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Abstract    In seepage problems, the coefficients of permeability in Laplace equation are usually 
assumed to be constant vs. both space and time; but in reality these coefficients are variable. In this 
study, the effect of material deformation due to external loads (consolidation) and variation of head in 
the consolidation process are considered. For the first case, formulation of kx and ky can be defined by 
a second order binominal equation in order to take into account the material changes due to volume 
changes. For the second case, kx and ky can be defined as a function of unknown total head. The 
solution of the resulting non-linear differential equation is found using the Least Square Finite 
Element formulation. In order to increase the accuracy of the solution, eight nodal (isoperimetric) 
elements were obtained. This method was used satisfactorily to solve several seepage problems and to 
examine the accuracy and convergence of the results. The effect of a variable coefficient of 
permeability may not be significant on small dams, but as the height of the dam increases, the effect 
becomes more considerable. It is believed that a variable permeability analysis such as the one 
described in this paper should be taken into account. 
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   براي سادگي در مسائل تراوش، ضرايب نفوذ در معادله لاپلاس معمولا نسبت به زمان و مكان ثابت                      چكيده

ر بار آبي در شكل     در اين مقاله اثرات بارهاي خارجي و تغيي       . اما در واقع اين ضرايب متغيرند     . شوند فرض مي 
در حالت اول براي تعريف تغيير حجم مصالح در سيستم،        . گيرد تغيير مصالح، بمانند تحكيم مورد توجه قرار مي       

تواند  در حالت دوم معادله ضريب نفوذ پذيري مي. توان تاثير آن را بوسيله يك معادله درجه دوم معرفي نمود مي
معادله ديفرانسيل غيرخطي بدست آمده با استفاده از روش           . ي شود به عنوان تابع نامعلومي از بار كلي معرف         

هاي هشت   به منظور افزايش دقت حل مساله، از المان         . باشد حداقل مربعات المانهاي محدود قابل حل مي        
از اين روش براي حل چندين مساله تراوش به صورت رضايت بخشي استفاده گرديده               . شود گرهي استفاده مي  
اثر تغيير ضريب نفوذ پذيري در سدهاي كوتاه قابل چشم  . يي نيز مورد بررسي قرار گرفته است      و دقت و همگرا   

بر اين باوريم كه تغيير     . پوشي است؛ ولي در سدهاي بلند اين اثر اهميت يافته و بايستي مورد توجه واقع شود                 
تواند در مسائل تراوش در نظر       طور كامل مورد بررسي قرار گرفته مي       به نفوذ پذيري همانطور كه در اين مقاله      

 .گرفته شود
 
 
 

1. INTRODUCTION 
 
In most geotechnical analyses, soil properties are 
assumed to be spatially and temporally invariant 
and thus, average property values are used. In 
reality, however, these soil parameters usually 
vary from point to point (heterogeneous) and even 
at one point they may have different values in 

various measured directions (anisotropy). Moreover, 
these parameters may vary in time while a 
geotechnical process is occurring due to an 
external influence such as surface pressure or due 
to the change of chemical compositions. For 
computations in flow problems using numerical 
techniques usually homogeneous conditions are 
assumed for the coefficient of permeabilities 
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and anisotropic conditions are assumed throughout. 
In this research, the coefficients of permeability 
are assumed to vary in term of geometry, external 
load influences such as those causing consolidation 
effects, and the effect of head variation in the 
system where seepage is taking place. In order to 
define these variations two conditions are 
presented in this paper. The first condition can be 
explained for example by applying an embankment 
load over a confined saturated fine grain soil layer. 
This load would begin to consolidate underlying 
materials. At the end of consolidation process the 
permeability of the materials are changed and can 
be described by a governing differential equation, 
which can then be solved. In addition to the first 
case, a second case can be defined in which 
variation of the head can also have an effect on the 
consolidation process resulting in permeability 
variations. This effect simply can be seen in 
Terzaghi’s effective stress equation. The influence 
of head variation is introduced by a defined 
function, which can be solved numerically. This 
changes the governing differential equation to a 
non-linear one, where one of the parameters 
(head), which define the coefficients of the 
governing differential equation, is unknown. A 
numerical solution is required in such cases. 
     The finite element (FE) method is a very 
powerful tool to solve many sophisticated 
engineering problems. FE analysis has been 
implemented in a number of areas in engineering 
such as solid mechanics, heat transfer and 
hydrodynamics as well as geotechnical interests 
such as Desai and Christian [1] for general 
geotechnical uses, Beacher and Ingra [2] and 
Righetti and Harrop-Williams [3] for stress 
analysis and Finn [4] and Smith and Freeze [5,6] 
and Griffiths and Fenton [7] for seepage analysis. 
     General finite element formulations, such as the 
Variational or Weighted residual processes 
methods used by Zienkiewicz [8] cannot be 
employed to solve a non-linear equations such as 
Navier Stokes, Burgers or Laplace equations. The 
Galerkin and least square methods are an 
extension of the Weighted Residual method. Using 
the Galerkin method for the solution of the Navier-
Stokes equation has many associated difficulties 
such as (a) the coefficient matrix is not symmetric 
and in the pressure variation direction in the 

continuity equation would perform as ill-conditioned, 
and (b) convergence of this system in non-linear 
problems is very slow and sometimes may come 
up with some difficulties with iterations. 
     In the present study in order to solve the non-
linear governing differential equation the Least 
Square Finite Element Formulation (LSFEF) was 
utilized. This method has recently been used by 
researchers such as Zienkiewicz et al. [9], Lynn 
and Arya [10], and Winterscheidt and Surana 
[11,12] in many areas such as solution of partial 
and hyperbolic differential equations or boundary 
layer flow, gas dynamics, and compressible fluid 
and gas problems. LSFEF method was used based 
on the minimizing of the error function in 
differential equations with non-linear partial 
differentiation.  
 
 
 

2. VARIABILITY OF THE 
COEFFICIENT OF PERMEABILITY 

 
In flow problems, both the magnitude and 
direction of governing fluid flows are highly 
sensitive to the coefficient of the permeability. For 
simplicity, this parameter is usually assumed to be 
a constant in space and time. In this study, the 
coefficient of permeability is assumed to be 
spatially variable. The variation of coefficient of 
permeability was defined for different cases, and 
then the resulted governing differential equation 
was solved. In order to define a function for the 
variation of the permeability two conditions were 
proposed. 
 
First Condition   This is a simple condition 
where the coefficient of the permeability is a 
function of material properties and geometrical 
conditions. From most classical soil mechanics 
literature it is well known that coefficient of 
permeability is directly proportional to the void 
ratio of the soil. As the void ratio increases or 
decreases, so does the coefficient of permeability, 
Lambe and Whitman, [13]. Only confined flow 
was considered here. As an example, one can 
consider construction of an embankment dam over 
a saturated fine grain soil. As the construction 
starts, the consolidation of the material beneath the 
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embankment will begin. Due to non-uniformity of 
the applied load, the consolidation of the materials 
under the embankments will vary, which will 
result in void ratios that vary in space and time. 
This would therefore introduce variation of coefficient 
of permeability at different locations and directions 
under the embankments. Generally, these coefficients 
of permeability are a minimum at the centerline of 
the embankments and increase as the distance 
from the centerline increases. These coefficients 
of permeability would also be time dependent as 
long as the consolidation process is occurring. In 
order to define good estimates for coefficient of 
permeability in flow problems for any given point, 
mainly dependent upon soil type, fabric and 
structure, and consolidation stage one should 
undertake laboratory testing to define the equations 
for kx and ky, the coefficients of permeability in x 
and y direction, respectively. The variation of kx in 
horizontal direction can be simply expressed by 
any order binominal equation, which in this study 
was considered to be second order. 
 
kx = ax x2 + bx x + cx (1) 
 
Where ax, bx, and cx are the coefficients that can be 
determined from a curve fitting procedure based 
on the results from laboratory and field-testing. 
     Similarly ky the coefficient of permeability in 
vertical direction can be expressed by a similar 
second order binominal equation of the form: 
 
ky = ay y2 + by y + cy (2) 
 
where ay, by, and cy are the coefficient which can 
be determined from curve fitting procedure based 
on the results from laboratory testing. Generally ky 
in vertical direction can vary by either the effect of 
overburden pressure of the natural soils or the 
influence of excess stresses due to an embankment 
load. For the first case, as the overburden pressure 
increases with depth, there would be a tendency 
for the material to become more compacted, therefore 
reducing ky with depth. For the second case, as the 
depth increases the effect of embankment load 
decreases i.e. less consolidation, and thus ky 
increases. The effect of the second imposed condition 
is opposite to the first case, and these physical effects 

with depth should be superimposed in order to 
define Equation 2 for every starting point at interface 
of embankment and natural soil in the vertical 
direction. 
 
Second Condition: In this condition, the 
coefficient of permeability, in addition to the first 
case, can be affected by the variation of heads in 
the upstream, downstream, or in the soil. In the 
next section the relationship between hydraulic 
head and the coefficient of permeability is 
described. 
 
Relationship Between Effective Stress and 
Soil Void Ratio   In the soil consolidation 
process, the relationship between effective stress 
and void ratio can be demonstrated in e vs. log p 
space, as an example Figure 1, Leroueil et al. [14]. 
The first portion of the curve with lower slope, 
which is due to unloading of the sample, is not 
considered here. Only the second portion with 
slope of cc, which is mainly due to loading, is 
considered. The void ratio “e” of the material at 
any stage of the consolidation can be determined 
by: 
 

e c ec= ′
′

+log σ
σ 1

1

 
(3) 

 
where σ′ is the applied effective stresses (head) 
corresponding to e and σ′1 is the known effective 
stress corresponding to e1. Equation 3 can be 
written as: 
 
e = cc log σ′ - cc log σ′1 + e1 (4) 
 
or 
 
 e = a log σ′ + b (5) 
 
where a = cc and b = -cc log σ′1 + e1 
 
Relationship Between Void Ratio and 
Coefficient of Permeability   It can be observed 
from previous research of Lambe and Whitman 
[13] and Cedergren [15] and Leroueil [14] that the 
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relationship between void ratio and logarithm of 
coefficient of permeability is linear, Figure 1. 
Similar to previous case, “e” void ratio of the 
material at any stage can be determine by: 
 

e c k
k

ek= +log
1

1

 
(6) 

 
where ck is the slope of the curve, k is the unknown 
coefficient of permeability corresponding to e, and 
k1 is the known coefficient of permeability 
corresponding to e1. By rearranging the Equation 
6, the coefficient of permeability can be found as 
follows: 
 

log logk e
c

e
c

k
k k

= − +1
1

 
(7) 

 
Since - e1/ck + log k1 is a constant value assumed 
to be equal to d, and c = 1/ck, therefore: 
 
log k = c e + d (8) 

and finally k can be written as: 
 
k = 10 (c e + d) (9) 
 
 and with substitution of Equation 5 into Equation 
9, it can be written as: 
 
k = 10 (α log σ′ + β) (10) 
 
where α is equal to ca and β is equal to cb + d , 
which all of the parameters a, b, c, and d are 
constant and can be determined from laboratory or 
in-situ testing. 
 
Relationship Between Heads (Total or 
Pressure) and Coefficient of Permeability 
From the effective stress Terzaghi’s Equation and 
from the information in Figure 2, the effective 
stress at any point can be written as: 
 
σ′ = (-y γsat + γw H) - ( h + y) γw (11) 
 
where γsat is saturated density of the soil, h is the 
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Figure 1. Typical e against log σ΄ and e against log k curve (from Leroueil et al. [14]). 
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total head, h + y is the pressure head, H is the 
upstream water height and γw is water density. 
     By substituting Equation 11 into Equation 10, it 
can be written as: 
 
k = 10 αlog [-yγsat + (H -h -y)γw] + β (12) 
 
Equation 12 can be simplified to 
 
k = 10β[ -y γsat + (H - h -y)γw]α (13) 
 
In the above equation α, β, γsat, and γw are 
constants that depend on material properties and 
can be determined from laboratory or in-situ 
testing. The value of total head h depends on the 
geometry of the considered point and is an 
unknown value, H is the height of water at 
upstream and y is the depth of the considered point 
from datum. It can be concluded from the above 
equation that at any point within the confined flow 
the coefficient of permeability can be defined as a 
function of total head “h” which will directly 
influence the solution of the governing differential 
equation. 
 
 
 

3. WATER FLOW NON- LINEAR 
GOVERNING DIFFERENTIAL EQUATION 

 
The 2-D governing equation of water flow in 
porous media under laminar conditions, where 

Darcy’s law is applicable is given by: 
 
∂
∂

γ ∂
∂

∂
∂

γ ∂
∂x

k h
x y

k h
yw x w y







+






= 0  (14) 

 
The above equation can be simplified by assuming 
γw, water density, to stay constant at all times, and 
therefore: 
 
∂
∂

∂
∂

∂
∂

∂
∂x

k h
x y

k h
yx y







+






= 0  (15) 

 
Under conditions of homogeneity, kx and ky are 
assumed to be constants which do not vary in 
space. In addition, applying anisotropy conditions 
requires kx ≠ ky. Generally for simplicity kx and ky 
are assumed to be constant and for more simplicity, 
they are assumed to be equal and constant. However, 
in this research these coefficients are assumed to 
be variable which would change the differential 
equation to a non-linear one. Equation 15 can be 
expressed as follows: 
 
dk
dx

dh
dx

k d h
dx

dk
dy

dh
dy

k d h
dy

x
x

y
y+ + + =

2

2

2

2 0  (16) 

 
kx and ky can now be expressed by Equations 1 and 
2 and Equation 13 and can be substituted in 
Equation 16. Formulation of the least square finite 
element method requires first order differential 
equations. This can be adopted by assigning 
hydraulic gradients in the x and y directions as 
follow: 
 

P dh
dx

Ix x= =                P dh
dy

Iy y= =  (17) 

 
Equation 17 was used in least square finite 
element formulation. 
 
Secondary Solutions   In seepage problems, 
in addition to evaluation and calculation of 
heads at various locations in the system, three 
other parameters are important to be evaluated. 
These are total discharge rate, exit hydraulic 
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Figure 2. Schematic diagram of an embankment dam. 
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gradient, and uplift pressure. These parameters 
are known as the secondary solutions. Total 
discharge rate can be calculated on the bases of 
discharge for each element at any section, and 
the summation of these discharge rates would be 
the total discharge rate of the system, which 
will be 
 

Q d k Ii
i

N

xi xi= −
=
∑

1

[ ][ ]  (18) 

 
where di is the width of the element I, with the 
value Ix as the average of the eight node 
hydraulic gradient for each element. The exit 
hydraulic gradient would be known at the 
downstream section of the system. Uplift 
pressure can be calculated on the bases of 
Bernoulli’s equation by knowing total head (h) 
from analysis and evaluation of the concerning 
point from geometry assuming, that v2/2g =0. 
 
 
 

4. NUMERICAL EXAMPLES 
 
In this section two examples are provided for 
the proposed types of variations on kx and ky. 
 
Example 1   To illustrate the proposed 
methods, consider Example 18.2 of Lambe and 
Whitman [13]. A schematic diagram of a 
concrete dam is given in Figure 3. This system 
consists of two sheet piles of 21 meters height 
at upstream and downstream of the dam. In 
order to analyses the problem, the permeable 
section of the system was divided into 18 
elements with 77 nodes. Sheet piles were 
considered as impermeable boundaries, where 

0/ == xhPx ∂∂  and other impermeable 
boundaries where P h yy = =∂ ∂/ 0  are at the 
bottom of the 64 meter thick permeable layer 
and dam itself. A thirty-meter distance away 
from the system (sheet piles) was chosen as a 
limit for numerical analysis where it assumed 
there is no flow-taking place away from these 
limits in the permeable layer. Variable heads at 

upstream and downstream locations were 
chosen in order to examine the effect of the 
proposed solution. In order to apply Equation 
13, the following values were used based on 
Effati [16]. 
 
α = -0.034049 
β = -1.0 
γsat = 22 kN/m3 

γw = 10 kN/m3 
 
Results for head, the coefficient of permeability 
k and discharge rate were obtained based on the 
above values employing computer program 
which was prepared based on the least square 
finite element formulation. Comparing the 
results of the heads obtained here with flow 
nets in Lambe and Whitman [13] shows only 
very small differences. Any conclusions based 
on head results and flow nets alone may not be 
justified due to the accuracy of the results. A 
flow net drawing is based on a trial and error 
procedure and is not affected by upstream or 
downstream heads. In Figure 4 variation of 
coefficient of permeability k is shown against 
head (water height) in the upstream. It is clear 
from this figure that, (i) when the head at any 
node varies, it would influence the permeability 
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Figure 3. Schematic diagram of the system and FE mesh. 
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of that node, (ii) as the head increases the values 
of permeability decrease, and (iii) when the 
head at any point increases, consolidation of 
the material occurs resulting in reduced the 

permeability. The variation of k against head is 
linear because the proposed function for k in 
Equation 13 is non-linear. Figure 5 shows the 
variation of the discharge rate under the dam 
against upstream head. Two types of curves 
are shown in Figure 5, one with constant 
permeability and the other with variable 
permeability (proposed method). In the one with 
constant permeability, similar to most classical 
seepage problems, permeability is assumed 
constant throughout the analysis and the system, 
and if it varies it is not due to the effect of 
upstream head. In this case k was assumed to be 
0.07782 cm/sec. But in the other one variable k 
refers to the influence of head on discharge rate. 
It is can be seen from Figure 4 that for both 
cases when upstream head increases, the 
discharge rate also increases. It should be 
clarified, however, that in the actual case, head 
effects influenced permeability. The discharge 
rate is different from that of the constant 
permeability case. The difference would be 
higher for longer values of upstream head, i.e. 
for h = 120 m the effect of the head on 
discharge rate is about 5.4%. This is mainly due 
to the effect of upstream head on permeability. 

 
Example 2   In these example variations of kx 
and ky are not effected by a direct influence of 
head but they are based on other effects using 
Equation 1 and Equation 2. A schematic 
diagram of a concrete dam is given in Figure 6. 
     The permeable section of the system was 
divided into 20 elements with 85 nodes. The 
top and bottom portion of the permeable 
section with thickness of 40 meters were 
considered as impermeable boundaries where 

0/ == yhPy ∂∂ . Sixty meters from the toe and 
heel of the dam were chosen as a limit for 
numerical analysis where no flow was assumed 
to take place away from these limits in the 
permeable layer. The proposed variations for 
kx and ky are based on Equations 1 and 2 and 
Effati [16]. 
 
k E x E xx = − − − +0 375 3 0 375 2 102. .  
 at x = 0.0     kx = 10 m/day 
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Figure 4. Variation of coefficient of permeability against 
head. 
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Figure 5. Comparison of discharge rate variation under dam 
against head for constant and variable coefficient of 
permeability. 
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k E y E yy = − + − +0 255 2 0 375 2 2 52. . .

 
 at y = 0.0       ky = 2.5 m/day 
 
In this example results for exit gradient and 
uplift pressure are presented based on above 
values for kx and ky using a computer program 
which was prepared based on the least square 
finite element formulation. 
     Figure 7 shows the exit gradient in vertical 
direction against upstream head for constant and 
variable permeability based on data in this 
example. For low upstream head the difference 
between constant and variable permeability 
conditions is sometimes negligible, but as the 
upstream head increases, in large dams the 
difference becomes more significant which 
might influence the design of the whole system. 
For the upstream height of 180 meters, the exit 
gradient difference is about 32%, which would 
reduce the factor of safety against piping to a 
low point, which, in turn, may result in 
changing the geometry of the dam. It should be 
noted that constant values of permeability 
considered in the computation would result in 
higher values for exit gradient, which would be 
on the safer side. 
     Figure 8 shows the uplift pressure at the 
bottom of the dam against upstream head for 
constant and variable permeability based on data 
in this example. As the head in the upstream of 
the dam will increase, obviously the uplift 
pressure under dam increases, but as it can be 

seen, there is a difference between constant or 
variable permeability conditions. This difference 
would be around 7% for an upstream head of 150 
meters. Again it should be noted that with 
constant permeability the value of uplift pressure 
is higher than that with the variable permeability, 
which would also be on the safe side. 
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Figure 6. Schematic diagram of the system with FE mesh. 0
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Figure 7. Variation of exit hydraulic gradient against head for 
constant and variable permeability. 
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Figure 8. Comparison of the uplift pressure against head for 
constant and variable permeability. 
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5. CONCLUSIONS 
 
This paper presents a non-linear governing 
differential equation for a confined seepage 
problem under non-homogeneous and anisotropic 
conditions. This non-linear performance is 
introduced by the governing equation based on 
actual material behavior and solving the 
resulting non-linear differential equation 
numerically using the least square finite element 
formulation. This method was used to solve 
several seepage problems to examine the 
accuracy of the results. The solutions show 
good accuracy and convergence. The advantage 
of this method is its capability to solve non-
linear problems compared to routine methods 
with constant coefficients in order to increase 
the accuracy of the solution; eight nodal 
(isoperimetric) elements were used. Some clear 
conclusions can be drawn from this study. 

a)  Generally, results of head changes (i.e., flow 
net analyses) either by first or second conditions 
for variable permeability conditions compare 
favorably to the case when the permeability is 
assumed to be constant and very little difference 
is observed.  

b) Comparison of the results for discharge rate 
between constant and variable permeability 
conditions shows little effect of low head on 
discharge rate results. However, as upstream 
head increases, the effect of variable permeabilities 
becomes more significant. Usually the difference 
in discharge rate between variable and constant 
permeability for a typical head is not more than 
8%. 

c)  Results of exit gradient for a critical 
condition shows that the values are less affected 
for low head, but the effect increases for higher 
head. The results assuming variable permeability 
conditions would give a lower safety factor 
regarding piping, etc. 

d) In terms of uplift pressure, as the head 
increases the uplift pressure also increases, but 
there is only a slight difference between uplift 
pressure under constant or variable permeability 
conditions for any given head. This result is 

consistent with part (a). 

e)   In general, the effect of variable coefficient 
of permeability may not be significant on small 
dams, but as the height of the dam increases, the 
effect becomes more considerable. It is believed 
that this would influence the geometry and design 
of the dam and that variable permeability 
analysis such as the one described in this paper 
should be conducted. 
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