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Abstract   The machine repair problem with spares and additional repairman is analyzed. The inter-
failure and repair times of the units are general identical and independently distributed. The failure 
and repair rates are assumed to be state dependent. Using diffusion approximation technique, we 
obtain the queue size distribution under steady state. The average number of failed units, average 
number of operating units in the system and the probability of the system being short are obtained by 
using the queue size distribution. 
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 اضافي در اين تحقيق مورد تجزيه و تحليل قرار           ي   مساله تعمير ماشين با لوازم يدكي و تعمير كارها            چكيده

 ي نرخها .گرنديكدي توزيع همشكل و مستقل از        ي و زمان تعمير هر واحد دارا       ي بين خراب  يزمانها. گيرد مي
به يك  ,  تقريب پخش  يبا استفاده از تكنيكها    .  هستند يه فرض مستقل از وضعيت كار       بنا ب  ر و تعمي  يخراب

ميانگين تعداد وسايل خراب در سيستم و همچنين احتمال اينكه سيستم           . رسيم سيستم صف در حالت پايدار مي     
 .گردد  صف در اين تحقيق محاسبه مييكمبود داشته باشد، با استفاده از توزيع سيستمها

 
 
 

INTRODUCTION 
 

An interruption in machining system during the 
operation not only affects the quality of 
manufactured product but also increases the cost of 
production. The problem of machine repair and 
automation is to employ the right number of 
repairmen to look after a certain number of 
machines. In many industrial processes where 
machines work, the problem of providing spare 
machines may arise frequently. The provision of 
spares and additional repairman may improve the 
running efficiency and operating utilization of the 
machining system having multi-components. Gross 
et al. [1] studied a queuing model for spare 
provisioning. Sivazlian and Wang [2] gave the 
economic analysis of the M/M/R machine repair 
problem with warm standby spares. Jain [3] 
considered the M/M/R machine repair problem 
with spares and additional repairmen by using 

queue size distribution of failed machines. Jain et 
al. [4] obtained the steady state queue size 
distribution for M/M/C/K/N machine repair 
problem with balking, reneging, spares and 
additional repairman. Ching [5] gave the 
Markovian approximation for manufacturing 
systems of unreliable machines in tandem. 
     Exact solution to the queuing problems with 
inter-arrival time and service time drawn from 
arbitrary distributions are difficult. In such cases 
we are interested to get the approximate solution 
by using the diffusion approximation technique. 
By introducing diffusion parameters and accurate 
boundary conditions to the underlying diffusion 
process, the complex machine repair problems can 
be analyzed. Various papers have been devoted for 
multi-server queuing problem by using diffusion 
process but most of them dealt with infinite calling 
population. Sivazlian and Wang [6] considered the 
G/G/R machine repair problem with warm standby 
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system using the diffusion technique. Jain [7] gave 
some performance measures for a m/G/Gx  
machine interference problem with spare machines 
by using diffusion process with reflecting 
boundaries. Jain [8] studied (m, M) machine repair 
problem with spares and state dependent rates. The 
problem was solved by diffusion approximation 
technique with reflecting boundaries. Jain 
and Singh [9] developed diffusion process for 
optimal flow control of a G/G/c finite capacity 
queue. They obtained the mean throughput under 
steady state. 
     This paper is concerned with diffusion 
approximation technique for the problem of 
machine repair system with spare units and one 
additional repairman. If a unit fails, a spare unit 
replaces it. The failed unit is sent immediately for 
repairing to service facility having permanent and 
one specialized additional repairman. The 
repairman can repair only one failed unit at a time. 
When all permanent repairmen are busy, the repair 
rate is faster in comparison to the rate when at least 
one repairman is idle. The steady state queue size 
distribution for the number of failed units is 
established by using the means and variances of 
life time and repair time distributions. 

 
 

MODEL DESCRIPTION 
 

We consider G/G/r machine repair problem with 
spares as follows: There are M operating units, S 
spare units as standby, r permanent repairmen and 
one additional repairman in the repair facility. 
Whenever a unit fails, it is immediately sent to 
repair facility where it is repaired in the order of 
breakdowns i. e. FCFS. Each repairman can repair 
only one failed unit at a time. If all repairmen are 
busy, the failed units must wait until a repairman is 
available. The failed unit is replaced by spare 
provided any spare unit is available in the standby 
group. If at least m out of M units is in operating 
group then the system will be in operating mode. 
When the repairing of a failed unit is completed, it 
is as good as new one. The repaired unit goes into 
the operating group if there are less than M units 
otherwise it goes into the standby group. If all 
spare units are being used and a breakdown occurs, 
the system is said to be short, and work with 
degraded rate. In the short system if more than M-

m units fail in operating group, the system 
breaks down. The inter-failure time and repair time 
of the units are general identical and independently 
distributed. The failure rates of operating units and 
spare units are different. As soon as the number of 
failed units reaches N, the additional repairman is 
turned on. 
     The state dependent failure and repair rates for 
the model are as follows: 
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where λ and 1λ  are the mean failure rates of 
operating units in normal and short system 
respectively; α  is the mean failure rate of spare 
units, 0µ  is the mean repair rate when at least one 
permanent repairman is idle, µ  is the mean repair 
rate when all permanent repairmen are busy and 

1µ  mean repair rate for additional repairman. 
 
 

DIFFUSION PROCESS 
 

To model machine repair problem, we use 
diffusion process with reflecting boundaries at 
x=0, x=M+S-m. Let np (t) denote the 
probability that there are n units in the system 
at time t. The continuous probability density 
function np (x,t) is taken corresponding to 
discrete probability mass function np (t). The p(x,t) 
satisfies the following Fokker - Planck equation 
(see Cox and Miller, [10]) 
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where a(x, t) and b(x, t) are respectively the drift 
and variance of diffusion process at time t. 
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     Using reflecting boundaries at x = 0 and 
x=M+S-m, the solution of Equation 3 under steady 
state is given by 
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Here a(x) and b(x) are the steady state drift and 
variance respectively. The square coefficients of 
variation of inter-failure and repair t ime 
distributions are denoted by 2

aC  and 2
sC  

respectively. Now we propose the steady state drift 
a(x) and variance b(x)for our model as follows: 
 
Case I: Sr ≤  

 
1. For rx0 <≤  

 
a(x) = [Mλ +(S-x)α ]-x 0µ  
b(x) = [Mλ +(S-x)α ] 2

aC +x 0µ 2
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2. For Sxr ≤≤  
 

a(x) = [Mλ +(S-x)α ]-rµ  
b(x) = [Mλ +(S-x)α ] 2

aC +rµ 2
sC  

 
3. For NxS <<  
 

a(x) = (M+S-x) 1λ -rµ  
b(x) = (M+S-x) 1λ  2

aC +rµ 2
sC  

 
4. For mSMxN −+≤≤  
 

a(x) = (M+S-x) 1λ -(rµ+ 1µ ) 
b(x) = (M+S-x) 1λ  2

aC +(rµ+ 1µ ) 2
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Case 2: rS <  
 

1. For Sx0 ≤≤  
 

a(x) = Mλ +(S-x)α -x 0µ  
b(x) = [Mλ +(S-x)α ] 2

aC +x 0µ 2
sC  

 
2. For rxS <<  
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b(x) = (M+S-x) 1λ 2
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3. For Nxr <≤  

a(x) = (M+S-x) 1λ -rµ  
b(x) = (M+S-x) 1λ 2
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4. For mSMxN −+≤≤  
 

a(x) = (M+S-x) 1λ -(rµ+ 1µ ) 
b(x) = (M+S-x) 1λ 2
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sC  

 
 

THE QUEUE SIZE DISTRIBUTION 
 

We obtain the steady state queue size distribution 
p(x) by using Equation 4 and the values of a (x) 
and b(x) for different intervals as follows: 
 
Case 1: NSr <≤  
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where C is a constant and 
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where 
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The constant C can be determined by using the 
normalizing condition 
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The value of np  is approximated by 
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To obtain the value of mSMp −+ , we propose the 
following approximation 
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Case 2: S<r<N 
In this case the steady state queue size distribution 
p(x) is determined by using Equation 4 and the 
values of a(x) and b(x) for different intervals as 

follows: 
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where C ′  is an arbitrary constant which can be 
determined by using the normalizing condition and 
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SOME PERFORMANCE INDICES 
 

Denoting the average number of failed units in the 
system by kL  (k = 1 for case 1 and k =2 for case 2), 
we have 
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The average number of operating units in the 
system is denoted by E( kO ) and is obtained as 
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The probability of system being short is given by 
 

∑
−+

+=
=

mSM

1Sn
nS p̂p̂  (19) 

 
The probability of system failure is 
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where i = 4, for case 1 and i = 7 for case 2. 

     The average number of spare units in the 
system is 
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     The average number of idle repairmen is given 
by 
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CONCLUSION 
 

We have modeled the machine repair problem with 
spares and additional repairman as diffusion 
process. The steady state queue size distribution is 
established in terms of drift and variance of the 
diffusion process. The incorporation of state 
dependent rates makes our model more realistic in 
comparison to the existing model. By providing 
additional repairman, the system availability can 
be improved to a great extent. The results provided 
can be easily computed by taking numerical 
integration. The present model can be extended to 
bulk failure/repair problem, which is subject of our 
further research. 
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