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Abstract   Modified Normalized Least Mean Square (MNLMS) algorithm, which is a sign form of 
NLMS based on set-membership (SM) theory in the class of optimal bounding ellipsoid (OBE) 
algorithms, requires a priori knowledge of error bounds that is unknown in most applications. In a 
special but popular case of measurement noise, a simple algorithm has been proposed. With some 
simulation examples the performance of algorithm is compared with MNLMS. 

 
Key Words   OBE, NLMS, MNLMS Algorithm, Overbounding, Underbounding, MLS Noise 

 
 طراحي الگوريتمهاي وفقي مورد توجه قرار گرفته        خير در  ا دو دهه  مناسب كه طي     ياه هويش زا يكي   هديكچ

از سطح ماكزيمم نويز قابل اندازه گيري و بيضي      حارط شناد. تسا OBE است، طراحي الگوريتمهاي موسوم به    
در اين راستا با     . لگوريتمها است گون در بردارنده پارامتر، مهمترين فرضيه مورد استفاده در طراحي اين ا                 

 رايسب متار الگوريت ساخ. تس ا هدش هئارا MNLMSه نام   مي ب  جاي بيضي گون، الگوريت    كره به وق  ف ينيجايگز
وريتم، به منظور غلبه بر گلا نيا رد. تسا  OBEلگوريتمهايا هداوناخ زا و NLMS و در رده الگوريتم اده بودهس

 استفاده شده   يزنوه  مندام  يمويز، از يك شيوه جديد براي تخمين ماكز         محدوديت آگاهي از سطح ماكزيمم ن      
 .ندني كيد ميتا بسانم  را در شرايطاصلحتم يه سازي، كارايي الگوريج شبنتاي. است

 
 

INTRODUCTION 
 
OBE algorithms are used to identify a real model 
of the general form 

nn
T

n vXWy +=   (1) 

in which [ ]m
T wwW ,,1 K=  is the unknown 

parameter vector, { }nν  is a disturbance, error, or 
input sequence and { }nX  is a measurable sequence 
of m-vectors. It is assumed that for each ,n  nv  is 

bounded in magnitude by ∗γ , i.e. 

( )22 ∗≤ γnv  (2) 

Equations 1 and 2 together yield 

( ) ( )22 ∗≤− γXWy T
n  (3) 

Let nS  be a subset of mR  defined by 

( ) ( ){ }m22
n

T
nn RW,XWy:WS ∈γ≤−= ∗  (4) 

     From a geometrical point of view, nS  is a 
convex polytope. Thus with each measured pair 
( )nn Xy , , Equations 1 and 2 yield a convex 
polytope in the parameter space. At any instant n , 
the intersection of the sequence of nSS ,,1 L  
contains W  and so must any ellipsoid that bounds 
this intersection. OBE algorithms start with a 
sufficiently large ellipsoid that covers all possible 
values of W. 
     After ( )11, Xy  is acquired, an ellipsoid that 
bounds the intersection of the initial ellipsoid and 
S1 is found. Every OBE algorithm uses a specific 
optimization criterion to find this ellipsoid that is 
denoted by 1E . By the same token, the algorithm 
obtains a sequence of optimal bounding 
ellipsoids{ }nE . The estimate for W  at the n th 
instant is defined to be the center of nE . Suppose 
that 1−nE , at instant 1−n , is given by 
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( ) ( ){ }2
1n1n

1
1n

T
1n1n WWPWW:WE −−

−
−−− η≤−−=  (5) 

for some positive definite matrix 1−nP and a nonzero 
scalar 1−nη . Observing ( )nn Xy , , an ellipsoid that 
bounds nn SE I1−  is given by  

( ) ( ){ }2
nn

1
n

T
nn WWPWW:WE η≤−−= −  (6) 

where 

( ) T
nnnnnn XXPP λλ +−= −

−
− 1

1
1 1  (7) 

or equivalently (using matrix inversion lemma) 
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and nλ is any scalar in (0,1) [5]. 
     In MNLMS algorithm, nP  is replaced by a 
diagonal matrix nn PI >µ  (where A >B means A-

B is positive definite) and an expanded set nE  
where 

( ) ( ){ }
( ) ( ){ }2

nnn
T

n

2
nn

T
n

1
nn

WWWW:W

WWWW:WE

ηµ≤−−=

η≤−−µ= −

 (12) 

which covers nE  .i.e. 

nn EE ⊆  (13) 

     Choosing the value of nλ  which minimizes 
22
nnn ηµζ =  leads to a very simple algorithm 

named MNLMS [12] (and also [10] for a 
geometrical approach). 
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     Although 2
nζ  does not have any direct role in 

MNLMS algorithm, but helps distinguishing the 
variation of parameters. With the assumption that 

∗γ  is chosen correctly and under ideal time-
invariance condition, 2

nζ  never goes negative (see 

[12]). Every time 2
nζ  assumes a negative value, a 

variation in the true parameter has occurred. 
     However we focus on another important 
problem: MNLMS algorithm like conventional 
OBE algorithm [8] is based on the premise that 
{ }nv  has an upper bound that is known apriori, 

∗≤ γnv , for all n . However since { }nv  is 

unobservable, choosing a proper ∗γ  (or bounding 
sequence { }∗γ  for the case of time variable 
maximum level), is critical in practice. Over 
bounding increases the estimation error and leads 
to inconsistent estimator [11]. Under bounding is 
riskier because it can cause divergence. In the next 
section we focus on the case that over bounding or 
under bounding has been occurred and propose a 
method to decrease or increase nγ to its correct 

value ( )∗γ . As stated earlier, our method is valid 
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for a special class of measurement noises, which is 
defined in the next section. 

MLS NOISE AND PROPOSED ALGORITHM 

Definition 1   { }nv  is called a Maximum Level 
Selecting (MLS) noise of order N  if for any set of 
time instants ,1,,1, 000 −++ Nnnn L  there 
exists at least one k  such that 

1.obPrwithvk
∗γ=  

where ∗γ  is the global maximum magnitude of 
{ }nv . i.e. 

∗≤ γnv  

This class, choosing a suitable N , encompasses a 
broad variety of noises, e.g. on-off, hard limited 
and quantizer systems noises. The following 
theorem is the basic key for noise bound correction 
and completing of MNLMS algorithm. 

Theorem 1   Suppose { }nv  is an i.i.d MLS noise 

of order N  with ∗≤ γnv  and { }nu  is an i.i.d 

sequence for which nv  is independent from nu  for 

all n . Then for every 00,0 >≤< ∗ εγγ andn , 
there exists a positive number M such that for 
every K ≥ M  

{ } ε<−++=γ<+ 1Kn,,1n,nnuvP 000nn L      
 (16) 

Proof: See the appendix  

     Now suppose { }nv  is an MLS noise of order 

N  and parameter ∗γ  and for a period M>>N the 
sequence { }ne  in Equation 9 satisfies 

( ) γ<−+= −1n
T
nnn WWXve  

                 1Mn,,1n,nn 000 −++= L  (17) 

     According to theorem 1 for ∗≤ γγ  and a 
sufficiently large M , the probability of the above 
event is approximately zero. So it is clearly found 
that with a high degree of accuracy 

γγ <∗  

Hence  

γ<γ≤ ∗
nv  (18) 

The above statement is based on the assumption 
that { } ( ){ }1n

T
nn WWXu −−=  is an i.i.d sequence and 

nu  independent of nv  for all n  (ordinary 
assumptions in the literature of adaptive 
algorithms). So we can candidate δγγ −=∗  for 
the maximum noise level. i.e. 

δγγ −→  

where δ  is an arbitrary small positive value. On 
the other hand, because of the nature of OBE 
algorithm, they use only a few percentages of the 
input data. So if the algorithm uses input data 
successively for a period exceeding L (usually L = 
1, 2 or 3) without interruption, it insures that γ  is 
less than ∗γ . Hence we should increase γ  

δγγ +→  

     The above explanation is the foundation of new 
algorithm called Automatic Bound Estimation 
(ABE) MNLMS algorithm and is summarized as 
follows (See [9] for another approach to ABE 
algorithms): 
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Initialization:   Set aW == 00 ,0 ζ  (large) 
positive number, =0γ any (over) estimated bound, 
Choose δ  (small positive number), M (M>>N) 
and L (usually L = 1, 2 or 3) 
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     With a rather tedious mathematical analysis 
one can show that if M , { }nv  and 

{ } ( ){ }1−−= n
T
nn WWXu  satisfy the conditions of 

theorem 1, nγ  finally settles in the interval 

[ ]δγδγ +− ∗∗ , . We skip the exact proof but 
demonstrate this fact via computer simulations in 
the following section. 

SIMULATION 

In this section we present simulations that 
support the abilities of proposed ABE-
MNLMS algorithm. We compare the results 
with those of MNLMS algorithm using an 
AR(2) model with 

n
T
nn2n1nn vWXvdycyy +=++= −−  (19) 

where 

[ ] [ ]T2n1nn
T yyX,dcW −−==  

Four cases are considered: 

Case 1. Time Invariant Parameter with 
Colored Noise   Using 1=c  and 5.0−=d  and 

nv  is a colored non-zero mean error sequence 
generated by a correlated sequence { }nw  




−

−>
=

otherwise
wif

v n
n 1

11
 (20) 

in which nw  is generated by  

nnn zww +−= −18.0  

where nz  is i.i.d uniform in [-1,1]. Both 
algorithms are run with an overestimated bound 

5.1=γ  since the true error bound ( )1=γ  is 
assumed unknown. The results are shown in Figure 
1 (See also the result of SM--SA OBE algorithm 
used in [13]). 

Case 2. Time Invariant Parameter with 
Multi Level Noise   In this case nv  assumes 
values {-1,-2/3,-1/3,0,1/3,2/3,1} with equal 
probabilites. Other conditions are the same as case 
1. The results are shown in Figure 2. 

Case 3. Time Varying Model   The parameter 
c  was changed by 50 % at one-thousandth 
sample, while c  was kept constant at its 
nominal value. As before, nv  chooses values {-
1,-2/3,-1/3,0,1/3,2/3,1} uniformly. The parameter 
estimates are plotted against the true values in 
Figure 3. The proposed algorithm also has 
remarkable performance for the case of under 
bounding. 

Case 4. Time Varying Model with Under 
Bounding Initial Value   Consider case 3 but 
with 8.0=γ . The results are illustrated in Figure 4. 
     ABE-MNLMS algorithm exhibits improved 
performance over MNLMS in all cases. For 
example in opposition to MNLMS algorithm, the 
steady state error of the parameter estimate in 
ABE--MNLMS algorithm is zero in all cases. 
Especially from Figure 4 in the case of under 
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bounding, MNLMS is unstable. Despite of all 
results, it is important to point out that MNLMS 
algorithm has remarkable performance when true γ  
is available [12]. 
     As mentioned in the end of section 2, nγ  finally 

settles in the interval 

[ ]δ+γδ−γ ∗∗ ,  

     To illustrate this fact, Figure 5 shows the 

 
(a) 

 

 
(b) 

 
Figure 1. Parameter estimates for case 1 (a) MNLMS with 

5.1=γ  and (b) proposed algorithm with 5.1=γ , M = 50 
and L = 2. 

 
(a) 

 

(b) 
 
Figure 2. Parameter estimates for case 2 (a) MNLMS with 

5.1=γ  and (b) proposed algorithm with 5.1=γ , M = 50 
and L = 2. 
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estimated values of ( )nei γγ ..∗ , calculated by 
ABE--MNLMS algorithm in the cases 3 and 4. In 
the cases 3 and 4 , the initial value of γ  was 

5.10 =γ  and 8.00 =γ  respectively. Figure 5 (a 

and b) shows that after 500=n  (in case 3) and 
200=n  (in case 4) ABE--MNLMS algorithm has 

found its true value. Because of the value of L 
(L=2) that is small, there is not any underestimating 
after these time instants.  

 
(a) 

 

 
(b) 

 
Figure 3. Parameter estimates for case 3 (a) MNLMS with

5.1=γ  and (b) proposed algorithm with 5.1=γ , M = 50
and L=2. 
 

 
(a) 

 

 
(b) 

 
Figure 4. Parameter estimates for case 4 (a) MNLMS with 

8.=γ  and (b) proposed algorithm with 5.10 =γ , M = 50 
and L=2. 
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CONCLUSION 
 
A simple strategy to find the true maximum 
level of noise has been derived. It is valid 

for those measurement noises that reach 
their maximum level in finite durations 
with probability one. Simulation results 
show that the tracking performance of this 
algorithm in finding true maximum level 
of noise is comparable to that of MNLMS 
algorithm. 
 
 
 

APPENDIX: PROOF OF THEOREM 1 
 
Because { }nv  is an MLS noise of order N , there 
are time instants ∗≤ γγ in the sets of length N  
such that 
 

( ){ } K,2,1,0i,1N1in,iNnk,v 00iki
=−+++∈γ= ∗  

 (21) 
 
Suppose K  is an integer multiple of N . 
Because ∗γ≤γ , the event 
 

1,,1,, 000 −++=<+ Knnnnuv nn Kγ  (22) 
 
is covered by the event 

( ) ( ) NKiusignvsign
ii kk /,,1,0 L−≠  (23) 

 
Hence 
 
{ }

( ) ( ){ } ε<=≠≤

−++=γ<+

N/K,,1,0iusignvsignP
1Kn,,1n,nnuvP

ii kk

000nn

L

L
 

 (24) 
 
now suppose 
 

{ } { }0uPp0vPp
ii k2k1 >=>=  (25) 

because nv  and nu  are independent for all n  
 

( ) ( ){ }==≠ N/K,,1,0iusignvsignP
ii kk L  

     ( ) ( )( ) NKpppp /
1221 11 −+−  (26) 

 
Hence under natural conditions that 

 
(a) 

 

 
 

(b) 
 
Figure 5. Estimates of γ* in (a) Case 3 (over bounding) and 
(b) Case 4 (under bounding). 
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10,10 21 <<<< pp  
 
it is obvious that for the given � there exists 1M  
such that 

( ) ( )( ) ε<−+− 1
1221 11 Mpppp  (27) 

 
Choosing NMM 1= completes the proof. 
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