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Abstract   Every phone company customer in a given region receives phone services from a 
switching center through intermediate points called kavos. The problem addressed in this paper is 
where to locate this central facility and the kavos, how many of them and with what capacity, so that 
the total cable length is minimized. This problem can be formulated as a 0-1 mixed integer program; 
However, because of the scale of the problem, it is not possible to solve it in a reasonable amount of 
time with the existing software; Hence a solution procedure is developed which solves the problem 
very efficiently. In addition, to make the model more realistic, and to be able to take into account the 
decision maker’s preferences, an interactive program has been developed. 
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اين . طريق نقاط مياني به نام كافو از مركز مخابرات دريافت مي كند             ز ا مشتري خدمات تلفن را      هر     هچكيد
نخست نحوه كنوني . با حداقل هزينه كابل مصرفي مي پردازد) كافو(مياني  طامقاله به چگونگي تعيين مركز و نق      

 زي كه يك مدل بهينه سا-تعيين اين مركز نقد شده و سپس يك مدل رياضي مكان يابي دو سطحي روي شبكه           
به دليل بزرگ بودن ابعاد مساله، روشي ابتكاري براي         .  ارائه مي شود   -ا اعداد صحيح صفر و يك مختلط است         ب

 .حل مساله پيشنهاد مي شود
 
 

INTRODUCTION 
 
Every phone company customer receives phone 
services from a switching center through intermediate 
points called kavos. In a particular region the 
locations of the customers (demand points) are 
known and their numbers are estimated for future 
developments. A certain number of demand points 
are connected to a kavo with a given capacity. 
They are then connected to a central facility as 
shown in Figure 1, below. The problem is where to 

locate this central facility and the kavos, how 
many of them and with what capacity, and how to 
allocate the posts to the kavos, so that the total 
cable length is minimized. In this paper we 
consider this problem and present an MIP 
formulation for it. However, because of the scale 
of the problem, it is not possible to solve it in a 
reasonable amount of time with the existing 
software; hence a solution procedure is developed 
which solves the problem very efficiently. 
     An interactive program has been developed so 
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that the model is more realistic and capable to take 
into consideration the decision maker’s 
preferences. 
 
The input of the program is the location of the 
existing facilities (posts); the shortest distances 
between which are calculated using a known shortest 
path algorithm like Floyd’s algorithm. The outputs 
of the program are the location of the central 
facility, the number and the location of the kavos 
and how the posts are allocated to the kavos. 
     The most important feature of the program is its 
flexibility in easy implementation of the modifications 
when - for any reason - the given solution is not 
acceptable or the location of a kavo or some kavos 
should be determined in advance. The program 
helps to reach a solution immediately. 
     Finally it should be noted that although in this 
paper we have addressed the problem in a communication 
setting, it could easily be extended to similar situations 
such as gas, electricity, and water networks. 
 
 

CURRENT METHODOLOGY AND 
MATHEMATICAL FORMULATION OF 

THE PROBLEM 
 
Currently the location of a switching center in a 
region is determined as follows: First the number 
of current and future customers at different points 
are determined and marked on a map of the region. 
Then by drawing horizontal and vertical lines the 
map is divided into 100-meter sides squares. The 
rows and columns of the map are numbered from 
left to right and top to bottom. The total vertical 
distance of all customers to each column and the 

total horizontal distance of all customers to each 
row are then calculated. The row and the column 
with the least total sum are selected as the location 
of the switching center. The location of the kavos 
are also determined empirically [1]. 
     The phone company’s procedure for solving the 
problem is in fact an enumerative method for 
solving the Fermat’s problem with the rectilinear 
norm. To see this more clearly let the number of 

customers in column j be denoted by wj . Then if 
the center is placed in column k, the total cable 
needed will be: 

∑
=

+−=
n

1j
jk w|1jk|S  (1) 

     The optimal column is obtained by solving the 
following problem:  

kk Smin   (2) 
 
The optimal row is obtained in a similar manner. 
     It is not difficult to see that this is the Fermat’s 
problem with rectilinear distances. Linearizing the 
objective and using the dual, it can be solved very 
easily, without any need for enumerating all 
possible combinations, as described earlier (see 
e.g. [2]). 
     The main shortcoming of this procedure, aside 
from the way it is solved, is that the distances are 
assumed to be rectilinear. This is not a realistic 
assumption, because not only for the most part 
streets and cable canals in a city do not have such 
a configuration (except possibly in Manhattan!), 
but also the solution depends on the way the 
region is divided into squares. To see this more 
clearly consider the region given in Figure 2. If the 
lines are drawn parallel to the coordinate axes 
(Figure 2a). The center is at one point, while if 

 
 
Figure 1. The relation between posts, kavos and the center. 
 

 
Figure 2. The effect of sectioning the region on the location of 
the center. 
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they are drawn making 45 degree angles with the 
axes (Figure 2b), then the center would be at 
another point. 

 
 

THE PROPOSED MODEL 
 
To overcome these shortcomings, we note that it 
would be more realistic to consider the problem as 
a capacitated two-level or two-echelon network 
location problem. Tcha and Lee [3] have studied 
an uncapacitated version of the multi-level problem. 
Gao and Robinson [4] have considered the 2-
echelon uncapacitated facility location problem. 
     They assume that a fixed cost is associated with 
each pair of echelon-1 and echelon-2 facilities that 
serves at least one customer. Barros and Labbe [5] 
present a general model for the 2-level case that 
includes an additional fixed cost for location of 
depots. Level-1 is considered to be the location of 
depots, and level-2 the location of distribution 
centers. Aardel, et. al. [6] also considered the 2-
level uncapacitated facility location problem and 
investigated valid inequalities to improve the 
formulation. These models consider unlimited 
capacities for the facilities and assume that any 
fraction of the clients’ demands can be met by any 
facility at any level. Ronnqvist, et. al. [7] describe 
a new solution approach for the capacitated facility 
location problem but only for the case when each 
customer is served by a single facility. 
     More recently, Marin and Pelegrin [8] consider 
a family of two-stage location problems involving 
a system that provides a choice of depots and/or 
plants each with an associated location cost and a 
set of demand posts which must be supplied in 
such a way that the total cost is minimized. They 
use Lagrangian relaxation to obtain lower bounds 
and heuristic solutions. Finally, Chardaire, et. al., 
[9] consider a two-level concentrator access network 
where each terminal has to be connected to a first-
level concentrator, which in turn must be connected 
to a second level concentrator. They develop a 
Lagrangian relaxation method to compute lower 
bounds on the optimal value of the linear 
programming formulations and feasible solutions 
of the integer-programming model. 
     These models are in fact discrete location 
models, i.e., models in which facilities are selected 

from among a given set of points. In our case, 
however, the underlying structure of the connecting 
lines is a network of streets. In addition, it requires 
any call to go through only one kavo. It cannot be 
divided between different kavos. These considerations 
led to view the problem as a two-level network 
location problem with the following model. 
     Let G=(V,E) be a network with n nodes (|V|=n), 
and m arcs (|E|=m), and define: 
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     Assume, for the time being, that the number of 
kavos are known to be p, and that the capacity of 

the jth kavo is jC . The distance between points i 

and j on G is denoted by ijd  Then the problem can 
be formulated as: 
 

P1: min ijk
j k

jkij
i

X)dd(∑ ∑ +∑   (3) 

S.T.: 
 

∑ =
k

k 1Z   (4) 

∑ =
j

j pY  (5) 

∑ ∑ ∀=
j k

ijk i,1X   (6) 

∑ ∑ ∀≤
i k

jjijk j,YCX  (7) 

∑ ∑ ∀=
i j

kijk k,ZnX  (8) 

k,j,i;1,0Z,Y,X kjijk ∀=  (9) 

     The objective function, (3), minimizes the total 
distances from posts to kavos and from kavos to 
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the center. Constraint 4 guarantees that only one 
center is established, and Equation 5 allows the 
allocation of posts only to p kavos. Constraints 6 
guarantee that each post is connected only to one 
kavo, and inequalities in (7) ensure that the 
capacity of each kavo is not exceeded. Finally 
Constraints 8 guarantees that all nodes are 
connected to the center. 
     It should be noted that the problem could be 
formulated in another form too. The one that has 
been presented here has a simpler form with NV = 
n3+2n variables, and NC = 2+3n constraints. 

 
 

SOLUTION METHODS 
 

As mentioned earlier, this is a 0-1 ILP, which 
because of the large number of variables and 
constraints, even for medium size problems, is 
difficult to solve. For example, if only n=100, then 
the number of variables will exceed a million and 
the number of constraints will be more than 300. 
The solution of the problem on the network of 
Figure 3, below, with 20 posts and with only 3 
kavos (p = 3) with =jC 8, using the computer 
package GAMS, took more than 7 hours. 
     For this reason a more efficient solution method 
is needed. Before presenting the following 
algorithm, note that if the center is fixed at a point, 
say k, then the foregoing problem reduces to a 
p-median-like problem, which is easier to solve 
than problem P1. 
     By solving the p-median problem n times, 
( ∀k = 1, ..., n ), after adjusting the distances each 
time, and comparing the results, the optimal 
solution to P1 can be obtained. Of course, if there 
are capacity limitations, then the corresponding 
constraints have to be added to the p-median model. 
Fortunately usually a set of particular locations are 
considered to be the candidate sites for the 
center. Hence the p-median problems need only 
be solved for this subset. However, the p-median 
problem itself as shown in [10] is NP-hard. 
     On the other hand, note that since for any point 
k the sum of the distances from all other points to 
k through p intermediate points is greater than or 
equal to the sum of the direct distances from all 
these points to k; therefore, the 1-median of the 

network provides a lower bound for P1. 
     For this reason in the following algorithm the 
l-median is selected as an initial center if no other 
point is chosen initially. 
     Now, if we construct a matrix of shortest 
distances from a point i to a fixed point k via an 

intermediate node j, and denote it by Dk = ( ij
kd ), 

the problem reduces to one of choosing p columns 
of Dk and assigning every other column, to a 
unique column of these selected p columns. Note 
that the diagonal elements of this matrix are the 
same as the entries in its kth column, which is the 
shortest distance from i to k in G. 
     By subtracting the diagonal entry of row i from 
all other entries of this row, another matrix is 
obtained whose entries in fact represent the additional 
cost incurred for deviation from the shortest path 
from i to k. We call this matrix the reduced matrix 
relative to k. and define γ, the deviational factor, 
as a measure of this additional cost.  
     Hence we have the justification for the following 
algorithm, in which we also assume that each kavo 
has a minimum and maximum capacity of m and 
M units, respectively. This is in fact more general 
than the previous assumption of having p kavos. 
 
 

THE ALGORITHM 
 
Step 1 (Initial Step)   Given node k, calculate 
the reduced matrix relative to k and order its 

  
Figure 3. An example problem with 20 posts. 
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columns according to their decreasing 
(nonincreasing) distances from k; Set the 
deviational factor, γ , equal to zero; 
 
Step 2 (Main Step)   Set S=∅  and do the 
following for j=1,...,n Let },...,{S tjj1j δδ=   be a set 
of t  smallest elements of column   j; Where t is the 
greatest number smaller than or equal to  M such 

that ∑
=

γ≤δ
t

1i
ij          

If mt ≥ , then set jSSS U=  and drop the 
corresponding rows from the reduced matrix; 
 
Step 3 (Stopping Rule)   If |S|= n, stop; 
Otherwise, increase the deviational factor, γ , and 
go to step 2. 
     In the algorithm we initially set γ  = 0, therefore 
if a solution to the problem is obtained with this 
value of γ , then it would be the optimal solution. 
Otherwise, γ  is incremented until a feasible 
assignment is obtained. Of course, a high value of 
γ  could guarantee attainment of an immediate 
solution, in fact an upper bound for P1. Thereafter, 
a procedure such as interval halving could be 
employed to reach the optimal solution. However, 
since the algorithm takes only a few seconds to 
solve even large problems, and since in our 
experience we have found the optimal solution to 
be close to the 1-median, we recommend 
increasing γ  gradually until some optimality, or 
near optimality, condition is satisfied. 

An Illustrative Example   Consider the network 
shown in Figure 4. We want to determine the location 
of a center and two Kavos each with a capacity of at 
least 2 and at most 3. For this network, the matrix of 
the shortest distances is given below: 
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−
−
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3 6 7 5
3 6 5 2
6 6 1 6
7 5 1 5
5 2 6 5

 

 
     Note that the 1-median is at node 2, so at step 1 
we set k = 2 and calculate the distance matrix 
relative to this node as follows: 
 

                     

3 3 12 12 7
6 0 12 10 4
9 6 6 6 8

10 5 7 5 7
8 2 12 10 2























 

 
     Calculating the reduced matrix and ordering its 
columns we obtain: 
 

         3 4 1 5 2    

                      

9 9 0 4 0
12 10 6 4 0
0 0 3 2 0
2 0 5 2 0

10 8 6 0 0























 

 
     Set γ  = 0 and go to step 2. 

     At step 2 we initially set S=∅ . Since the first 
column of the ordered reduced matrix (the third 
column of the original matrix) has only one zero, 
i.e. t = 1 ≥/ 2 = m, therefore we consider the 
second column. The elements of the third and 
fourth rows of the second column of the ordered 
reduced matrix are zero. So we set S = S U
{3,4}={3,4} and delete these rows. Continuing in 
this manner, we note that columns 3 and 4 each 
have only one zero, so the remaining rows, i.e.; 

 

 
 
Figure 4. The network of the example. 
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rows 1, 2, and 5 are assigned to column 2. Since S 
= S U {1,2,5} has |S| = n, the stopping criteria 
(step 3) is satisfied. Moreover, since this solution 
is obtained with γ=0 (it has the same value as the 
lower bound obtained for 1-median) it is the 
optimal solution to the problem and there is no 
need to consider any other node k as the center. 
     Thus the optimal solution is to choose node 2 
as the center, nodes 2 and 4 as kavos, and assign 
nodes 1, 2, and 5 to node 2; and nodes 3 and 4 to 
node 4 with the minimum cost of 16 units. 
 
 

COMPUTATIONAL RESULTS 
 
As an example of the application of the proposed 
method, we have tried to determine the location of 
a center and three kavos in a suburban area of 
Mashhad. Shahrak Mashhad Gholi. The map of the 
region was scanned and stored with a pcx format 
in a PC. 100 points were chosen on this map as 
potential posts, and their distances were measured. 
The shortest path matrix was then calculated using 
Floyd’s algorithm. The results indicated a 24% 
savings when compared to the current method of 
calculating the center. Other similar runs for different 
number of posts and kavos indicate a savings of 10 
to 20% on the average. 
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