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Abstract   The classical PERT approach uses the path with the largest expected duration as the 
critical path to estimate the probability of completing a network by a given deadline. However, in 
general, such a path is not the most critical path (MCP) and does not have the smallest estimate for 
the probability of completion time. The main idea of this paper is derived from the domination 
structure between paths that was presented by Soroush for the first time. This paper develops this 
domination structure and its properties, which make Soroush’s algorithm work faster in some cases. 
Then a labeling algorithm is presented that is able to compute the MCP from starting node of the 
network to any node of the network. Also, suitable and practical completion time distribution 
function estimation is defined. In many cases, the estimation is obtained by the developed method is 
better than that of Soroush’s. To clarify the point, some examples are given. Finally, conclusions are 
presented. 

Key Words   PERT, Most Critical Path, Stochastic Network, Completion Time, Distribution 
Function, Approximation 

 
رويكرد پرت كلاسيك از مسيري كه نسبت به ساير مسيرها بزرگترين ارزش انتظاري مدت زمان را                     چكيده

به هر حال، در حالت كلي،      .  تخمين بزند  دارد بهره مي گيرد تا احتمال تكميل شبكه را در ظرف موعد مشخص            
 احتمال زمان تكميل     نيست و از كوچكترين تخمين براي      ) MCP( مسير بحراني     نچنين مسيري محتمل تري    

 براي نخستين بار سروش آن را        كهنقطه نظر عمده اين مقاله از ساختار غالب مابين مسيرها             . برخوردار نيست 
مي دهد كه موجب مي     اين مقاله اين ساختار غالب و خواص آن را توسعه            . مطرح كرده است نشئت مي گيرد     

كه محاسبه   ك الگوريتم برچسب زني ارائه مي شود      سپس ي .  سروش سريعتر كار كند    شود در مواردي الگوريتم   
MCP               همچنين، تخميني از تابع توزيع زمان      .  را از گره شروع شبكه تا هر گره اي در شبكه امكان پذير مي سازد

در مواردي، تخمين حاصله از روش توسعه يافته بهتر از تخمين              . تكميل عملي و مناسب تعريف مي شود        
 .نهايتا ، نتايج ارائه مي شوند. وع واضح شود، مثالهايي عنوان شده استبراي اينكه موض. سروش است

 
 

    
INTRODUCTION 

A PERT network is an acyclic, connected and 
directed graph. The network has one starting and 
one terminal node. PERT networks are useful  
models for project planning and control. Duration 
of all activities is positive random variables with 
known probability distribution. The completion 

time of the project is a random variable whose 
realization can be determined, however its exact 
distribution function (F(t)) is very difficult to 
calculate for most PERT networks. The 
difficulty in evaluating F(t) that stems from the 
interdependency and large number of the paths in 
the networks, has motivated many studies. 
Harthley and Wortham [1] consider block series-
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parallel networks of mini-networks. They allow 
the mini-networks to be a single arcs or Wheatsone 
bridge type of networks. They develop formulae to 
replace a Wheatsone bridge type of network by a 
single arc with appropriate distribution function. 
Ringer [2] generalizes Harthley and Wortham’s 
work by allowing double Wheatsone bridges as 
mini-networks. When all activity durations are 
exponential, PERT networks are formulated as a 
continuous time Markov chain (CTMC), and the 
project completion time can be thought of as a 
particular first passage time in this CTMC. 
Kulkarni and Adlakha [3] have taken this 
approach. Martin [4] has provided a systematic 
way of implementing convolution and multiplication 
operations, where probability distribution of each 
activity is polynomial. 
     Dodin [5] derives a bound for F(t) with the 
assumption of independent random variables at 
network. Robillard and Trahan [6] derive a lower 
bound using Laplace transforms, assuming that 
activity times are independent. Also, Kleindorfer 
[7] provides upper and lower bounds for F(t) 
where discrete random variables are considered. 
Van Slyke [8] estimates the mean of F(t) by means 
of critical index of paths. Sculli [9] derives an 
approximation for the mean and variance of 
F(t) where normal probability distributions are 
considered. 
     Kamburowski [10] obtains upper and lower 
bounds for mean and lower bounds for variance of 
F(t). Fulkerson [11], Clingen [12], Elmaghraby 
[13], Robillard and Trahan [14], Lindsey [15], 
Dodin [16], derive bounds for the mean of F(t) for 
some cases. 
     About MCP identification, Martin [4] defines 
criticality index of a path but does not present a 
method for its computation. Sigal, Pritsker and 
Solberg [17] derive a method that stems from 
Monte Carlo simulation. Also, Fisher and 
Goldstein [18] present an algorithm to calculate it. 
Elmaghraby and Dodin [19] discuss criticality of 
activities. Dodin [20] derives a method to identify 
K most critical path in a network. In the next 
sections, because of dependency of our approach 
on Soroush’s algorithm [21], his work is discussed 
and the domination structure presented by him is 
developed. Then a labeling algorithm for MCP 
identification is derived at a given time. At the 

end, a new approach on approximate F(t) based on 
MCP is derived. Finally, numerical analysis is 
made and conclusion is presented. 
 
 

PROBLEM IDENTIFICATION 

Let G (V,A) be a PERT network where V is the set 
of nodes and A is the set of arcs and 
V n A m Let= =, .  { }R r r R= 1,....,  is the set of 

paths between v1 and vn. The network is stochastic 
in the sense that all activity times tk , a Ak ∈  are 
random variables. The duration T* of the PERT 
network is; 
 

{ } Rr,

jrka ktTwhere,TmaxT jjjRr

*
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==
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 (1) 

 
     Then, the probability to complete the project by 
a given deadline t, is; 
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     To determine an upper bound on { }P T t* ≤ , let 
us rewrite (2) as: 
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  (3) 
 
     Utilizing probability theory and central limit 
theorem we obtain: 
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where Z is a standard normal variable, and  
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     In order to obtain the best upper bound from 
(4), we define MCP as an r R* ∈  such that, 
 
{ } { } { }iRrriRrr zminziforzZminzZp

i
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=≤=≤  
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Figure 1. A PERT network with means and standard 
deviations for paths. 

     This path provides the least upper bound 
estimate for { }P T t* ≤ . Meanwhile, 
assuming r1, r R2 ∈ , and a project deadline t, 
Soroush defines that r1 stochastically 
dominates r2, written as: 

{ } { }r r if p Z z p Z z or if z z1 2 1 2 1 2f , , .≤ < ≤ <  
 

 
MCP IDENTIFICATION 

 
In order to avoid complex integrations to compute 
(4), Soroush [21] establishes a domination structure 
between paths by which MCP is identified. Now, 
consider the PERT network of Figure 1. 

     He shows that if 21 rr f  then 21 zz < , but this 
relation will no longer hold when r1 and r2 are 
augmented by ∆r Letk . σ σ1 2<  then, 
r r r rk k1 2o f o∆ ∆  if  

( ) ( )t tk

k

k

k

− +
<

− +µ
σ

µ
σ

1

1

2

2

∆µ ∆µ
                           (6) 

where [ ]σ σik i k i= + =2 2
1

2 1 2∆σ , ,  

That is 

( ) ( ) ( )
∆µ ∆σk k

k k

k k
z

t t
> =

− − −
−12

1 2 2 1

1 2

σ µ σ µ
σ σ

         (7) 

where ( )z k12 ∆σ , the threshold between r1 and r2 
when augmented by ∆rk  is a function of only ∆σ k  
of ∆rk . 
     Soroush [21] identifies six properties about 

( )z k12 ∆σ and the domination between paths: 
1. If µ µ1 2≥ , then ( )z k12 ∆σ  is a decreasing 
function of ∆σ k . 
2. If µ µ1 2< , then ( )z k12 ∆σ  is an increasing 

function of ∆σ k . 
3. If µ µ2 1< <t or µ µ1 2> > t , then ( )z k12 ∆σ  is 
negative and decreases with ∆σ k . 
4. If property 3 holds, then (7) is satisfied for any 
∆µ k and ∆σ k , that is r r r rk k1 2o f o∆ ∆  for any 
∆σ k . 
5. If property 3 does not hold (7) is satisfied for:  
(5.1) µ µ1 2≥ , then r r r rk k1 2o f o∆ ∆ for any ∆σ k . 
(5.2) µ µ1 2< , then r r r rk k1 2o f o∆ ∆  for some 
∆σ k . 

Remark 1 - We refer to the interval ( )[ ]z k12 ∆σ ,+∞ , 
as the dominated interval of r1, because it is 
internal if ∆µ k falls within it, then r1 f  r2. 
 6. If property 3 and inequality (7) are not satisfied, 
then r r r rk k2 1o f o∆ ∆  for some ∆rk . 

Remark 2 - If r r r rk k2 1o f o∆ ∆  for some ∆rk  and 
the location of node vn of the network is such that 

( )[ ]∆ ∆σi
k kzµ ∈ 0 12, , where ∆i

kµ  is the largest 
expected duration of a path segment between vi 
and vn, then there will be no path segment that 
would alter the relation r r r rk k2 1o f o∆ ∆ . Hence, r1 
can be eliminated. 
     Soroush’s method to identify MCP is based on 
the above properties as a domination structure. 
Consider the network in Figure 2. 

∆∆∆∆r1 
 

∆∆∆∆r2 
 

∆∆∆∆rn 

µµµµ1 , δδδδ1 
∆∆∆∆µµµµ1 , ∆∆∆∆σσσσ1 

∆∆∆∆r1 

∆µ ∆σk k, 2  

µ σ1 1
2,  

µ σ2 2
2,  

j 1 k n
r2

r1

rm

 

Figure 2. A PERT netwrok with internally disjoint paths 
between nodes. 

1 i j
r1

r2

 

Figure 3. A PERT network with two paths and two path 
segments. 
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     In Soroush’s method, for any kr∆ , the 
domination between r1 to rm is identified and with 
known ∆µ k , the appropriate path that dominates 
others is obtained. (This is named algorithm 
number 1 in Soroush’s). Therefore, there are 
totally n evaluations as performed in Figure 2. 
     In Soroush’s study, the domination evaluation 
between r1 to rm is performed, but this evaluation is 
not performed about path segments ( )∆rk . Now 
consider the network in Figure 3. 

Proposition 1 – Let ,, 2121 µµσσ ∆≤∆<                 

122121 , µµµµσσ <<>>∆≤∆ tort , then in 

Figure 3, r r1 2o ∆  is MCP if t
t
−
−

<
−
−

µ
µ

σ σ
σ σ

2

1

21 22

11 12
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Remark 3 - This proposition means that in the 
mentioned case, among four paths, r r1 2o ∆  has 
smallest z. 
Proof - Based on conditions in the proposition, 
σ σ σ σ11 21 12 22− < − . Now, the condition in which 

( ) ( )z z12 1 12 2∆σ ∆σ>  would be:  
( ) ( ) ( ) ( )σ µ σ µ

σ σ
σ µ σ µ

σ σ
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12 2 22 1
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t t t t− − −
−
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     Because the two denominators of the above 
relation are negative (Property 3), then we have  
t
t
−
−

<
−
−
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σ σ
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     If in this proposition ∆µ ∆µ1 2> , then from 
property 3 we have  

( ) ( )∆µ ∆µ ∆σ ∆σ1 2 12 1 12 2> > >z z             (10) 
Hence, the domination of r r1 2o ∆  is proved.  

Generalization of Proposition 1 - Let 
∆σ ∆σ1 2 1 2 2 1 1 2< > > < < ≤, µ µ µ µ σ σt or t and
, then r r1 2o ∆  is MCP at Figure 3, if 
t
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Remark 4 – (i) Let σ σi j<  and ∆σ ∆σ1 2< < ....,  if 
µ µj it< < , then based on property 3 and 
generalization of proposition 1, the condition 
t
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the right-hand-side of the relation is positive, then 
r ri m

m k
o ∆

< ′
 is dominated, although in Soroush’s 

domination structure only r rj ko ∆  is dominated. 
     (ii) Let σ σi j< < <, ....∆σ ∆σ1 2 , if µ µi j t> > , 

the condition of 
t
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, where 

{ }k k n
k k
, ,...,′ ∈
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1  should be checked and if satisfied, 

then r ri ko∆ ′  is MCP among four paths 
r r r ri k i ko o∆ ∆, ′ , r r r rj k j ko o∆ ∆, ′ . But based on 
Soroush’s domination structure only r ri ko ∆  
dominates others. Soroush provides algorithm 
number 2 to identify MCP in networks as Figure 2 
shows. Based on proposition 1, this algorithm is 
developed.  

 
 

DEVELOPEMENT OF SOROUSH’S 
ALGORITHM NUMBER 2 TO IDENTIFY 

MCP IN NETWORK FIGURE 2 

Step 1 - (Indexing and arranging)  
     (i) Index ri , i = 1, .... , m,  such that 
σ σ σ1 2< < <... m . 
     (ii) Arrange µ i i m, , ..., ,= 1  and deadline t in 
ascending order. 
µ µ µ µ µi i i i ij j m

t
1 2 1
< < < < < < <

+
... ...            (11) 

     (iii) Index ∆r k nk , , ...,= 1 , such that 
∆σ ∆σ ∆σ1 2> > >... n . 

Step 2 – (i) Consider the paths, which satisfy the 
conditions µ µ µ µj i i jt and t< < > > . 
     (ii) Consider the paths, which satisfy the 
condition µ µj it< < , then proposition 1 is checked 
so that ri would not be eliminated later. 

Step 3 - Consider the indices i1... im given by (11) 
in turn and eliminate the dominated path 
rik

(Property 4) if its index ik, { }k j∈ 1, .....  is larger 
than some il that appear later in the order ij+1...im. 
Similarly, eliminate the dominated path rik

if its index 

{ }i k j mk , , ...,∈ + 1  is larger than some il that appear 
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later in the order ij+1... im. 

Step 4 – (i) If only rm remains, terminate; 
r r k nm ko ∆ , , .....,= 1  (except those are dominated at 
Step 2) are the candidates for the MCP. 
     (ii) If more than one path remains, for any 
∆r k nk , , .... ,= 1  identify the path which dominates 
others (in Step 3, consider results of Step 2). 

Step 5 - Calculate z for any candidate constructed 
in previous step. The smallest z identifies MCP. 
     In this algorithm only one condition 
( )µ µ σ σj i i jt< < <,  of proposition 1 is used. If 
Step 2 is developed by merging other conditions 
( )µ µ σ σi j i jt> > <, , better results are obtained. 
     In the following Example 1 is presented to 
demonstrate how the improved algorithm of 
Soroush works and reflects the difference in the 
manner of implementation of the new method and 
that on Soroush's. 

Example 1 - Consider PERT network in Figure 4, 

Let t = 35 and 3,6,8 321 =∆=∆=∆ σσσ , 
then µ µ µ µ4 1 3 2< < < <t  and based on Property 4, 
r3 and r4 are eliminated later. For domination 
about ∆rk , one case should be considered: 

,,, 214224 µµσσµµ <<<<< talthoughwheret  
thenbut ,21 σσ <  proposition 1 does not hold. 

     Consider ∆ ∆r r1 2,  where ∆σ ∆σ1 2> . From 

proposition 2, t
t
−
−

<
−
−

µ
µ

σ σ
σ σ

4

2

41 42

21 22
. Then r r2 2o ∆  at 

∆ r2 stage evaluation and 332 at rrr ∆∆o stage will 
be eliminated. After this evaluation, r3 and r4 are 
eliminated. Hence, for ∆r kk , , ,= 1 2 3  the remainder 
paths are: 
     (i) ∆ ∆r r r1 1 1; o  and r r2 1o ∆  will be evaluated. 
     (ii) ∆ ∆r r r2 2 2; o  remains (at Soroush’s two paths 
r r1 2o ∆  and r r2 2o ∆  remain). 
     (iii) ∆ ∆r r r3 1 3; o  remains (at Soroush’s two 
paths r r1 3o ∆  and r r2 3o ∆  remain). 

IDENTIFYING MCP IN GENERAL CASE 

Based on the domination structure, a labeling 
algorithm for general case is presented. 

Labeling Algorithm to Identify MCP in a 
PERT Network   In this section a simple 
labeling algorithm based on the domination 
structure is derived that identifies MCP from the 
starting node to any node. Any label contains three 
elements. For instance the label of node vi is 
written as; ( µ i i j, ,∆σ ), where µ σi iand  are the 
mean and standard deviation of MCP to vi and j is 
the number of a node that vi has been labeled from 
it. Label of starting node is (0, 0, -). Node vi 
should be labeled when all nodes connected to vi 
have been labeled before. 

Step 1 - Labeling starting node. 

Step 2 - Use the CPM or a longest path algorithm 
to determine the largest mean duration ∆iµ  of a 
path segment between each node vi, i = 2, ... ,n. 

Step 3 - (Labeling node vi) 
     Consider the nodes i1 to im which are connected 
to vi. They are labeled before. So, we have m paths 
ending to node i. Then m nodes connected to vi 
have labels as ( )µ σi i ik k k

j, , , where k = 1,..., m and 

for m paths to vi,  

µ µ µk i kk
= + ′ [ ]σ σ σk i kk

k m= + =2 2
1
2 1, , ... ,     (12) 

where µ k and σ k  are the mean duration and 

 

Figure 4. A PERT network. The two numbers beside each 
activity denote the expected duration and standard deviation 
of the activity. 
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standard deviation of paths rk to vi respectively. 
Apply previous algorithm (Development of 
Soroush’s algorithm). 
     For MCP identification to vi, use ∆iµ . If 
rik

dominates other paths, then label of vi would 
be  

( )µ µ σ σi k i k kk k
i+ +











, ,2 2

1
2             (13) 

     This procedure continues until vn takes a label.  

Remark 5 - From the third element of vn label and 
backward movement from the ending node to the 
first node, MCP will be identified. 
     At this stage the algorithm is complete to find 
MCP. The following example is presented to 
illustrate the matter and to show how the algorithm 

works.  

Example 2 - Consider PERT network in Figure 5; 
∆ ∆ ∆ ∆2 3 4 5315 26 16 205µ µ µ µ= = = =. .

∆ ∆ ∆ ∆6 7 8 910 12 5 5 65µ µ µ µ= = = =. .  
     Suppose the objective is MCP identification 
at t = 32. Label of v2 is (3,0.775,1) because this 
node has only one entry of v1.     Identification of 
v3 label: 

( )z12 1 26 074∆σ = . , [ ]∆ ∆3 326 074 0 26 074µ µ> ∈. , .and  
Based on Property 6, r rk2 o ∆  dominates other 
paths for any ∆r kk , ,= 1 2  and then v3 is labeled 
from v2 as (9, 1.817,2). Labels for other nodes 
would be  

( ) ( ) ( )
( ) ( ) ( )
( ).8,07.2,5.34:

,7,1,26:,3,95.1,5.29:,2,9495.0,20:
,:,2,832.0,12:,2,302.2,5.8:

10

987

654 4,605.3,5.24

v
vvv

vvv

     MCP at t = 32 moving backward from v10 is 1-
2-3-8-10 and estimation of F(t) based on (4) is 
0.1151.  
     The algorithm presented in this section 
recognizes the most critical path using the 
dominance structure. The authors of this paper 
provide the possibility of omitting of some other 
paths during the labeling process of algorithm 
(recognition of MCP). This possibility is made 
through the addition of some new conditions for 
the dominance structure constructed by Soroush. 
In fact, the domain of dominance structure is 

2 5 7

4 61 10

3 8

9

9,0.1 8,0.2

20.5,0.5

5,0.5

10,15

0,0

0,00,04,1
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3,0.6

7,1

18,3

10,9

10.5,1.5

6,7.7

6,0.1

6.5,0.2

4.5,0.5

 

Figure 5. A PERT network [21]. The two numbers beside each activity denote the expected duration and 
standard deviation of the activity. 
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Figure 6. Labeling of node 3. 
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extended.  

NEW ESTIMATION OF F(t) BASED ON 
MCP DEFINITION 

To estimate F(t), relation (4) is written as: 
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Tp

tjTj,ik,k,tiT,tkTp
.t

j
Tp.t

i
Tpt*Tp

               (14) 
     The ratio located in the right-hand-side of (14) 
may be greater or smaller than one. Then we have 

{ } { } { }tTp.tTptTp ji
* ≤≤>≤

<

=
            (15) 

     Based on MCP definition, ri is the path that 
{ }tTp i ≤  is smallest of all. Therefore;  

{ } { }[ ]1,tTptTp ij ≤∈≤             (16) 
     The path r Rj ∈  is selected such that 

{ }tTp i ≤ { }tTp j ≤  provides a new estimation of 
F(t). 

     Let ti>ti-1 and i
1i

i

MCP
MCP

∆=
−

, where MCPi is 

estimation of F(t) with MCP method at ti. Also, 

{ }tTp.MCPMCP ji
*
i ≤=             (17) 

where MCPi
*  is a new estimation of F(t) at ti. In 

order to preserve i∆ amount as a maximum 
increase for estimation from ti-1 to ti we should 
have: 

i*
1i

*
i

MCP
MCP

∆≤
−

              (18) 

Also MCP
MCP

i

i

*

*
−1

 is greater than one. Then; 

i*
1i

*
i

MCP
MCP

1 ∆≤<
−

             (19) 

{ }
i*

1i

ji

MCP
tTpMCP

1 ∆≤
≤⋅

<
−

            (20) 

{ }
a

tTP
a
1

j
∆≤≤<              (21) 

where ai = *
1i

i

MCP
MCP

−

 

     Relation 2.1 determines a domain through 
which the j-th path can be selected. This path can 
be beneficial to construct a new estimate of F(t) 
with the help of *

iMCP . But the main attention in 
the design of algorithm of this section is strictly 
the selection of j-th path in relation 2.1 in such a 
way that it would be in the nearest distance to 

upper bound; namely 
i

i

a
∆

. In other words, it would 

be more desirable than the paths are selected for 
which { } 9.0tTP j ≥≤ . 

Remark 6 - MCP* estimates F(t) and does not 
provide a bound for it. 

Proof - Based on relation 2.1, we have  

{ }
i1i

*
1ii

i

*
1i

MCP.MCP
MCP.MCP

jMCP
MCP tTp

−

−− <≤<              (22) 
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ii MCPMCPMCP
i

i .
1

*
1**

1 −
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According to the definition 1
1

*
1 <
−

−

i

i
MCP
MCP  and the 

inequality of the left hand side, namely 
**

1 ii MCPMCP <− , also holds true; according to 
the definition of probability distribution. So we 
have  

1b,bMCPMCP i
*

i <<             (25) 

where 
1

*
1

−

−=
i

i
MCP
MCPb . We know that F(t)<MCPi. But, 

in general, the kind of relation between bMCPi and 
F(t) is unknown. In other word, depending on b, 
F(t) may be less than or greater than bMCPi .So, 
F(t) is estimated by the appropriate determination 
of j-th path and { }tTp j ≤ . 

(23) 
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Approximation Algorithm for Estimating 
F(t)  

Step 1 - Compute F(t) for all values of t; with the 
help of MCP and using algorithm explained in 
section 5. 

Step 2 - Compute i∆ for any ti. For the first t, i∆  
should not be computed. 

Step 3 - Consider the first estimation ( MCPi
*  being 

equal to MCPi) and for the next ti recognize a path 
in the network by means of (21) and compute 
MCPi

* . To find the appropriate path (for example 
rj) to compute { }ij tT ≤p and to gain MCPi

* , the 
following instruction is presented. 

The Instruction to Find the Appropriate 

Path to Determine {{{{ }}}}ij tT ≤≤≤≤p  for 
*

iMCP  
Computation 

Step 1 - Compute (21). (Show the resulting 
interval in the form of (a, b)). 

Step 2 - If for all zkn, k = 1,..., l, { } bzz kn >≤p , 
finding a path that its probability at ti locates in (a,b) 
interval would be impossible. Then MCPi

*  = MCPi. 

Step 3 - If for all zkn, k = 1,..., l, { }knzz ≤p < a , 

there is a chance to find a path that its probability 
comes in (a, b). Here, two strategies are proposed: 
(i) Ignore to find a path whose probability comes 
in (a,b) and MCPi

*  = MCPi. 
(ii) Name the greatest zkn, k = 1, ..., l as zhn and the 
node before the last node of network that zhn was 
computed via it, h. Other paths from h to the last 
node (if exist) give probability more than zhn. If 
appropriate path is found, use it. Otherwise; 
MCPi

*  = MCPi or take another zhn which is at the 
nearest distance to zhn and repeat this step.  

Step 4 - If for all zkn, k = 1, ..., l one or some rj are 
found whose probability come in (a, b) two 
strategies are proposed: 
     (i) Select the greatest zkn and compute MCPi

*  . 
     (ii) After the greatest zkn (i. e. z h n) is found, paths 
which are joined to node h should be recognized and 
their z should be computed and if they come at (a,b) 
the most appropriate path should be chosen. 

NUMERICAL ANALYSIS 

In this section some problems to evaluate new 
estimation of F(t) are presented. Totally seven- 
problems are defined as; 
     (i) Two problems of Dodin’s[5] are selected. In 
the first problem each activity is exponentially 
distributed with λ = 1.5 and in the second problem 
each activity has the realizations 1,2,3,4,5 each 
with probability 0.2. 
     (ii) One problem of Ringer’s [2] is selected and 
F(t) is calculated analytically. Each activity is 
distributed normally or exponentially. 
     (iii) Four problems are selected from Fatemi 
Ghomi’s work [22], that all activities are defined 
by discrete random variables. In these problems 
F(t) are computed by means of simulation. Table 1 
shows the results for the above-mentioned 

problems. Column 4 shows SAE
SAE

N

S
, where SAEN is 

the sum of absolute errors of new estimation of 
F(t) and SAES is the sum of absolute errors of 
Soroush’s estimation of F(t) at a given time.  
     The results indicate that the new method 

TABLE 1. Comparison of New Estimation and Soroush’s 
to Approximate F(t) Approximation. 

Problem No. 
Network 

V  
Size 

  A  
SAE
SAE

N

S
 

1 4 5 0.944 
2 5 8 0.973 
3 7 9 0.975 
4 7 10 0.892 
5 6 15 0.947 
6 10 21 0.935 
7 10 21 0.914 
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provides better estimation than that of Soroush’s. 
Meanwhile, the error ratio does not prevail a 
significant relation between the magnitude of the 
error and network size. The major factor in error 
reduction corresponding to the new method is that 
it uses two paths to estimate F(t). The initial 
estimate of the new method is made with the help 
of Soroush’s algorithm. Based on this reason and 
(21), column 4 represents numbers completely 
close to one. For those networks having large 
number of paths, the new method has the increased 
chance to obtain good results. Soroush’s method 
provides an upper bound for F(t), but the new 
method does not have this property. In four 
problems of Table 1, for some amount of time, the 
new method provides smaller estimation for F(t). 
Usually at small amount of time, a large amount 
for ∆  is obtained, then (21) represents a large 
interval. In this case, it is probable to obtain a path 
to compute MCP*. When the initial estimate of 
new method has the value between 0.9 to 1 for 
F(t), if a path is found at (21), small variation 
occurs in the recent computation. This indicates 
that the new method has suitable performance. 
Also, when F(t) has a small amount, by obtaining 
large ∆ , the possibility to find appropriate path at 
(21) increases. These points were led to derive 
(21).  

CONCLUSION 

In this paper, the purpose was MCP identification 
and to estimate completion time distribution 
function of a PERT network. A labeling algorithm 
is derived that acts as a simple mechanism to 
identify MCP from the starting node to any node in 
the network. An estimation method for direct 
computation of F(t) is presented that gives 
satisfactory answers in comparison with those of 
Soroush's. 
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