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Abstract This paper presents a three dimensional application of direct Boundary-Element Method
(BEM) for computing interaction of sinusoidal waves with a large submerged open bottom structure
near the floor with finite depth. The wave diffraction problem is formulated within the framework of
linearized potential theory and solved numerically with direct BEM. A computer program based on
BEM is developed to calculate the wave-exciting hydrodynamic forces. Comparisons of the results
with those obtained by several previous investigators reveal a good agreement. In this study, we are
primarily interested in the wave forces on a shell defined by an open-end surface. The formulation of
this problem is similar to that for a solid, except that the solution is contained in a singular integral
equation. This solution is extended to a cylindrical open bottom structure and the wave forces are
compared to those for the corresponding seated structures. This method, however, can be applied for
any 3-D geometrical objects with or without open ends.
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INTRODUCTION

This research was prompted by an increase in
offshore activities by the oil industry in recent
years and the use of this type of structures storing
oil near to production fields, prior to export.

These structures are subject to surface wave
forces in both horizontal and vertical directions. In
many instances, these structures must be held in
place by piling in addition to their own weight to
withstand the wave loads.

Frequently a piled structure is scoured out at the
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bottom, leaving its underside exposed to the wave
action. Indeed for a shell-like structure the entire
inside will be open to the wave action.

In this paper we are interested in the study of a
large cylindrical shape with open ends and
subjected to regular incident waves. Mathematically,
it is a boundary value problem governed by the
three-dimensional Laplace equation with fixed
boundary conditions on the free surface. Problems
of this type are generally solved by Green's
function method [1-2]. In this paper, an alternative
method is described. The weighted residual
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principle known as the boundary element method
is used to determine the velocity potential all along
the domain boundary. With this knowledge, the
potentials inside the fluid domain are calculated.

In this study an approach using a direct
boundary-element method is developed which
has more physical relation to the wave-body
interaction problem. Like the finite element
method, the direct boundary-element method also
divides the external surface of a domain into a
series of elements over which the functions under
consideration can progress in different ways. This
capability is important as the boundary integral
equation formulations were generally restricted to
constant source strength over the elements and the
sources were assumed to be concentrated at a
series of points on the external boundary surface.

BOUNDARY VALUE FORMULATION AND
BOUNDARY CONDITIONS

We consider a right-handed Cartesian coordinate
system with the origin on the free surface in which
the z axis 1s vertically upward as shown in Figure 1.
The basic flow is assumed to be oscillatory,
inviscid, incompressible and irrotational, which
has a large Reynolds number. The incident wave is
chosen as the linear wave and the direction of
propagation of the incident wave makes an angle o
with the positive x-axis. The xy-plane coincides
with the free surface when the fluid is at rest. It is
also assumed that objects in the fluid domain of the
sea bottom reside in a limited domain, and depth h
is constant every where outside. For free floating

S4:

b
. 7
* FREE SURFACEY, :
i -
I

S o
/FAR FIELD 3
i FAR FIELD
oy
b =]
] i 51t
‘ S 4 /BoDY
'52: o x |
1 JSEA BED L
ik B omes i e S|

Figure 1. Definition sketch of mathematical model.
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objects and mooring systems, the average forward
velocity is zero, and for problems concerning
interaction of waves with objects, the linearized
formulations are used to represent their dynamic
behavior. The assumption of potential wave theory
leads us to a Laplace equation.

By linearizing kinematics and dynamic free
surface boundary conditions, the result is a linear
wave system. For the cases of monochromatic
waves of frequency w, the free surface displacement
¢ , the velocity vector V and the potential @ can
be expressed as [3]

V=R {i(x,y,z)e '} (D)
¢ =R {n(x,y)e”’} )
4 =R {#(x,y,2)e"} 3)

The structure is considered as a large rigid body
oscillating sinusoidally and the amplitudes of the
structural motions are assumed to be small. For
small amplitude water waves, the fluid velocity
may be represented as the gradient of a scalar
potential function. Under potential theory, the total
velocity potential is obtained as a sum of the
incident and a scattered potential and the motion
may be described by a velocity potential ® which
satisfies the Laplace equation.

2 2 2
q;+a +8rf:0 (4)
x° oy~ 0z

o |-e-

ISTE Be)]

The wave diffraction of an incident wave
represented by its potential ¢, on a general three-
dimensional body can also be represented by the
diffracted potential ¢, .

BOUNDARY CONDITIONS

For small amplitude waves, the following boundary
conditions are imposed :

(i) At the Free Surface The linearized kinematics
and dynamic free surface boundary conditions can
be written as:

-

= =0 5
@ 0z : )
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iw _
=i z=0 (6)
g
The normal velocity of the fluid at the free
surface is equal to the velocity of the surface itself.
In the linear theory, this condition reduces to

B =0 onCF )

(ii) Along the rigid stationary sea bed, z=h (x, y),
the normal velocity vanishes, i.e.,

& yo=0 on CB (8)
0z

(iii) On the Surface of Submerged Object
the normal velocity is prescribed, i.e.

-~

oy =0 on Cb (9)
oz

U¢S (Xs Yaz):_éfb[ (Xs Y-;Z) on Cb (10)
én on .

0 . }
Where % =n-V, and n is unit normal vector,

(iv) Far-field Boundary Conditions In this
problem, the fluid domain is not bounded in the
horizontal directions, the water depth is assumed to
be uniform far away from objects. The radiation
condition, which requires the disturbance generated
by the presence of the object to be outgoing waves,
is needed at infinity. We need to impose a radiation
boundary condition when r->c to make the
solution unique. This condition is introduced by
the Summerfield boundary condition at infinity and
can be expressed as:

T T L H (11)
or

In which r is the radial ordinate and k is the
wave number. The problem is linear, and the
potential ¢ can be represented as the sum of an

incident and a diffracted wave potential
¢=9¢,+0, (12)

The expression of the velocity potential in the
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form of Equation 12, involving a separation into
undisturbed incident wave and scattered wave
components, constitutes the basis of diffraction
theory. The incident wave potential satisfies
Equations 4,7-11 and a spatial periodicity; it is
specified in complex form as

: sosh |/ B e &
Qsi(x}yjz):_tgaﬂ COs [C(Z+ I)]erk{.\msar)s.ma} (13)
2w cosh( kh)

Where a is the wave height and « its angle of
incidence. The wave number satisfies the
dispersion relation

0}2

Ktanh (kh) =v =— (14)
g

because all the equations of the problem are linear.
The potential ¢, also satisfies Equations 4, 7 - 11,

as well as the radiation condition (11). The body
surface boundary condition (9) provides a link
between ¢, and ¢, in the form
o oo,
9, 9 g (15)
on on
Equations 4, 7 - 10 applied to ¢, , together with
11 and 15, define the problem in terms of ¢, . The

interaction of the wave and the submerged object is
thus posed as a problem in potential theory, which
can be solved by Green's function method. Green's
function, G, is chosen as a singular potential which
satisfies the same boundary conditions as the
reflected potential at the free surface. There are
two different schemes of solution of integral
equations within the BEM. The first one employs
the so-called free space Green's function, G= 1/r,
where r is the distance between the source and
field points. Since no boundary condition is
directly taken into account, this requires
discretization of all boundaries of the fluid region
(seabed, body surface, free surface and radiation
boundaries). The main advantages of the above
scheme are the simplicity of the fundamental
solution and the possibility of incorporating a
variable depth in the vicinity of the body.

The second and more common scheme of
solution uses  a particular fundamental solution,

G=1/r+G , which directly satisfies the seabed,
free surface and radiation boundary conditions.
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Thus, only the body surface needs to be
discretized. The function G is a regular one
satisfying VG =0 throughout the fluid region.
Advantages of this scheme include a much simpler
data input and a much smaller number of

unknowns. The main disadvantage is the fact that
the fundamental solution has a very complicated
form [4-10].

Solution of the above- defined problem through
the BEM can be obtained by using both the direct
and indirect formulations.

BOUNDARY ELEMENT FORMULATION

There are many numerical methods such as finite
element variational formulations, Green's function
method and boundary element method known,
which deal with the hydrodynamic analysis of
arbitrary shaped large bodies in the presence of
regular waves. In fact these methods can also be
used in studying the interaction effects between the
incident waves and rigid body.

The boundary element method is well suited to
problems in which the limits of the domain are
infinite or difficult to define, in that the solution is
applied to the boundary rather than the domain.
There are two types of boundary element methods,
the " direct" and " indirect ". The indirect boundary
element method is the "source " method. In this
method the unknowns are not the physical
variables of the problem. On the other hand, the "
direct ** boundary element method not only allows
solving the problem in terms of physical variables
but also serves as the first step towards a better
understanding of the technique and its relationship
to other approximate methods. In particular mixed
finite-element methods and the boundary element
technique is powerful. It is convenient in
applications such as' fluid-shell interaction
problems. This combination should be achieved
satisfying full compatibility and equilibrium at the
interfaces between fluid and solid, which requires
using the same types of elements for both
solutions.

The direct boundary element method used to
solve boundary value problems can be formulated
rigorously, using either an approach based on
Green's theorem or a particular case of the
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weighted residual. With the advantages of being
more powerful and the ability to relate boundary
solutions to other more classical engineering techniques,
the residual method is preferred.

The system of equations can now be rewritten
in a weighted residual form, to minimize errors
when using an approximate method of solution
such as boundary elements.

£ _ 2

S=¥ d]-"on-Q on 2 (16)
d 00, .

&‘:»vﬁs— ... on CB (17)
én  én

- ad)a ~

& :E on Ch (18)

6.

—=n-V on CR (19)

an

200 & 4 on CF 20)

on g

Let us consider an arbitrary function u* and its
derivative g*=du*/dn .

Later on we will associate these functions with
the virtual increment type of function used with the
fundamental solutions of boundary elements. In
this case the function u* can be associated with a
full space Green's function such that ;

ANu"+8 =0 21)
where 8 s a Dirac delta function. From
fundamental solutions the form of u* is
|
= (22)
dmr

I .
where  r=(x=x)+(y-y) +(z-2),(x,y,2)
and ( x;, yi, z) are the coordinates of the field and
source points respectively.
The weighted residual statement for the
problem can be written as:

jV P Iu'dQ= | (2, Qd)[ [% u'ds
LB_"]L on  on T on
= 2
+ | {@—i}qbs}u*dwp [ [%—u—(b u'ds
CRrR=s3| OI CF;S-’;L on g
(23)

By using Green's second identity the left hand
side of the above formulation can be simplified as
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follows:

Left hand side =

J(v?q;s)u‘dg + J(\??u')cbsdﬁ
- )0, e s o,k

= j{u@— 0, d Jd +jc|:( 5 MQ  (24)

on on

Hereford Equation 23 can be rearranged as
follows

i ¥ + * B * "
- - J-;é i _[% uds— J‘fkgé\_u‘. ds— Iﬂ gt s (25)
s o gon s aE

By expanding the second term on the right hand
side of Equation 25, one obtains:

L il ]

I“@

S| 81’1

u ds (26)

Note that s is the total boundary, 1.e. s =5, + 5,
+ s3t+ sy Equation 26 implies an integral
relationship between the potential at the field
point " 1" inside the domain € and its values on
the boundary "s" of the domain. When this point
is moved to the boundary s, the integrals

involved in this equation become singular at " i "

Figure 2. Mesh generation and diacretized surfaces.
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and must be evaluated in the Cauchy principle
value sense [3].

Thus, for any point " i " on the boundary
surface " s ", the boundary integral formulation for
a point on the boundary can be written:

: [ 8u] 1 ou’
Cl+ [ . —~-ds (6, 25— iku |d<,— (6. S |ds
% a4 s, | on si | on
g (1¢|

\, on

(27)

where C, = % for smooth boundaries and for a

sharp corner its value is proportional to the interior
angle. C; = | if the point "i" is in Q and C; =0 if "i"
is outside the domain Q and boundary "s". The no
dimensional form of the above formulation is
given as follows:

K
i LI ,d§ =k2ds
wcosh kh
n = kn ; ﬁ_i =kn
i | . _
0° =—= =— A=kA (28)

k  4nkr 4nt’

'\] +§| OII

o 09,
¢ | ———tanh{lh)u. |ds=— —u ds
J{& (h)d } J

34

C A} + )-——--(sr { ——tku ds +
iy f ¢, o Jl{ }

(29)

The boundary " s " can now be discretized into
a series of N e!emcms as shown in Figure 2, the
types of elements are the most important in the
analysis, as we will see, but for simplicity let us
consider that the elements are constant & to be

stored at the center of the element. The potential @
and let the values of within each element be
defined as:

& =[N, ][] G9)

Where [ N; ] is the interpolation function vector
and [CD: ] is a vector defining the potential at the

nodes of elements s, the boundary integral Equation
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29 now becomes :

.

4
C(D+Z: L’\z —a’TP(D +Z{L’VL quuI?]JF(,D+

z:! J‘N |i : —tdﬂh'h) . }df]'}?dﬂ - .{, L G;‘i’ ;ds}j (3 1)

J’cll

We will now study how to use integrals over the
clements. Two types of integrals can be
distinguished:

i

= _[[u] ds

8- 5
d i

(32)

These integrals represent influence functions
between element "i" at which the fundamental
solution 1s applied and any other element "j" under
consideration. When i# j, we can usually apply a
standard four points Gauss integration rule as

follow.

[ TF e 3y = 3, )

=1 i=]

M
e | T |
18 4 2 i |t 2 |3 |4
| T L ; I s
‘ 0,09 ! i 10.577|0.577 [-0.577 nswl
".1 _ ‘ i —0.5??0,5??i0.5?? —05??|

With the above notations, Equation 31 can be
written as :

ch+ H—iG |®+ D |H —tanh(h) G |
Z ;[ i 5 P [U ( ) U}I)S
ﬂ(b
——Z o (33)
k=1 {

where

H,=H, for i#j

H,=H,+C, for 1=} (34)

102 - Vol. 15, No. 1, April 2002

Note that the total number of elements N = n, + n,
+ n3 + ng and that the subscript "i" refers to the
element number, Applying this equation at all "i"
boundary points, the following matrix form is
produced:

AX~=18 (35)

Where X contains all the unknowns, A is the
coefficient matrix and the elements of B are
known. The solution of Equation 33 will give the
values of scattered potential for the diffraction
problem. This is a complex system of equations,
which has to be solved during the analysis. After
the solution of (31), the dynamic pressure on the
structure can be obtained by the linearized Bernoulli’s
equation .For a large object; the velocity-squared term
is generally small compared to that of the linear
term. However, in the case of a shell, it will not be
small near the edges and may contribute
significantly to the resultant forces when the wave
length is large compared to the overall size of the
shell. The pressure across the shell is given by:

(1]

é’(bpl

P=- \v
P TI Y

(36)
Where p and g are, respectively, the density of
water and the acceleration of gravity. The velocity
distribution and dynamic pressure across the shell

are presented in Figures 3-7. The forces in the
horizontal and wvertical direction can now be

APPLIED FORCES ON TANKINWATER DEPTH 100 [m}

HEIGHT 0F TAMK (m)

LEGEND ¢

| ka =202

[ 8 R B

Figure 3. Applied forces on tank in water depth 100 (m).
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[VELOCITY DIGTAIBUTION OVER THE TANK IN 100 jm; DEPTH]

HEIGHT OF TARE (m

i A i3
I\O\«a'.er Dept1= |n‘fc [ra} C‘V’b" g
Mym, ol ELEM.=300 |

Figure 4. Velocity distribution over the tank in water depth
100 (m)

IPPLIED FORGES IN.(4.&2) DIRECTION: ON TANC ATWATER DERTHE0 [

N

WAVE O
E .
&l

WATER DEFTH (m)

| ka=2.02
WH AN =48
‘Water Depth =50 [}
Nurriser OF ELEM. =300/

Figure 5. Applied forces in (X & Z) direction on tank in water
depth 50 (m).

obtained by integrating the pressure, i..

F= Jpnds (37)

¥

Where,n = (n_,n,) is the normal vector into the
body. Horizontal and vertical wave forces on a
submerged storage tank with a radius "a" in a
water depth of "5a" were computed. The
nondimensionalized forces are shown in Figures 3-
7. The results are presented in Figure 8 in
comparison to the data obtained by exact solution.

[71.
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EORCESON FAR FIELD DOMAN AT 300 [l

Figure 6 Applied forces on Far-Field domain at r = 300 (m)
Radius.

APPLIED FORCES O SEA BED AT DEPTH 100 [y WITH FAR&FILED 560 I}

-}

FcoIan|

Figure 7. Applied forces on sea bed in water depth 100 (m)
with r = 900 (m) Far-Field
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Figure 8. Horizontal forces on vertical cylinder
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CONCLUSIONS AND
RECOMMENDATIONS

This paper presented the methodology for applying
direct boundary elements to compute wave forces
in submerged structures. The advantages of using
boundary elements in comparison with the finite
elements in fluid are clear. The case of the forces
acting on submerged structures is presented in
detail. An analysis of the wave interaction with a
bottom mounted shell-like structure has been
presented. Generally, the results of the analysis are
in good agreement with those of other works. It is
clearly demonstrated that at long wave periods a
substantial reduction in the vertical wave force is
achieved by having the structure open at the
bottom. When the opening at the bottom is small,
the pressure inside is uniform and can be
approximated by the mean outside pressure at the
bottom of the corresponding sealed structure. The
vertical force on the open structure will differ from
that on the sealed structure by this pressure times
the base arca, while the horizontal forces to a first
approximation will be the same. Wave forces on a
submerged cylinder of a radius "a" in a water depth
of "5a" (i.e. h/a = 5) were computed. The
nondimensionalized forces, pressure and velocity
are shown in Figures 3-7. It is easy to extend this
formulation to the computation of added mass and
damping for any arbitrarily shaped three-
dimensional body. It would be of further interest to
extend this method to study the wave resistance of
a surface ship with forward speed. It should be
pointed out that, in principle, any boundary
geometries, no matter how- complicated, can be
handled by this method.

The boundary-element method is suitable for
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solving problems that have a high ratio of domain
volume to boundary surface area, especially for
problems having infinite or semi-infinite domains.
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