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Abstract   Production and non-productive equipment and personnel delays are a critical element of 
any production system. The frequency and length of delays impact heavily on the production and 
economic efficiency of these systems. Machining processes in wood industry are particularly 
vulnerable to productive and non-productive delays. Whereas, traditional manufacturing industries 
usually operate on homogeneous raw material, in a restricted environment with closely controlled 
processing guidelines. The logging industry must continually deal with a raw material that comes in 
many different shapes, sizes and performs in an environment that is different from site to site. 
Furthermore, loggers; rarely have the opportunity to follow a predetermined production sequence, as 
men and machines must maneuver as conditions dictate. As a result machining systems can 
experience a broad range of delays that vary widely in frequency and length. The purpose of this 
study was to apply Markov process models to the analysis of delay times in machining processes. 
Such an approach will permit the random components of machining process to be integrated into a 
flexible mathematical model, using theoretical probability distributions, and providing analytic 
solutions to proportions of productive delay time. 
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توالي و  .    تجهيزات توليدي و غيرتوليدي و تاخيرات پرسنلي عوامل بحراني هر سيستم توليدي هستند                چكيده

فرايند ماشينكاري در صنايع چوب از       . گذارند وري و توليد اين سيستمها تاثير مي         يزان بهره طول تاخير بر م    
تاخيرات ناشي از سيستم توليدي و غير توليدي تاثير پذير است؛ بطوريكه صنايع توليدي سنتي معمولأ در                       

يع چوب بري، با مواد عموم صنا. كنند محيطي محدود و با دستورالعملي كنترل شده، روي مواد يكنواخت كار مي
اين صنايع معمولأ شانس كمي براي . هاي متفاوت و محيط كاري متنوع سروكار دارند     خام داراي اشكال و اندازه    

سيستمهاي . ترادف عمليات از قبل تعيين شده، كارگر و ماشين با موقعيتهاي احتمالي مربوط به توليد دارند                    
هدف اين   .اخيرات داراي طول زماني و توالي متغير قرار دارند           ماشيني، در نتيجه، در مقابل تعداد زيادي ت         

تحقيق، بكارگيري مدلهاي زنجيره ماركو براي تجزيه و تحليل زمان تاخير در فرايند ماشينكاري بوده و                 
امكان يك پارچه سازي اجراي اتفاقي فرايند ماشينكاري با استفاده از تئوريهاي توزيع احتمالي و راه                   

. آورد  ليل متناسب با زمان تاخير توليد را توسط يك مدل رياضي بوجود ميحل تجزيه و تح
 

 
 

INTRODUCTION 
 
The uncontrollable interaction offers a unique and 
complex problem for effectively analyzing machine 
delays. For any new technique to become generally 
accepted, it must be able to handle the analysis of 
uncontrollable interactions. To become competitive 
with simulation modeling, a new technique must not 
only handle the uncontrollable interaction, but also 
improve upon the performance of simulation in these 
situations. Productive and non-productive equipment 

and personnel delays are a critical element of any 
production system. The frequency and length of 
delays impact heavily on the production and 
economic efficiency of these systems. 
     The objective of this study was to determine the 
feasibility of applying Markov process theory to 
the analysis of machine delays. Through modeling 
the interaction between two machines, it is shown 
how a Markov model can be used to obtain 
proportions of delay, idle and productive time. Unlike 
the statistical solutions derived from simulation 
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models, the Markov model improves upon this by 
providing an analytic solution. The Markov model 
also avoids the problems of correlated output data 
from simulations by explicitly recognizing that any 
possible future state is dependent only on the 
current state of the system and is conditionally 
independent of the past history of the system. 
     The methodology for building a Markov model 
requires dealing with only two probability distributions, 
the Erlang and mixed Erlang, for modeling time based 
activities (such as cycle times) of the interacting machines. 
These probability distributions in turn, provide the 
necessary data for developing a system of algebraic 
equations for solving the Markov process model. 
 
 
 

BACKGROUND 
 
With well-developed techniques for analyzing 
productivity in traditional industries, we see a great deal 
of this methodology extrapolated to the non-traditional 
timber-harvesting environment. The constancy of 
traditional industrial productivity has led to standardization 
in a very deterministic fashion (i.e., usually via regression 
estimates). Managers are most concerned with 
developing normal performance ratings that provide 
benchmarks for evaluating employee performance. 
     Traditional industrial productivity is assumed to 
approximate a normal distribution [1]. Normally 
distributed production times are taken as indicative 
of consistent work habits and normal work pacing, 
Steffy and Darby [2]. Cite non-symmetric production 
distributions as evidence of some abnormality. 
Positively skewed distributions are deemed to be 
indicative of restricted work output, due possibly to 
machine cycle time restrictions or other dependent 
operations. Alternatively, negatively skewed productivity 
distributions may indicate a worker is motivated to 
work slowly, but sets a limit on maximum cycle time. 
Applying general statements of this type to timber 
harvesting would be improper, since the variation in 
operating conditions will inevitably cause departure 
from symmetry in performance distributions. 
     Various methods have been utilized to study 
machine cycle time delays, including: case studies, 
regression analysis, and simulation. Case studies 
generally focus upon developing simple summary 
statistics from observations on a system operating 
in a restricted setting [3]. There is generally no 
attempt to build a model to analyze the system and 

test possible modifications in system components. 
 
 

METHODS 
 
The purpose of this study was to apply Markov 
process models to the analysis of delay times in 
cable logging systems. Such an approach will 
permit the random components of the cable 
logging production systems to be integrated into a 
flexible mathematical model, using theoretical 
probability distributions, and providing analytic 
solutions to proportions of productive and delay 
time. 
 
 

CONTINUOUS PARAMETER MARKOV 
THEORY 

 
Markov process theory provides a powerful 
mechanism for investigating the steady-state 
performance of production systems. The 
underlying construct of all Markov processes is 
that the probability a system will be in a given state 
at time t n+1 may be determined from the 
knowledge of its state at tn and is conditionally 
independent of the history of the system before tn. 
For this study, the state of the system is assumed to 
be discrete, so that it can be described in terms of 
specific stages or phases of production or delay. 
Because timber harvesting systems are configured 
with finite numbers of machine and personnel, 
operating on finite numbers of trees or stems, 
discrete state processes will generally be used in 
modeling such systems. 
     Continuous parameter Markov models permit 
an analysis of the system at any time t within any 
of the stages of the system, providing a more 
realistic analysis of logging operations where 
ac t ivi t i es  and  product ion  leve l  change  
continuously. Using a discrete parameter Markov 
process would restrict the analysis to fixed points 
in time and would not adequately describe the 
probabilistic behavior of the system for decision-
making purposes. 
     The probabilistic behavior of a discrete 
state, continuous parameter Markov process is 
governed by two quantities. The first is the 
vector of probabilities for the initial states of 
the system. Since this study focuses on steady-
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state behavior, the system is assumed to have 
been in operation for a sufficiently long period 
of time, so that any effect of these initial 
conditions is largely irrelevant. Second is the 
matrix of transition probabilities, p (t). Each 
element of p (t), p ij (t), represents the 
probability of moving from state i to state j, 
over an interval of time of length t. Of crucial 
importance in continuous parameter Markov 
process theory is the requirement that the 
process spend a negative exponentially 
distributed amount of time in state i, before 
making a transition into a different state j [4]. 
The implication is that the time the process 
spends in state i is dependent only on the state 
being visited.    Otherwise, information about 
past or future states and the time the process 
had been in the current state would be relevant 
to the prediction of the next state, which 
violates the Markov property.  
     The forgetfulness property of the exponential 
and the specific type of dependence is what 
guarantees that the process is Markovian. 
 
 

STATISTICAL MODELS FOR DATA 
ANALYSIS 

 
As stated before the major objective of this study is 
to determine steady-state proportions of productive 
and delay time for cable logging systems. A 
secondary objective is to illustrate how the Markov 
models can be formulated using basic probability 
and statistical tools those are relatively easy to 
conceptualize and use.  
     In an effort to maintain a high degree of utility, 
yet be useful and easy to understand, a single class 
of probability distributions is used for this analysis: 
Erlang distributions. Erlang distributions are very 
useful because they represent a large, two-
parameter family of distributions permitting only 
nonnegative values [5]. The distributions range all 
the way from the “pure random” exponential type 
to the completely regular, constant service-time 
situation [6].  Although, the Erlang family will not 
fit all possible production/delay time distributions, 
they will fit many of those encountered practice. 
     One of the recurring problems with simulation 

has been the difficulty in understanding, using and 
interpreting the models. By sacrificing some detail 
(e.g., not taking the simulation approach in 
modeling finer and finer elements of systems with 
a multitude of potential statistical distributions), 
the Markov approach, with Erlang distributions, 
can be a powerful tool that provides readily 
accessible solutions to difficult problems. For these 
reasons, this study has focused on the use of Erlang 
distributions for model development.  
     The key to Erlang models is that they will 
permit a degree of flexibility in modeling time-
based random variables (e.g., cycle times); yet 
maintain the integrity of the Markov model. 
Mathematically, the Erlang density function can be 
expressed as: 
 
f(t) = [α(αt) k-1 exp(-αt)]/(k-1)                             (1) 
 
where k is a positive integer and α, t>0. Parameter 
k and α are referred to as shape and scale 
parameters, respectively. The expected value of the 
Erlang distribution is: 
 
E(t) = k/α                                                             (2) 
 
and the variance is: 
 
Var (t) = k/α2                                                       (3) 
 
For Markov process applications, the key here is 
that Erlang distributions are a sum of k 
independent, identically distributed exponential 
random variables. Each independent, identically 
distributed exponential represents a stage in the 
activity of a system component, which can be 
represented conceptually by a holding device with 
k-stages. Then, in general, for each of the k-stages, 
the time spent in the j-th stage is exponentially 
distributed as follows: 
 

f (t) = αexp(-αt)                                                   (4) 

 
where, α, t>0. This construction provides several 
requisite properties: 
1. The time between entities exiting the holding 

device is Erlang with parameter k, where the 
times to traverse each stage are identically 
distributed negative exponential random 
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variable, with scale parameter α. Although the 
time it takes to traverse the holding device is 
not exponential ,  the combination of k-
exponential stages can be considered the 
statistical equivalent for the purposes of the 
Markov model. 

2. By permitting only 1 entity in the holding 
device at a time guarantees that the sequence of 
times between consecutive departures is one of 
independent random variables. 

3. The time unit an entity departs the holding 
device depends only on what cell it is in, 
because of the forgetfulness property of the 
exponential distribution. 

4. The concept of stages allows one to describe 
the movements of an entity in discrete terms. 
 
 
 

SOLUTIONS OF THE MARKOV 
PROCESS MODEL 

 
It can be shown that a steady-state solution to the 
Markov process model can be determined from the 
following system of algebraic equations [7]. 
 
πΩ = 0                                                                  (5) 
 
where π is a vector of steady-state probabilities and 
Ω is referred to as the rate matrix or generator of 
the Markov process. 
     The elements of the rate matrix, P’ ij(t)’s, are 
the derivatives of the P ij(t) evaluated at t=0. 
Knowing the P’ij(t)’s is equivalent to knowing Pij(t) 
for every i, j, and t>0. The P’ij(t)’s are known as 
transition or instantaneous rates and depict the 
flow of probability between states of the process. 
For practical applications, the P’ij(t)’s are what the 
analyst seeks and in the context of this study are 
always the scale parameter of the Erlang 
distribution for the activity in question. 
 
Rate Matrices   The rows of the rate matrix Ω 
are termed current states of the process, while the 
columns are termed future states [8]. These states 
are developed from the individual Erlang statistical 
models used in describing the time-based activities 
of a machine or person, where each stage of the 
Erlang model represents a state. The entries within the 
cells of the rate matrix, indexed by current and future 
states, represent the rate of change of probability 

between different states of the system [9]. 
     Placement of rates in the cells of the rate matrix 
is zero. For example, an entity with a simple n-
stage Erlang model can make transitions of the 
form; stage (n-2) to (n-1), but the instantaneous 
rate of transitions such as (n-3) to (n-1) is zero. 
This applies equally to simultaneous transition by 
two components of the process. This does not 
mean that such changes cannot occur; only that 
there rate of change of probability is zero. 
     It is also assumed that once an entity exits the n-th 
stage of its Erlang model, it immediately reenters stage 
one of its Erlang model or enters a different Erlang 
model denoting a different activity. When constructing 
a rate matrix the following criteria must be adhered to: 
1. All off-diagonal terms are positive or zero, and 

since they are not probabilities but rates of change 
of probability, they can be greater or less than 1. 

2. The diagonal terms are all negative. 
3. The diagonal terms are the negative of the sum 

of the positive terms on the same row, so that 
row sums are zero. 

     Two very important theoretical results provide 
for a unique probability solution for the type of 
Markov model applied here: finite state space and 
irreducibility. Because timber-harvesting systems 
are configured with finite numbers of men and 
machines, obtaining finite state spaces does not pose a 
problem. Irreducibility is achieved when a positive 
probability exists of eventually entering any state j 
from any state i. In practice this condition is not 
difficult to meet and will be evident from the final 
structure of the rate matrix. With an irreducible 
Markov process the steady-state probabilities exist and 
always have the same value, irrespective of the initial 
probability distribution of the process. Further, 
with irreducibility and finite state space it is 
guaranteed that there exists exactly one solution 
for the steady-state probabilities. The steady-state 
probabilities are obtained by using matrix methods 
for solving the system of algebraic equations 
presented in Equation 5. 

 
 

CASE STUDY 
 
The U. S. Forest Service made data for this case 
study available on 545 field cycles. This data was 
considered representative of outhaul distances; 
lateral yarding distances and turns volumes, so that 
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cycle time was considered representative of times 
over a range of conditions. As such, cycle time was 
used as the performance variable of interest in the 
analysis. 
 
Productive Cycle Time Analysis    The mean 
delay free cycle time from the field data was 3.3 
minutes with a standard deviation of 1.03 minutes, 
for the 545 cycles. Since Erlang distributions are a 
special case of gamma distributions, the first step 
in distribution fitting was to determine the 
maximum likelihood estimates of the shape and 
scale parameters. Since the shape parameter of a 
gamma is a real number and the Erlang shape 
parameter is integer, it was necessary to choose the 
best fitting Erlang from the next highest and next 
lowest integer based on the maximum likelihood 
fit of the gamma shape parameter. The distribution 
fitting analysis yielded a delay-free cycle time 
distribution with k = 10 and α = 2.932. 
 
Delay Time Distributions    Eleven different delays 
were identified in the course of the field studies, 
including: hang-ups, carriage delays (move stop and 
hit stop), mainline/choker delays (tangled, mainline, 
wait on skidder, slipped choker), and nonproductive 
carriage/line delays (broken mainline, loose hydraulic 
hose, fix hydraulic lines, fix stop, miscellaneous). 
Because of lack of data in several delay type 
categories, it was necessary to combine similar delays 
into more broadly defined groups. As a result, four 
groupings of delays were recognized and each group 
fit to an Erlang distribution (Table 1). 
     The summary statistics, from the field observations 
for each delay type are as shown in Table 2. Data in 
each delay grouping were fit to Erlang distributions 
using the same procedure outlined for delay-free cycle 
time. The resulting fits and their respective shape and 
scale parameters are summarized in Table 3. 
     With the fitted Erlang distributions it is now 
possible to describe productive and delay time 
within the Markov process context, by utilizing the 
concept of k-stage for each Erlang, where each 
stage is an independent and identically distributed 
exponential random variable with scale parameter 
α. For example, productive time be conceptualized 
as 10 discrete stages, each requiring a random 
residence time equal to an exponential random 
variable with scale parameter α = 2.891. 

Developing the Rate Matrix For Case Study   The 
first consideration is defining the current and future 
state of the rate matrix. For the productive time 
component of the system there are 10 current and 10 
future state that the system can occupy, as defined by 
the k = 10 Erlang model. For descriptive purposes, the 
state descriptor of the productive component will be 
defined as {pi}, where i = 1, 2, 3, …, 10, denoting the 
Erlang stages of the productive cycle time model.  
     There are four different delay types that the 
system can encounter, with a total of seven 
exponential stages. If only one delay occurred on 
any given cycle a 17x 17 rate matrix could 

TABLE 1. Four Types of Delays. 
 

Delay 
Type 

Delays Included Number of 
Observations 

1 Hang-ups 75 
2 Move stop, hit stop, 

tangled mainline, 
slipped choker 

102 

3 Wait on Skidder 70 
4 Broken mainline, 

Loose hydraulic hose, 
Fix hydraulic line, Fix 
stop, Miscellaneous 

36 

 

TABLE 2. The Summary Statistics For Each Delay Type. 
 

Delay 
type 

Mean (min.) Standard deviation 
(min.) 

1 3.84 3.54 
2 2.12 1.40 
3 1.95 1.30 
4 7.98 10.20 

 
 
TABLE 3. The Summary of Shape and Scale Parameters. 
 

Delay Type K ? 
1 1 0.260 
2 3 1.405 
3 2 1.020 
4 1 0.125 
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characterize the system. However, multiple delays 
can occur on individual cycles, as evidenced by the 
field data. In fact, the data indicated that up to 
three of the different delays could occur on a given 
cycle, so that the possibility of multiple delays 
must be incorporated into the rate matrix. It is 
important to note that while multiple delays of a 
specific type may be possible on a given cycle, the 
data was based on the total time spent in that delay 
for each cycle, so that once a delay type occurs it 
cannot occur again on that cycle. It is also 
recognized that any delay type could occur in any 
cycle with any other delay type. For purposes of 
modeling, the order of occurrence for delays does 
not affect the basic structure of the rate matrix. It 
simply means that once a procedure is assumed for 
ordering multiple delays, that procedure must 
remain consistent throughout. 
     The additional delay types, based on combination of 
the 4 original delay types are enumerated for two delays 
in a cycle (Table 4). For 3 delays in a cycle the 
combinations are given in Table 5. 
     In light of multiple delays occurring on any 
given cycle, the following generalized state 
descriptor was used to characterize the possible 
delay states of the system: 

{Ni, Dj, Ek}  
where, 
Ni = the number of delays occurring in a cycle, i 
=1, 2, or 3, 
Dj = the type of delay occurring, j = 1, 2, …, 13, 14 
Ek = the k-th Erlang stage for the j-th delay 
type/sequence. 
With this specification, it is possible to enumerate 
all states of the system. For example, state (2,5,1) 
denotes that 2 delays occurred in a cycle and the 
system is in delay type 5 (i.e., delay types 1 and 2 
combined) and stage 1 of that delay sequence. The 
entire system can be described with 59 states, 
yielding a rate matrix 59x59. Since the possible 
transitions from a current state to future states are 
limited, the rate matrix will contain a large 
proportion of cells with zeroes as entries. Two 
additional pieces of information are required to 
complete development of the rate matrix: 
 
1. The probability that none, one, two or three 

delays occur on any given cycle. 

2. The probability of a given delay type or 
combination of delay types occurring. 

 
     These needs were developed directly from the 
raw data on cycle times and the occurrence of 
multiple delays and the different delay types. The 
probability of delays occurring was: 
 
Pr[No delay]       = 0.571 
Pr[One delay]     = 0.334 
Pr[Two delays]   = 0.088 
Pr[Three delays] = 0.004 
 
     The probability of a specific delay type 
occurring on any given cycle was: 
 
Pr[Delay type 1] = 0.256 
Pr[Delay type 2] = 0.359 
Pr[Delay type 3] = 0.242 
Pr[Delay type 4] = 0.141 
 

     When two or three delays occur in a cycle it is 
necessary to know the probability of the various 
combination of delays. For example, when two 
delays occur, what is the probability that they are 
delay type one delay type two. Again, this 
information was determined from the field data as 

TABLE 4. Combination of the Four Original Delay Types. 
 

Delay type Delays included 
5 Type 1 and 2 
6 Type 1 and 3 
7 Type 1 and 4 
8 Type 2 and 3 
9 Type 2 and 4 
10 Type 3 and 4 

 

TABLE 5. The Combinations For 3 Delays. 
 

Delay type Delays included 
11 Type 1, 2, and 3 
12 Type 1, 2, and 4 
13 Type 1, 3, and 4 
14 Type 2, 3, and 4 
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follows for two delays: 
 
Pr[Delay type 5] = Pr[Delay types 1 and 2] = 0.2385 
Pr[Delay type 6] = Pr[Delay types 1 and 3] = 0.2170 
Pr[Delay type 7] = Pr[Delay types 1 and 4] = 0.1300 
Pr[Delay type 8] = Pr[Delay types 2 and 3] = 0.3050 
Pr[Delay type 9] = Pr[Delay types 2 and 4] = 0.0545 
Pr[Delay type 10] = Pr[Delay types 3 and 4] = 0.0430 
 
     In the case of three delays, the field data lacked 
sufficient numbers of observations to develop 
reasonable estimates of the probabili t ies. 
Therefore, it was assumed that the probability for 
any of three delays types occurring on the same 
cycle were equal, as follows: 
 
Pr[Delay type 11] = Pr[Delay types 1, 2, and 3] = 0.245 
Pr[Delay type 12] = Pr[Delay types 1, 2, and 4] = 0.245 
Pr[Delay type 13] = Pr[Delay types 1, 3, and 4] = 0.245 
Pr[Delay type 14] = Pr[Delay types 2, 3, and 4] = 0.245 
 
     Figure 1 contains the complete rate matrix for 
the case study. The first 10 rows and columns are 
the productive states of the system (p1 – p10). Of 
key importance is row 10 of the rate matrix. This 
row represents the final stage of the Erlang 
productive cycle time model. It is at this point, 
when the system must make the transition out of 
the 10-th stage, that the system can reenter the 
productive cycle time model or enter one of the 
{Ni, Dj, Ek} delay states. Given that the Pr[No 
delay] = 0.571, the system will reenter the 
productive cycle time model 57.1% of the time and 
will enter one of the delay sequences 42.90% of 
the time. However, since the entries in the rate 
matrix are rates of change of probability, the 
probability must be transformed to rates. Two 
properties of rate matrices, mentioned earlier, can 
be used to accomplish this: 
 
1. Row sums of the rate matrix must be zero. 
2. The diagonal terms (i.e., denotes cases where 

the system remains in the current state) are the 
negative of α from the Erlang model. 

     In this particular case, the entry in {p10, p1} is –
2.942. Then, the rate of change for moving from p10 
to p1 is calculated as 2.942 times the probability of no 
delay (0.5721), which equals 1.6821. This, then, 
becomes the entry in { p10, p1 } of the rate matrix. 
     The rate matrix entries for moving into one of the 

delay states are somewhat more difficult to calculate. 
The general procedure is to take the absolute value of 
the diagonal term (i.e., 2.941) times the probability of 
that one, two or three delays occurred (whichever case 
applies) times the probability of the particular delay 
type occurring. The procedure is best illustrated by 
using examples. 
     Assume that the next transition is to {p10, (1, 1, 1)}. 
The cell entry is then 2.941 times the probability of 
one delay (i.e., 0.335) times the probability of delay 
type 1 (i.e., 0.257), which equals 0.253. For the cases 
in which two delays occur the procedure is exactly the 
same. Assume that the next transition is to {p10, (2, 2, 
1)}. The entry in {p10, (2, 6, 1)} is 2.941 times the 
probability of two delays (i.e., 0.089) times the 
probability of delay type 6 (i.e., 0.217), which equals 
0.570. 
     Several additional items need clarified at this 
point. Once the system has move through a delay 
sequence, it always returns to p1 the first 
productive stage of the cycle. When the system 
must move through a multiple delay sequence, it is 
assumed for the sake of simplicity that the 
sequence begins with the lowest numbered delay 
type. Once the system moves through the stage of 
that delay it immediately enters the first stage of 
the next highest numbered delay type. For example 
if delay type 1 and 2 occur, it is assumed that the 
system moves through the Erlang stage of delay 
type 1 first, followed by the 3 stages of delay type 
2. It would make no difference in the results if the 
sequence were reversed. 
 
Results Of The Case Study    The developed 
rate matrix used in equation (5) to solve for the 
steady state proportions of productive and delay 
time. Although the rate matrix is theoretically 
singular, it is possible to solve the system of 
equations by recalling that the steady-state 
probabilities must sum to one. Using this fact, 
solution of the system is handled by setting one 
row (or column) of the rate matrix to 1’s and 
setting the appropriate right-hand side element of 
the zero vectors to a 1. The system was solved 
using the PROC MATRIX procedure in SAS and 
the resulting steady-state probabilities were: 
 
Pr[System was productive] = 0.601 
Pr[System in delay type  1] = 0.106 
Pr[System in delay type  2] = 0.075 
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Pr[System in delay type  3] = 0.052 
Pr[System in delay type  4] = 0.116 
 
     These probabilities were determined by 
summing over all states for each delay type and for 
each of the productive states. That is, the steady-
state probabilities for each of the 10 productive 
states were summed to obtain the proportion of 
total time spent in a productive mode of operation.  
     Based on these results, the system was 
productive almost two-thirds of the time, while the 

remaining third was tied up in delay time, with 
hang-ups and miscellaneous delays occupying the 
majority of steady-state delay time. It is interesting 
to note that while the probability of miscellaneous 
delays was relatively low, it was more than offset 
by the distribution of time spent in a miscellaneous 
delay (as evidenced by the high average time) 
giving it the highest proportion of steady-state 
time.  
     From a decision-making standpoint, it would 
appear that any system modifications to increase 

 
 
 

Figure 1. Rate matrix for the Clearwater system, where, A = 2.941, B = 0.261, C = 1.406, D = 1.021, E = 0.125, F = 1.683, 
G = 0.253, H = 0.354, I = 0.240, J = 0.139, K = 0.063, L = 0.057, M 0.034, N = 0.08, P = 0.017, Q = 0.011 and R = 0.0025. 
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productivity should initially focus on reducing the 
frequency of delays overall and to specifically 
focus on reducing the probability of hang-ups and 
miscellaneous delays. 
     One feature of Markov process models is that 
they allow the analyst to test the effects of various 
system adjustments without having to first 
implement them on the job. For instance, suppose 
the logging contractor could alter the probabilities 
of delays occurring, through a change in the mode 
of operation, as follows: 
 
Pr[No delay] = 0.651 
Pr[One delay] = 0.272 
Pr[Two delays] = 0.074 
Pr[Three delays] = 0.003 
 
     The steady-state probabilities resulting from 
this modification were: 
 
Pr[System is productive] = 0.708 
Pr[System in delay type 1] = 0.092 
Pr[System in delay type 2] = 0.065 
Pr[System in delay type 3] = 0.045 
Pr[System in delay type 4] = 0.095 
 
     In this case the percentage increase in the 
proportion of productive time (about 6.8%) may 
not be justified since it required a 13.6% increase 
in the probability that no delay occurred. The cost 
of reducing the occurrence of delays may be 
greater than the savings resulting from the increase 
in steady-state productive time. For the operator, 
actual implementation of this change or any other 
change must be considered in light of any 
additional cost associated with such changes and 
the impact on the overall financial performance of 
the operation. 
     In making modifications, the operator or analyst 
can focus on two components of the system: 
 
1. Reducing delay time for any given type of 

delay, which will alter the Erlang model of 
time-based activities for that delay. 

2. Reduce the probability of occurrence of a 
delay type or the occurrence of delays in 
general, as illustrated in the above example. 

 
     Either type of reduction should reduce the 
steady-state proportion of delay time for the 

system.  A third alternative may be to increase the 
productivity of the system, which will alter the 
productive time Erlang distribution. However, 
speeding up production beyond the capability of 
the system may cause an inordinate increase in 
delay time and presumably increase costs beyond 
acceptable levels. 
     The question, however, always remains: What 
is the most cost effective alternative available? 
Fortunately, the Markov model can be easily 
adapted to handle modifications in system 
components and to provide steady-state solutions 
to these modifications in a straightforward manner. 

 
 

SUMMARY 
 
This study was designed to illustrate the use of 
Markov process theory to the analysis of steady-
state proportions of production and delay time of 
cable logging systems. The study was successful in 
that a stochastic model was developed and steady-
state results were generated for each system. Of at 
least equal importance was the demonstration that 
stochastic models are viable tools for timber 
harvesting systems analysis.  
     A relatively elementary Markov process model that 
is both powerful and relatively easy to use was adapted 
to a relatively complex logging system. Yet, utilization 
of this model requires only elementary statistical tools 
for fitting Erlang distributions, some basic understanding 
of probability, and basic matrix algebra to solve 
systems of simultaneous algebraic equations. Solution 
of the model provided stead-state results for the 
proportions of productive and delay time. It was also 
shown how flexible the model can be for investigating 
the effect of possible modifications to the system. 
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