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Abstract   A constitutive multi-laminate based elastic-plastic model developed to be capable of 
accounting induced anisotropic behavior of granular material such as sand. The fabric feature or grain 
orientation characteristic effects through medium are considered in a rational way under any complex 
stress path, including cyclic loading. The salient feature of the developed model is a non-associative 
on plane plasticity with biaxial hardening as a function of plastic shear strain components. 
Generalized form of multi-laminate framework employed to sum up the non-symmetric plastic 
compliance matrices of sampling planes to build up the main compliance matrix. Two normal 
translation rules of yield boundary are specified upon the components of plastic shear strain on every 
sampling plane. The constitutive model is capable of describing expansion of two yield functions 
upon two predefined coordinate axes. The hardening parameters affect the plastic strain tensor upon 
the contribution of twenty-six different sliding orientations through any point in medium. This 
contribution makes a powerful representation of strain hardening due to fabric effects in behavior of 
material. The comparison of experimental test results with model results represents that this model is 
more capable in cyclic behavior of porous media such as sand. 
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 احتساب ناهمساني تحميلي در     تبلي اي با قا   ه خميري چند صفح   -   روابط اساسي يك مدل ارتجاعي        چكيده
آثار ناشي از ويژگيهاي خواب دانه اي يا چگونگي بافت دانه ها            . رفتار مواد دانه اي مانند ماسه گسترش يافته است        

از ويژگيهاي مدل   . در ماده تحت اعمال بار با مسيرهاي تنشي پيچيده متناوب به روشي متناسب ديده شده است               
 صفحه اي با سخت شوندگي تابع كرنش برشي خميري دوگانه روي دو محور                  گسترش يافته رفتار خميري    

چهارچوب عمومي تئوري چند صفحه اي براي جمع انتگرالي ماتريس          . باشد لغزش با قانون خميري ناهمراه مي     
دو انتقال . نامتقارن رفتار خميري هر صفحه براي بدست آوردن ماتريس كلي رفتار خميري بكارگرفته شده است        

در . استعامد براي حركت محدوده مرز سيلان در تغيير شكلهاي خميري روي هر صفحه در نظر گرفته شده                   مت
 تاثير  .باشد روابط اساسي اين مدل قابليت تعريف پيشروي توابع سيلان در دو جهت متعامد بر روي صفحه مي                       

و شش امتداد لغزش در     فراسنجهاي سخت شوندگي بر روي تانسور كرنش خميري بر اساس تجمع آثار بيست              
اين تجمع ارائه گر توان قدرتمند سخت شوندگي كرنشي به خاطر آثار ناشي از خواب                . هر نقطه از ماده است    

مقايسه نتايج مدل با آزمايش ها بيانگر قابليت بالاي مدل در پيش بيني رفتار مواد                  .دانه اي در رفتار ماده است     
 .ناوب استمتخلخل مانند ماسه تحت اعمال بارهاي مت

1. INTRODUCTION 

Modeling the behavior of soil subjected to any 
arbitrary stress path, specially, cyclic loading 
progressed over the world to develop the capability 
for realistic static/dynamic analysis of geo-mechanical 
systems. Among proposed models, those with the 
multi-laminate base are capable of predicting induced 

anisotropy, the effect of a rotation of principal 
stress and strain axes in plasticity, semi-micro 
mechanical history of plasticity propagation in 
material and finally the orientation of failure 
mechanism.  
     For a granular mass such as sand that supports 
the overall applied loads through contact friction, the 
overall mechanical response ideally may be described 
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on the basis of micro-mechanical behavior of grains 
interconnections. Naturally, this requires the 
description of overall stress, characterization of fabric, 
representation of kinematics, development of local 
rate constitutive relations and evaluation of the 
overall differential constitutive relations in terms 
of the local quantities. 
     The task of representing the overall stress tensor 
in terms of micro level stresses and the condition, 
number and magnitude of contact forces has long 
been the aim of numerous researchers [1-3]. 
     A multi-laminate model capable of predicting 
the behavior of granular material with isotropic 
hardening on sampling planes developed by the 
authors of [4] and [5]. In this model the hardening 
rule as function of scalar value of plastic shear strain 
could not see the full strain history in plasticity. 
     The concept of proposed model, however, 
seems to be more realistic and natural, physically 
meaningful and simple. According to this 
formulation, which is based on a simple numerical 
integration, an appropriate connection between 
averaged micro and macro-mechanical behavior of 
material has been presented. The inclusion of the 
rotation of principal stress and strain axes, induced 
anisotropy and the possibility of supervising pre-
failure behavior and even controlling any variation 
through the medium are the significant of the 
model. 
     Multi-laminate framework by defining the small 
continuum structural units as an assemblage of 
particles and voids that fill infinite spaces between 
the sampling planes, has appropriately justified the 
contribution of interconnection forces in overall 
macro-mechanics. Plastic deformations are assumed to 
occur due to sliding, separation/closing of the 
boundaries and elastic deformations are the overall 
responses of structural unit bodies. Therefore, the 
overall deformation of any small part of the medium is 
composed of total elastic response and an appropriate 
summation of sliding, separation/closing phenomenon 
under the current effective normal and shear stresses 
on sampling planes. 
     According to these assumptions overall sliding, 
separation/closing of inter-granular points of grains 
included in one structural unit are summed up and 
contributed as the result of sliding, separation/ 
closing surrounding boundary planes. This simply 
implies yielding/failure or even ill conditioning 
the and bifurcation response to be possible over 

any of randomly oriented sampling planes. 
Consequently, plasticity control such as yielding 
should be checked at each of the planes and those 
of the planes, which are sliding, will contribute to 
plastic deformation. Therefore, the granular 
material mass has an infinite number of yield 
functions usually one for each of the planes in the 
physical space. 

2. MODEL CONSTITUTIVE EQUATIONS  

The classical decomposition of strain increments 
under the concept of elastic-plasticity in elastic and 
plastic parts are schematically written as follows: 

dε = dεe + dεp (1) 

     The increment of elastic strain (dεe) is related to 
the increments of effective stress (dσ’) by: 

dεe = Ce . dσ’ (2) 

Ce is elastic compliance matrix, usually 
assumed as linear. Conceptually, it is possible to 
compute Cp by using multi-laminate framework. 
However, if the single structural units are assumed 
to be elastically isotropic, using a common elasticity 
tensor, then trivially, the overall elastic response of 
the collective system will be isotropic, having the 
same elasticity tensor. Clearly, in this case, computing 
Ce by using multi-laminate framework is not 
fruitful. When single structural unit constituents are 
anisotropic, then, whether or not the overall elastic 
response will be isotropic depends on the distribution 
of the single structural units. For a random 
distribution, the overall response will be isotropic, 
whereas this response will be anisotropic if the 
distribution of particle orientations is biased by 
prior plastic deformation. 
     For the soil mass, the overall stress-strain increments 
relation, to obtain plastic strain increments (dε p), is 
expressed as: 

dε p = C p . dσ’ (3) 

C p is plastic compliance matrix. 
     Clearly, it is expected that all the effects of 
plastic behavior be included in C p. To find out C p, 
the constitutive equations for a typical slip plane 
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must be considered in calculations. Consequently, 
the appropriate summation of all provided compliance 
matrices corresponding to defined slip planes 
yields overall Cp.  

Cp = 4П∑
=

n

1i
Wi . LT 

p

iC
^

L (4) 

LT is a proper transformation matrix to transform 
p

i

^
C from ith plane coordinate to global coordinate. 

3. CONSTITUTIVE EQUATIONS FOR 
A SAMPLING PLANE 

A sampling plane is defined as a boundary surface, 
which is an interconnecting surface between two 
structural units of polyhedral blocks. These 
structural units are parts of an inheterogeneous 
continuum, for simplicity defined as a full 
homogeneous and isotropic material. Therefore, all 
inheterogeneities behavior supposed to appear in 
inelastic behavior of corresponding slip planes. 
Figure 1 shows these defined planes (say 13). 
     As already defined, the vector of plastic strain is 
calculated from the study of the glide motion over 
an individual sampling plane departed into two 
perpendicular axes. This hypothesis, of course, 
may not cope with the reality, which must represent 
all changes of behavior due to plastic slide on a 
certain plane, but includes the plastic strain 
hardening history upon the two perpendicular 
components. Therefore, the effects of sliding 
orientation are included in hardening parameters.  
     To start explaining the plastic constitutive law 
for a sampling plane, the main features of plasticity 
law (i.e. yield criterion, plastic potential function, 
flow rule and hardening rule) must also be 
considered. 
     In this constitutive formulation, two yield 
criteria are defined by two ratios of the shear stress 
components (τxi,τyi) to the normal effective stress 
(σni) on ith sampling plane. A simple form of yield 
function i.e. a straight line on τ versus σn space is 
adopted. As the ratios τxi/σn and τyi/σn increase, the 
yield boundaries represented by the straight lines 
rotate anti-clock-wise due to hardening and 
approaches Mohr-Coulomb's failure surface and 
finally failure on corresponding plane takes place. 
     The equation of yield functions for two perpendicular 
orientations (xi,yi) on ith plane are formulated as 
follows: 

nixixixinixixi ),,(F σ′η−τ=ησ′τ  (5) 

niyiyiyiniyiyi ),,(F σ′η−τ=ησ′τ  (6) 

ηxi= tan (αi) and ηyi= tan (βi) are hardening parameters 
for two plasticity rules of orientations xi and yi. 
However, they are assumed as a hyperbolic function 
of plastic shear strain components on the ith plane. 

 
 
 

                     

Figure 1. The orientation of 13 planes, real and simulated 
substructure blocks. 
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The quantities αi and βi are the slopes of yield lines. 
A simple function simulates the best variation of this 
property during plastic flow, which has been 
represented as two hyperbolic functions as follows: 

( )
pt
xti

xi
pt
xtixi

xi A
)tan(

ε+
φεττ=η  (7) 

( )
pt
yti

yi
pt
xtiyi

yi A
)tan(

ε+
φεττ

=η  (8) 

φxi and φyi are peak internal frictional angles 
corresponding to xi and yi directions on the ith 
plane. Axi and Ayi are soil parameters and ε pt

xi and 
ε pt

yi are current values of plastic shear strain on the 
ith plane. 
     A small elastic domain (defined by angle φe) is 
considered to provide elastic behavior of cohesionless 
material at the start of stress increment or 
whenever the direction of stress path changes. This 
domain as shown in Figure 2 is small and 
negligible. Therefore, the value of φe for all sands 
is assumed to be the same. However, the minimum 
value of ηxi and ηyi are tan(φe) at the first loading 
process. 
     The usual plastic potential function employed in 
Reference.4 is used in  this research. This function 
is stated in terms of τxi, τyi and σni for ith plane as 
follows: 

)log(..c),( nioninixixinixixi σσση+τ=στψ  (9) 

)log(..c),( nioniniyiyiniyiyi σσση+τ=στψ  (10) 

ηcxi and ηcyi are the slope of critical state lines for 
the plasticity in xi and yi directions and σnio is the 
initial value of effective normal stress on ith plane. 
Typical presentations of this function are shown in 
Figure 2. The gradient of this function in both 
directions represents the condition of contractancy 
and dilatancy behavior in the ranges as: 

)or(or0.0 cyicxiniyixi ηησ≤ττ≤  (contractant) 
 (11) 

)or(or cyicxiniyixi ηησ≥ττ     (Dilatants)     (12) 

Derivative of this function is found as:  

{ }T
xicxi

i~xi ,1 η−η=σ∂ψ∂  (13) 

{ }T
yicyi

i~yi ,1 η−η=σ∂ψ∂  (14) 

     Obviously, dilatancy is positive if ηxi>ηcxi or 
ηyi>ηcyi and vice versa. However, on critical state 
line of each direction, ηxi or ηyi will be equal to 
either ηcxi or ηcyi and there is no volumetric plastic 
strain. 
     Accordingly, the derivatives of the adopted 
plastic potential function which is based on the 
conception of energy equation [6], can only be 
expressed in terms of variable ηxi or ηyi, identify 
the components of plastic strain increment ratio as 
well as the position of no dilatancy/contractancy 
boundary. This aspect seems to be the most 
suitable form, which conforms to the constitutive 
formulation of sampling plane in the case of having 
a double hardening plasticity rule for granular media. 

Figure 2. Plastic Potential and yield surfaces of one sampling
plane in local coordinate. 
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     Flow rule for both directions similarly is expressed 
as follows: 

i~

xi
xi

p

xi~
.d

σ∂
ψ∂λ=ε  (15) 

i~

yi
yi

p

yi~
.d

σ∂
ψ∂

λ=ε  (16) 

λxi and λyi are proportionality scalar parameters and 
changes during plastic deformations. 
     In theory of plastic flow, consistency condition 
is a necessary condition, which requires that a 
yield criterion been overcome as far as the material 
is in a plastic state. Mathematically, this condition 
is stated as follows: 
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ε pt
xi and ε pt

yi  are the components of plastic shear 
strain on ith plane. From Equations 15, 16 and 17, 
18 the followings are obtained: 









τ∂
ψ∂









ε∂
∂

σ












σ∂
∂

−=λ

xi

xi
pt
xi

xi

i~

T

i~

xi

xi

.F

d.
F

d  (19) 













τ∂
ψ∂













ε∂
∂

σ












σ∂
∂

−=λ

yi

yi
pt
yi

yi

i~

T

i~

yi

yi

.
F

d.
F

d  (20) 

These relations can also be expressed in another 
form as: 

Hpxi and Hpyi are defined as hardening modulus of 
ith plane corresponding to xi and yi directions and 
are obtained as follows: 
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Therefore, plastic compliance matrix for ith plane 
is obtained as follows: 
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niyiyi
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C p
i as a whole, represent the plastic resistance 

corresponds to ith plane and must be summed up 
as the contribution of this plane with the others. 
Accordingly, the conceptual numerical integration 
of multi-laminate framework presents the summation 
given by equation 4 for computing C. 

4. DEFINITION OF PLANES WITH NEW 
COORDINATES 

To satisfy conditions of applicability of the theory 
from the engineering viewpoint and also to reduce 
the extremely high computational costs, a limited 
number of necessary and sufficient sampling 
planes are considered. 
     The choice of 13 independent planes for the 
solution of any three dimensional problem based 
on getting a good distribution of plastic deformation 
through the media and avoiding huge computing 
time is a fair number. The orientation of the 

sampling planes as given by their direction cosines 
and the weight coefficients for numerical 
integration rule are given in fist three and the last 
columns of Table 1. The coefficients Wi are 
simply calculated based on Gauss Quadrature 
numerical integration rule. 
     A coordinate system has been employed for 
each plane in such manner that one axis is 
perpendicular to the plane and the other two are on 
the plane. Plastic shear strain increments on each 
plane is considered as two component vectors on 
defined coordinate axes of plane. 13 sets of direction 
cosines of coordinate axes are presented in Table 1. 
     Figure 1 shows the orientation of all 13 planes 
in similar cubes. In order to clarify their positions, 
they have been presented in four cubes. 

5. MODEL PARAMETERS 

In a general case, for the most anisotropic, non-
homogeneous material, 13 sets of material 
parameters corresponding to plastic sliding of each 
sampling planes are required. However, any 
knowledge about the similarity of the sliding 
behavior of different sampling planes reduces the 

TABLE 1. Direction Cosines and Weight Coefficients of Integration Points. 
 

Direction Cosines of Integration Point 
         

Weight 
Wi 

+ 3/1  + 3/1  + 3/1  + 6/1  + 6/1  - 3/2  - 2/1  + 2/1  0 27/840 
+ 3/1  - 3/1  + 3/1  + 6/1  - 6/1  - 3/2  + 2/1  + 2/1  0 27/840 
- 3/1  + 3/1  + 3/1  - 6/1  + 6/1  - 3/2  + 2/1  + 2/1  0 27/840 
+ 3/1  + 3/1  - 3/1  + 6/1  + 6/1  + 3/2  + 2/1  - 2/1  0 27/840 
+ 2/1  + 2/1  0 - 2/1  + 2/1  0 0 0 1 32/840 
- 2/1  + 2/1  0 + 2/1  + 2/1  0 0 0 1 32/840 
+ 2/1  0 + 2/1  - 2/1  0 + 2/1  0 1 0 32/840 
- 2/1  0 + 2/1  + 2/1  0 + 2/1  0 1 0 32/840 

0 - 2/1  + 2/1  0 + 2/1  + 2/1  1 0 0 32/840 
0 + 2/1  + 2/1  0 - 2/1  + 2/1  1 0 0 32/840 
1 0 0 0 0 1 0 1 0 40/840 
0 1 0 1 0 0 0 0 1 40/840 
0 0 1 0 1 0 1 0 0 40/840 
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number of required parameters. Therefore, any fabric 
quality of each plane can be introduced as different 
parameters corresponding to two perpendicular 
orientations defined on that particular plane. To find 
these specific parameters, a test must be planed under 
special stress path to activate only the corresponding 
orientation of that plane. However, it may be 
thought that finding all parameters corresponding to 
both orientations of 13 planes is troublesome and 
too much, but this is the most possible anisotropic 
case of material property which is under consideration. 
Certainly, in most of the cases, where few planes 
contain anisotropy behavior or fabric, the required 
number of parameters is not much. 
     The number of parameters required to be used 

in proposed model to obtain the behavior of an 
isotropic homogeneous porous medium, as sand is 
five. Two of these parameters correspond to elastic 
behavior of soil skeleton and the rest to plastic 
flow on each sampling plane. These parameters are 
listed as 1) Elastic modulus (E'), 2) Poisson ratio 
(ν'), 3) Slope of critical state line (ηc), 4) Constant 
value in hardening function (A), 5) Peak angle of 
internal friction (φf). 
     E' and ν' are found in the usual way as for any 
other model. The other three parameters correspond 
to the plastic behavior of one plane. In this research, 
these three parameters have been assumed to be the 
same for all 13 defined planes because of initial 
isotropic conditions. 

 
 (a) 
 

 (b) 

Figure 3. Test CH1. 

 (a) 
 
 

 (b) 

Figure 4. Test CH2. 
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6. COMPARISON OF RESULTS 

To show the capability of proposed plasticity model a 
set of cube test results on Hostun sand [7] named as 
CH1, CH2, CH3, CH4, CH5, and PHH3B are 
considered. The same mechanical properties as 
stated in Reference 5 employed. The first five test 
results are the variation of SD2/S1 versus ID2 and 
εv versus ID2. The comparison of experiment with 
previous multi-laminate model result and new 
model are presented. Figure 3 shows the result of 
compression test CH1 upon initial mean stress equal 
to 200 kPa. The comparison shows a better result in 
drawing A, however, error of volumetric strain change 
is getting more. The differences in comparing the 

results of extension test CH2 are shown in Figure 4. 
Figure 5 shows the compression test results upon 500 
kPa. initial mean stress. CH4 is the extension test 
results upon 500 kPa. initial mean stress which are 
shown in Figure 6. Figure 7 shows the comparison 
of experiment with both theoretical upon two 
cycles, one early and the second while the rate of 
plastic flow is more. In review of five presented 
comparisons there are slightly change of new multi-
laminate results mostly in drawing type. In all cases 
both of theoretical results are matched, however, both 
are a little far from experiment. This may represent 
the need for some change in functions employed 
through constitutive law. The last comparison 
concerns the variation of τ and εv versus γ (plastic 

 (a) 
 

 (b) 

Figure 5. Test CH3. 

 
 (a) 
 

   
(b) 

Figure 6. Test CH4. 
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shear strain). Through these comparisons as shown 
in Figure 8, it may be concluded that the results of 
this new multi-laminate model are fairly better in 
such cyclic stress path. However, the hysteresis 
loop must be amended through change in function 
employed to define η parameter. 

7. CONCLUSIONS 

From this study a model capable of predicting the 
behavior of granular material on the basis of sliding 
mechanisms and elastic behavior of particles and 
double oriented hardenings has been presented. 
The concept of multi-laminate framework was 

successfully applied for induced anisotropic behavior 
of granular materials. However, this is achieved by 
the use of a generally simplified, applicable, effective, 
and easily understandable relations between micro 
and macro scales. These relations demonstrate an 
easy way to handle any heterogeneous material 
property as well as mechanical behavior of 
materials. Significantly, the stress-strain relations 
are primarily defined on the sampling planes. 
Therefore, there is no need to handle tonsorial 
invariance requirements, which are a source of 
great difficulty in constitutive modeling. In this 
way, not only the tonsorial invariance is 
subsequently ensured, but also some more effects, 
which in ordinary models are missed, are 

   
(a) 

 

   
(b) 

Figure 7. Test CH5. 

  
(a) 

 

 (b) 

Figure 8. Test CH6. 
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additionally included. This inclusion is achieved 
by combining the responses from sampling planes 
of all orientations including sliding components on 
each plane through the material. Consequently, 
these results are a step closer to real plastic 
behavior of such particulate materials.  
     The predictions are actually achieved in such a 
way that the application of some difficult tasks 
such as induced two orientation anisotropies and 
rotation of principal stress and strain axes, which 
take place during plastic flow, are out of 
constitutive relations. Accordingly, the sampling 
plane constitutive formulations provide convenient 
means to classify loading event, generate history 
rules and formulate independent evolution rules for 
local variables. 
     The behavior of soil has also been modeled 
based on a semi-microscopic concept, which 
is very close to the reality of particle movement in 
soils. 
     Kinematics and isotropic hardening based 
phenomenological features of two perpendicular 
orientations on sampling planes are contributed 
and appropriately summed up. Therefore, the 
solution of any complexities involved in random 
cyclic loading can be obtained and presented. 
     In spite of producing the final results in macro 
scale, there is another significant feature that 
represents the ability of being informed of the 
semi-micro scales procedures during any transient 
monotonic or cyclic loading stress path. This feature 
is very fruitful in clarifying the history and rate of 
all local average micro scales variations through 

the medium. The final point, which can be gained 
through this process, is the information about 
failure and corresponding orientation through the 
medium. 
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