacement can 
be expressed as a gradient of a thermoelastic 
displacement potential h (x), 
 

( ) ( )xkhxu i,
p
i =  (11) 

 

in which, ( )
( )µλ

µλα
2

23
+
+=k . After substituting 

Equation 11 into Equation 6 and simplifying, 
yields, 
 

( ) ( )xTxh jj, =  (12) 
 
Now, assume that the function h (x) be represented 
by an infinite series. An expression relating h (x) to 
a set of fictitious scalar densities φ (ξn) via a 
global shape function C (x,ξn), can be written as, 
 

( ) ( ) ( )∑
∞

=
ξφξ=

1n
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in which C (x,ξn) is a suitable function of spatial 
coordinates x and ξn . The best results were 
obtained with the following expression for C 
(x,ξn), 
 

( ) [ ]3
n

22
0n bA,xC ρ−ρ=ξ  

 
where, A0 is a characteristic length, all distances 
are non-dimensionalized by it; ρ is the Euclidean 
distance between the field point x and the source 
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point ξn , and bn is a suitably chosen constant. For 
the present discussion, assume bn =1. 
     The particular integral for displacement is 
found, using Equations 13 and 11, 
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where: 
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i = 1,2 for two dimensions. 
 
     Applying the Laplacian operator to Equation 
13, the temperature distribution will be, 
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in which, 
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d = 2 for two dimensional (plain strain) analysis. 
     Now by substitution of Equation 14 into the 
strain – displacement relation, a particular integral 
for strain can be found, 
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in which, 
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and the particular integral for stress can be found 
by introducing above equation into the stress-strain 
law for thermoelasticity, 
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     At last, by multiplying the above equation by an 

appropriate normal, a particular integral for traction 
will be obtained, 
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where, )x(n),x(S),x(H jnijni ξ=ξ  and nj (x) = unit 
normal at x in the jth direction. In the case of plane 
stress, the modified material constants α  and λ  
must be used instead of α and λ in the above 
equations which are valid for plane strain 
condition, where, 
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5. NUMERICAL APPROACH 
 
The functions )x(up

i  and )x(tp
i  must be evaluated 

at each boundary node before a solution to the 
governing equation can be achieved. For this 
purpose, particular integrals for displacement, 
traction and temperature distribution may be 
written as infinite series for N finite terms as 
follow, 
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     To evaluate )x(up

i  and )x(tp
i  in the first two 

equations, we need N fictitious nodal quantities φ(ξn). 
For this reason, we have written N temperature 
Equations 19c at each ξn node. In the matrix form, 
 

}T{]K[}{}]{K[}T{ 1−=Φ⇒Φ=  (20) 
 
in which [K] is an N×N matrix. Since the 
increment of temperature distribution is known, the 
fictitious nodal values {φ(ξn)} is determined from 
above equation and using them in Equations 19a 
and 19b, allows calculation of )x(up

i  and )x(tp
i  at 

all boundary points. In this way the boundary value 
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problem can be solved in the following manner. 
 
 

6. METHOD OF SOLUTION 
 
The boundary integral equation for complementary 
displacement is descretized and integrated in the 
usual manner for a system of boundary nodes. The 
resulting equation is then expressed in matrix form 
as, 
 

}0{}u]{T[}t]{U[ cc =−  (21) 
 
     As stated before, 
 

}t{}t{}t{and}u{}u{}u{ p
i

c
ii

p
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     Substituting )}({ xu c
i  and )}({ xt c

i  from above 
equations in Equation 21 leads to, 
 

}u]{T[}t]{U[}u]{T[}t]{U[ pp −=−  
 
where the particular integral terms on the right-
hand side of this equation are known temperature 
dependent quantities. After assembling the 
unknown boundary quantities and corresponding 
coefficients on the left- hand side and the known 
boundary conditions on the right, the final system 
can be written as, 
 

}b{}b{}x]{A[ pb +=b  
 
in which [Ab] is a block-banded matrix, vector {x} 
represents the unknown boundary conditions and 

vector {bp} is the contribution of the particular 
integral. This system of equations is solved for the 
unknown vector {x} by standard numerical techniques. 
 
 

7. NUMERICAL EXAMPLES 
 
In order to investigate the applicability, accuracy 
and generality of the particular integrals method in 
BEM analysis of thermoelastic problems, three 
examples are solved, and the results are compared 
with those of analytical solutions. 
 
Example 1. Beam Subjected to Linear and 
Quadratic Temperature Change   A beam 
fixed at both ends is assumed to be subjected to two 
different cases of temperature change. Plane stress 
case was assumed and the material of the beam is 
taken to be, E = 106 N/m2, v = 0.3, α = 10-7 deg-1 
Figure 1 illustrates the beam geometry and the 
temperature variation along the depth of the beam. 
A BEM discretization of the beam is also shown. 
The numerical solution for the normal stresses, σx 
along the y-axis in the center of the beam were 
compared with analytical solutions. For linear 
temperature change with T1 = -1000° and T2 = 
1000°, the exact values of the normal stress are 
given analytically by [21], 
 

h
y)TT(E 21

x
−α−=σ  

 
where h is the width of the beam and y is the 
coordinate shown in Figure 1. 
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Figure 1. Beam subjected to linear and quadratic temperature change, geometry and temp. distribution along the width; Boundary 

element discretization 
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     For the second case a quadratic temperature 
variation of the form, T = 2(T1+T2−2T3)y2/h2+ 
(T1−T2)y/h+T3, with T1 = -20°, T2 = 40° and T3 
= 0° is implemented. The exact values for the normal 
stress under such a temperature distribution are 
given by [21], 
 

] 
h
y)T - T( + 

h
y)2T - T + T(2[  E- = 212

2

321x ασ  

 
     The BEM and numerical results can be found in 
Table 1. As can be seen the accuracy of the 
numerical formulation is very well satisfied for the 
two cases of linear and quadratic temperature 
variation. However, the errors in the case of 
quadratic temperature variation are slightly higher 
than the other case, as can be expected. 
 
Example 2. Internal Pressure Cylinder Under 
Thermal Loading   In this example a cylinder 
under combined pressure as well as a temperature 
gradient is considered. The temperature distribution 
is assumed to have the form of, T = Ar2, where A is 
a constant. The material and geometrical properties are 
as follows, E=107 N/m2; α =10-5 deg-1; a = 10cm; 
b=20cm; Pi=1000 Pa; A=2.5. The answer to this 
problem is the superposition of the analytical solution 
from the two cases of loading, i.e., the internal 
pressure and thermal gradient loading [21]. Figure 
2 shows the geometry with temperature distribution 
and boundary element discretization. 
     The results are given in Table 2 for radial 
displacements, radial and tangential stresses. The 
accuracy of the results is well satisfied  

TABLE 1. Normal Stress σσσσx (N/m2) Along The Centerline In Y-Direction For Linear And Quadratic Temperature Distribution In A Beam. 
 

 Linear Temperature Distribution Quadratic Temperature Distribution 
Y-axes Exact BEM (P.I.) Exact BEM (P.I.) 

- 0.500 h - 100.000 -101.2172 - 4.000 -3.9908 
- 0.375 h - 75.000 -74.2744 -2.8125 -2.6733 
- 0.250 h - 50.000 -51.3937 -1.7500 -1.8046 
- 0.125 h - 25.000 -25.1422 -0.8125 -0.8844 
0.000 h 0.000 0.00011 0.0000 0.0092 
0.125 h 25.000 25.1421 0.6875 0.7440 
0.250 h 50.000 51.3937 1.2500 1.2790 
0.375 h 75.000 74.2743 1.6875 1.6031 
0.500 h 100.000 101.2172 2.0000 1.9935 

 
 

  
 
Figure 2. A pressurized cylinder under a quadratic temperature
distribution, (a) Geometry and temperature distribution, (b) BEM
discretization. E = 107 N/m2. 

 
 
       (b) 

 
      (a) 
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TABLE 2. Radial Displacements (cm) And Stresses (N/m2) In Axisymmetric Thermoelastic Response For A Pressurized 
Cylinder Under A Radial Temperature Distribution. 

 
 Radial Displacement (ur) Radial stress (σσσσr) Hoop stress (σσσσθθθθ) 

NODE Exact BEM Exact BEM Exact BEM 

1 0.08322 0.08309 -1000.0 -1030.2 27536.12 27554.02 

2 0.09051 0.09035 7415.8 7677.17 26833.67 26907.55 

3 0.10645 0.10636 8422.72 8413.04 1373.926 1379.19 

4 0.13076 0.13053 5737.16 5773.81 -24961.29 -25151.86 

5 0.16383 0.16357 0.0 -4.13 -52633.03 -52655.22 

 

Example 3. Thermal Analysis of Rotating 
Disc   Let’s consider a thin disc of uniform 
thickness with a central hole, rotating with a 
constant angular velocity ω rad/sec and in addition 
is subjected to a thermal loading according to, T=A 
r2 + B, where A and B are constants. The analytic 
solutions for resulting stresses and radial 
displacement are the superposition of two different 
cases thermal and inertial loading due to rotation 
[21]. 
     The appropriate boundary conditions of traction-free 
edges on a disc with a concentric hole are σr = 0, 
at r = a and r = b, the inner and outer radii 
respectively. 
     For a plane stress case, the disc has a uniform 
thickness with inner and outer radii of 0.1m and 
0.2 m, respectively. The mesh contains 12 three-
node continuous elements and a total of 24 
nodes. Because of symmetry, one-fourth of the 
geometry was modeled as shown in Figure 3. 
The data used was, E=105 Nm-2; ν = 0.3; α = 
0.001 deg-1; ρ = 2.4 kg/m3; ω = 100 rad/sec; A = 
2500; B = 500. 
     Table 3 contains a comparison between analytical 
and BEM numerical results using particular integrals 
for ur and also σr and σθ along the radius of the 
disc. Good agreement is seen for both displacements 
and stresses due to thermoelastic behavior. 
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Figure 3. A rotating disc with temp. distribution T=Ar2+B, (a)
Geometry and temperature distribution,  (b) BEM model. E =
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 Radial Displacement (ur) Radial stress (σσσσr) Hoop stress (σσσσθθθθ) 

NODE Exact BEM Exact BEM Exact BEM 

1 0.0562 0.0571 0.0 4.12 4584.0 4535.74 

2 0.0691 0.0702 557.08 532.96 2454.4 2466.00 

3 0.0826 0.0839 617.22 620.49 560.12 580.76 

4 0.0976 0.0982 400.85 413.73 -1350.3 -1383.40 

5 0.1114 0.1131 0.0 -2.5 -3383.98 -3382.04 

 


