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Abstract   This paper presents a practical and efficient method to solve large-scale nonlinear 
equations. The global convergence of this new trust region algorithm is verified. The algorithm is 
then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). 
Numerical results for the implementation of some large-scale problems indicate that the algorithm 
is efficient for these classes of problems. 
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زرگ ارائه  يك روش كار آمد و عملي براي حل مسائل معادلات غير خطي در ابعاد ب               در اين مقاله       چكيده
 غيرخطي معادلاتابتدا همگرايي اين الگوريتم ناحيه اعتماد اثبات شده و سپس الگوريتم براي حل نا       . شود مي

تم نشانگر كار آمد    نتايج محاسبات با استفاده از اين الگوري      . گيرد در توابع بسط لاگرانژ مورد استفاده قرار مي       
 .بودن آن بر روي بعضي مسائل است

 
 

1.INTRODUCTION 

The use of trust region methods for solving systems 
of nonlinear equations has been popular during the 
past decade. Much of the interest is due to the 
strong convergence properties of such methods 
[1,2]. Duff et al.[3] use linear programming combined 
with trust region idea to solve nonlinear equations. 
It is based on minimizing the 1l -norm of the linearized 
vector within an ∞l norm trust region, thereby permitting 
linear programming techniques to be easily applied. 
Duff et al. [3] show that their approach works 
better than Levenberg's algorithm [4]. However, the 
algorithm was not used for large-scale problems. 
Luksan [5] uses an inexact trust region method to 
solve large and sparse nonlinear equations. The 
method does not need to use matrices so it can be 
also used for large dense nonlinear equations. 
Martinez [6] uses a two-dimensional search algorithm 

to solve large and sparse nonlinear equations. 
Although the algorithm has strong convergence 
properties, the computation of the two 
dimensional search is expensive. 
     Martinez and Santos [7] tried to solve this 
difficulty by using a curvilinear search algorithm. 
     This paper presents a modification of a trust 
region algorithm introduced by Martinez [7]. Our 
algorithm has a curvilinear search method similar 
to that proposed by Martinez and Santos [7], and 
our convergence proof eliminates mistakes in their 
work. Numerical results of a large-scale problem 
are presented at the end. 

2. PROBLEM STATEMENT 

Consider solving a set of nonlinear equations of 
using the following minimization problem: 
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where F = T
m1 )f,...,f(  is a 1C -function and .  

represents the Euclidean norm in nR . Martinez's 
method [6] uses a Gauss-Newton strategy to obtain 
an approximation of the Newton direction. Bi-
dimensional search methods are then used to find 
the best direction 1+kd , which is a linear combination 
of the Newton direction and the Cauchy step at 
every iteration. 
     The algorithm developed by Martinez [6] needs 
to solve a bi-dimensional search direction several 
times. This makes the algorithm inefficient in some 
cases,  especially for large-scale problems. 
Martinez and Santos [7] present a modification of 
their method, and report that the use of a 
curvilinear search method can reduce the burden of 
the computation and significantly simplify the 
algorithm for practical implementation. However, 
the curvilinear search plane used in the algorithm 
statement by Martinez and Santos is different from 
what they actually developed. In the following 
section, we present a new curvilinear search 
method.  
     The contributions of the proposed method in 
addition include the use of a pure Newton direction 
near optimal solution. 
     A convergence proof is given at the end that 
eliminates the mistakes in the work of Martinez 
and Santos [7]. 

3. A NEW ALGORITHM WITH 
CURVILINEAR SEARCH DIRECTION 

In this section we present a proposed algorithm 
that has similar steps as the algorithm in [7]. We 
consider that a Newton step tends to provide fast 
convergence when x is close enough to *x . 
Therefore, we switch the bi-dimensional search 
direction to a pure Newton step when step kd  is 
close enough to the final step. 

Algorithm 1   Let nm,RR:F mn ≥→⊂Ω  
ΩΩ∈ ),(CF 1  an open set. Let Ω∈0x  be an 

arbitrary initial point, 
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Step 1   Compute kJ and kg . If kg =0, stop. 

Step 2   Obtain n
k Rw ∈  such that 

.ggwJJ kkkkk
T
k η≤+  (2) 

If ε≤kg  set kk1k wxx +=+ and k=k+1, go to 
Step 1. 

Step 3   Obtain n
k Rv ∈  as the solution of the 

following bi-dimensional problem:  

kk2k1kk wwg.t.sFvJmin ≤λ+λ+  (3) 

Step 4   Set k
1
k gd −=  and test the following two 

conditions for kv : 

kk1k
T
k gvgv θ−≤  (4) 

and 

kkk gMvgM ≤≤  (5) 
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If (4) and (5) are satisfied set k
k
2 vd = otherwise set 

k
1

k
2 dd = . 

Step 4   Set t = 1. Perform Step 5.a to 5.d 

(5.a): Set d=d (t)= 1
k

2
1
k

T
k

2
k

T
k2

k
2 d)t1(t

dg
dgdt −+  (6) 

(5.b): If dg)x(F
2
1)dx(F

2
1 T

k2
2

k
2

k θ+≤+  (7) 

go to Step 5.d 

(5.c): Let t̂ be such that )t(d)1()t̂(d)t(d 33 θ−≤≤θ  
 (8) 

     Replace t by t̂ , go to Step 5.a 

(5.d): ddk = ,  kk1k dxx +=+ . 

     Algorithm (1) has similar steps as the one 
introduced by Martinez [7]. In Step 5.a, we are 
using a new curvilinear search algorithm, which is 
slightly different from the original algorithm. 

Theorem 1.   The Algorithm 1 is well defined. The 
proof is similar to Martinez and Santos [7] and 
corrects the mistakes in the original paper. 
     It is an easy task to show that if 0≠kg , the 
algorithm can reach Step 5.d in a finite number of 
iterations. In Step 2 of the algorithm, a system of 
linear equations is solved. Assuming that the 
system of equations has full rank, it always has a 
unique solution. In Step 3, a two-dimensional sub 
problem is solved and v is in the positive cone 
determined by kg and kw . Step 4 does not create 
any problems. Finally, Step 5 is verified as 
follows. Let us write 
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By the definition of 1
kd  and (4) we know that a > 

0. By (8), we need to show that (7) is satisfied 
when t is small enough. By Mean Value Theorem, 
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Taking limits on both sides of (11), we have  
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for ).t̂,0(t ∈ Thus, using 0)t̂(dgT
k < , we obtain 

(7). This completes the proof. 

Theorem 2. Assume that ( kx ) is generated by 
algorithm 1, Then:  
If there exists c > 0 such that cgk ≤ for all 

k=0,1,2,… and Ω∈*x  is a limit point of )x( k , 

then 0)x(F)x(J *T* = . 

(a) Let 0>ε . If 
202 )x(F)x(F:x ≤Ω∈  is 

compact, then there exists Nk ∈ such that 
ε≤)x(F)x(J k

T
k . 
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(b) Let *x  be a strict local minimizer of f in 
0, ≥εΩ . Then there exists 01 >ε such that 

1
*

k xx ε≤− . 

(c) If *x is a local minimizer of 2
k )x(F and an 

isolated stationary point in Ω , then there 
exists 0>ε such that *

k xxlim = , whenever 

ε≤− *0 xx . 

Proof 2   We prove that if the inequality 
2
kk dd ≤  in (8) is changed to 2

kk dKd ≤  for 
some constant K, it will become a simple case of 
the algorithm 3.1 of [6]. It is clear that the 
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     Therefore, (14) is proved. Now, by (4) and (5) 
and the choice of 2

kd we have: 
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Hence the axiom (2) of [6] is satisfied. By 
definition of 1

kd , we have: 

k
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     Hence, by (4), (5), the axiom (9) of [6] is also 
satisfied. On the other hand, by (7), the axiom (9) 
of [6] holds. Finally, we prove the inequality of 
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proof is complete. 

4. MOTIVATION 

In this section, the motivation of using a curvilinear 
search direction similar to the one introduced in [7] 
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is explained. Since d(t) lies in the positive cone 
generated by 1

kd  and 2
kd  for all ]1,0[t ∈  and it is 

desired to have a negative gradient direction when 
the step is infinitesimal, the search direction is 
assumed to be tangent to 1

kd  for small step t. (Note 

that )0a,0)0(d,d)1(d k
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5. NUMERICAL IMPLEMENTATION AND 
RESULTS 

In this section some numerical results for the 
implementation of the curvilinear search method to 
solve a large-scale problem from water resources 
management are presented. The problem has the 
form of the minimization of a quadratic objective 
function, f(x), subject to some equality constraints, 
h(x), and some bound constraints, g(x). The 

TABLE 1. The Summary of the Use of Algorithm 1. 

Curvilinear +Newton(CM) Curvilinear n q 
Iter. 

∞
h  CPU(Sec.) Iter. 

∞
h  CPU(Sec.) 

120 96 28 6.46E-09 21.63 41 1.01E-10 38.98 
240 192 34 8.55E-09 60.05 39 1.78E-10 85.49 
360 288 48 1.36E-08 139.05 35 5.79E-10 123.06 
480 384 40 3.99E-11 162.29 37 9.18E-11 200.16 
600 480 29 2.53E-11 147.33 28 4.89E-11 163.08 
720 576 31 2.54E-11 185.38 30 4.09E-11 215.10 
1200 960 35 3.16E-11 370.29 30 8.39E-11 416.28 
2400 1920 44 3.37E-10 820.70 29 6.08E-11 923.42 
3600 2880 45 4.63E-07 1639.93 48 2.66E-09 3852.65 
4800 3840 53 8.58E-07 2808.88 55 4.54E-09 7567.43 
7800 6240 55 9.83E-07 4961.97 55 4.54E-09 10433.95 
10800 8640 50 2.88E-06 5983.10 53 1.00E-09 19845.60 
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Expanded Lagrangian Techniques developed in [8] 
is used to convert the constrained optimization into 
a set of nonlinear equations in order to use the 
curvilinear search algorithm developed in this 
paper.  
     The implementation uses  

5934
2

7
1

4 10M,10M,10,10,10,10 −−−−− ===ξ=θ=θ=η  
In Table 1, we report: 
(n, q, Iter.): the number of variables, the number of 
equality constraints, and the total number of 
iterations needed to reach the convergence criteria 
corresponding to the application, respectively. 

     ( ∞h  CPU Time (Sec.)): The maximum violation 
of equality constraints, the value of the objective 
function, and the running time in seconds, 
respectively. The algorithm has been coded using 
FORTRAN77 on a Sparc2 workstation. The 
performance of the proposed method that uses 
Newton step at final stage (Algorithm 1) with the 
implementation of the curvilinear line search is 
compared. The results are summarized in Table 1. 
In both algorithms, the number of iterations does 
not increase significantly with the size of the 
problem. In most cases, Algorithm 1 converges 
faster, however, it doesn't reach the accuracy 
required for large cases. 

6. COMNCLUSION 

In this paper, a practical and efficient method for 
solving nonlinear equations has been presented.  
     Like the algorithm introduced in [7], it does not 
need to solve the two-dimensional trust-region 
subproblem several times. Instead, it uses a 
curvilinear search direction similar to the one used 
in [7]. The numerical results indicate that using a 

pure Newton step when the step is close enough to 
the final solution can provide a fast convergence. 
The global convergence of the proposed algorithm 
has been verified. 
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