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Abstract   The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) 
provides a good approximation to the input space from which the sample vectors come. But the time-
decreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt 
weights for a varied environment. In dealing with non-stationary input distributions and changing 
environments, we propose a modified SOM algorithm called “Time Adaptive SOM”, or TASOM, that 
automatically adjusts learning rate and neighborhood function of each neuron independently. Each neuron's 
learning rate is determined by a function of distance between an input vector and its weight vector. The width 
of the neighborhood function is updated by a function of the distance between the weight vector of the neuron 
and the weight vectors of neighboring neurons. Only one time parameter initialization is sufficient throughout 
the lifetime of TASOM to enable it to work with stationary as well as non-stationary input distributions 
without the need for retraining. The proposed TASOM is tested with five different input distributions and its 
performance is compared with that of the basic SOM for these cases. The quantization errors of the TASOM in 
all of these experiments are lower than the errors of the basic SOM. Moreover, the convergence speed of the 
TASOM outperforms that of the basic SOM. These experiments demonstrate that the TASOM is stable and 
convergent. The TASOM network is also tested with non-stationary environments when the input distribution 
completely changes from one distribution to another. The TASOM in these changing environments moves its 
weights gradually from the old distribution to the clusters of the new distribution. This property is comparable 
to the memory of human brain, which gradually forgets old memory and memorizes new sensory data. 

Key Words   Self-Organizing Map, Non-Stationary Distribution, Neighborhood Function, Quantization 
Error, Time Adaptive, TASOM 

شود تقريب خوبي براي فضاي       پايه ارائه مي   SOMنگاشت ويژگي كه توسط مجموعه بردارهاي وزن            چكيده
اما تابع همسايگي و نرخ يادگيري كاهنده با زمان           . آورد آيند فراهم مي   ورودي كه بردارهاي نمونه از آن مي       

براي كار با محيطهاي . دهد ويا كاهش مي پايه توانايي آن را در تطبيقي بودني وزنها با محيطهاي پ     SOMالگوريتم  
كنيم به گونه اي كه       پيشنهاد مي  TASOM به نام    SOMمتغيير و توزيع هاي ناايستا، ما يك الگوريتم اصلاح شده           

نرخ يادگيري هر نورون توسط تابعي      . كند نرخ يادگيري و تابع همسايگي هر نورون را نابسته با زمان تنظيم مي             
پهناي تابع همسايگي توسط تابعي از فاصله بين بردار . شود ورودي و بردار وزن آن تعيين مياز فاصله بين بردار    

 TASOM مقداردهي اوليه پارامترها براي ريك باتنها . شود وزن و بردارهاي وزن نورونهاي همسايه مشخص مي
 پيشنهادي با پنج     TASOM.  كافي است تا بتواند در محيطهاي ناايستا و ايستا بدون آموزش دوباره كار كند                 

 براي اين   TASOMخطاي چندي كنش    . شود  پايه مقايسه مي   SOMتوزيع گوناگون آزمايش و كاركرد آن با          
. شود  پايه همگرا مي   SOM تندتر از    TASOMافزون بر اين،    .  پايه است  SOMا همگي پايينتر از خطاي      هآزمايش

 در محيطهاي ناايستا نيز آزمايش TASOMشبكه  .ست پايدار و همگرا اTASOMدهند كه  ا نشان ميهاين آزمايش 
 به تدريج وزنهاي    TASOMدر چنين محيطهايي  . كند اي كه توزيع ورودي به طور كامل تغيير مي         شود به گونه   مي

توانيم با حافظه    اين ويژگي را مي   . كشاند هاي توزيع نو مي    كند و به سوي گرانيگاه     خود را از توزيع كهنه دور مي      
 .گيرد هاي ورودي نو را ياد مي كند و داده نجيم كه به تدريج حافظه كهنه را فراموش ميخودمان بس

INTRODUCTION 

SOM, which was developed by Kohonen [1], 
transforms input sample vectors of arbitrary 
dimensions to a one- or two- dimensional discrete 
map in an adaptive fashion. It has been used in 
applications such as vector quantization [2], texture 

segmentation [3], brain modeling [4], phonetic 
typewriter [5], and image compression [6]. 
     The SOM uses a Hebb-like learning rule with 
time decreasing learning parameters. At the beginning 
of the training, the learning rate is set to a value 
close to unity. Then, it is decreased gradually 
during the training. The first phase of the algorithm 
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in which the topological ordering of the weight vectors 
)n(jw  takes place is called the ordering phase. The 

second phase of the algorithm, during which the 
weight vectors are updated to provide a good 
approximation of the input distribution, is called 
the convergence phase. 
     For topological ordering of the weight vectors 
to take place, the neighborhood function usually 
begins such that it includes all neurons in the 
network and then gradually shrinks with time. A 
good choice for the dependence of the learning-
rate on time n is the exponential decay [4], 

described as 
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     Again, 2τ  is a time constant and 0σ is the initial 
value of σ  at the beginning of the SOM algorithm. 
     In fact, these parameters are at their highest 
values at the beginning of learning. Then, they 
decrease with time so that the feature map 
stabilizes and learns the topographic map of the 
input samples. At the final step, the learning-rate 
parameter usually has a very small value and so 
does the neighborhood function. Therefore, the 
SOM algorithm cannot learn with adequate speed 
the new input samples that may be different in 
statistical characteristics from the previously learnt 
samples. In other words, the learning process is 
incapable of responding appropriately to a varied 
environment that embodies incoming samples. 
Even constant learning rates cannot deal with such 
environments [8]. 
     In addition, the appropriate form of the 
neighborhood function and the method of 
determining the learning-rate parameter for the 
SOM are not known. In fact, these parameters are 
usually determined experimentally. However, 
some efforts have been made to resolve these 
problems. One [9] uses the model of Kalman filters 
to automatically adjust the learning parameters, 
which is valid only within the system model, and 

cannot adapt itself to varied environments. Another 
[10] assumes an individual neighborhood size, 
which is a function of distance between the input 
vector and the relevant weight vector, with no 
suggestion for the learning-rate parameter 
adjustment. Moreover, a vector quantization 
method has been introduced with classified 
learning rates for image compression [11] 
     A suggestion for resolving the aforementioned 
problem is to choose time-independent learning 
parameters, which change their values with the 
conditions of the incoming samples, and not with 
the elapse of time. These parameters should 
increase the capability of the SOM in dealing with 
varied environments, but should not decrease the 
speed of convergence of the SOM algorithm. The 
algorithm must also stay stable in such 
environments.  
     Some steps have been taken before [12,13]. The 
TASOM with neighborhood sets has been 
introduced in [14]. Moreover, the TASOM has 
been used for adaptive pattern classification [15]. 
In this paper, we propose a new version of the 
algorithm in which we use neighborhood functions 
for the TASOM. The performance of the proposed 
algorithm in approximating stationary environments 
is compared with that of the basic SOM, and 
several experiments in changing environments 
are also conducted.  
     The proposed SOM algorithm is described in 
the next section. Section 3 briefly mentions the 
expected distortion definition and its relation to the 
input approximation error of the SOM networks. 
Experimental results are presented in section 4, and 
concluding remarks form the final section of the 
paper. 

THE PROPOSED SELF-ORGANIZING 
FEATURE MAP ALGORITHM 

 
The learning parameters of the basic SOM are only 
a function of time n, and decrease gradually with 
time. The parameters are chosen this way to assure 
the stabilization of synaptic weights, with the 
assumption that the input sample vectors come 
from a specific stationary distribution. Therefore, 
there is no mechanism or understanding to find out 
whether the input distribution is changing or not. 
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Any fundamental change in the input distribution 
causes severe problems for the SOM, and the 
learning rule cannot change the synaptic weights of 
the network with adequate speed. On the other 
hand, since the neighborhood function does not 
follow changes in the environment, the neurons of 
the network are unable to modify the topographic 
map based on the changed input vectors, and thus 
the feature map cannot take the appropriate form. 
For more details, see [12,13]. 
     We have proposed a modified SOM algorithm 
called TASOM that automatically adjusts the 
learning parameters, and incorporates possible 
changes of the input distribution in updating the 
synaptic weights. For this purpose, the learning 
rate of each neuron is considered to follow the 
values of a function of distance between the input 
vector and its synaptic weight vector. This way, the 
parameter will be changed independently for each 
neuron, and the number of these parameters will be 
equal to the number of output neurons. A similar 
updating rule is proposed to automatically adjust 
the width of the neighborhood function of each 
neuron. The width of each output neuron is 
considered to follow the distance between the 
neuron’s synaptic weight vector and the weight 
vectors of its neighboring neurons. This width is 
used in the Gaussian neighborhood function, 
similar to that of the basic SOM, which was 
described earlier. The learning rate modification 
has been discussed in [12,13]. 
     The basic SOM, as observed by [16], fails to 
provide a suitable topological ordering for the 
input distributions that are non-symmetric. They 
proposed to use a normalizing vector specific to 
each neuron for distance calculation between any 
input vector and the neuron’s weight vector. These 
normalizing vectors are updated during the 
network training. The TASOM normalizes all 
distance calculations such that each distance 
calculation in the network algorithm is normalized 
by a scaling vector, which is composed of standard 
deviations of input vectors’ components. An 
application of this normalization is seen in [14]. 
     However, for input approximation, the main 
task is to lower quantization errors and topological 
ordering is less important. Therefore, in this paper, 
a symmetric scaling is employed in the TASOM 
algorithm, which is equal to the norm of standard 
deviation vector of input vectors. 

     The proposed TASOM may be summarized in 
eight steps as follows: 

Initialization   Choose some values for the initial 
weight vectors )0(jw , where Nj ,...,2,1= ; and N 
is the number of neurons in the lattice. The 
learning-rate parameters )0(jη  should be 
initialized with values close to unity. The constant 
parameters α , β , sα , and sβ can have any values 
between zero and one. The constant parameters fs  
and gs should be set to satisfy the application’s 
needs. The neighborhood widths of the 
neighborhood function )0(jσ should be set to 
positive values greater than one. The scaling value 

)0(sl should be set  to any posit ive value,  
preferably one. The parameters )0(kE and )0(2 kE  
may be initialized with some small random values. 
Neighboring neurons of any neuron i in a lattice is 
included in the set iNH . In this paper, for any 
neuron i in a one-dimensional lattice N, { } 1 ,1 +−= iiNHi , 
where { } 1−= NNH N and { } 2 1 =NH . Similarly, for 
any neuron i in a two-dimensional lattice N=M×M, 

{ } )12,1( ),12,1( ),2,11( ),2,11( )2,1( +−+−= iiiiiiiiNH ii  where 
{ } )1,2( ),2,1( )1,1( =NH  
{ } ),2( ),1,1( ),1( MMNH M −=

{ } )1,1( ),2,( )1,( −= MMNH M

{ } ),1( ),1,( ),( MMMMNH MM −−=  

Sampling    Draw a sample-input vector x  from 
the input distribution. 

Similarity Matching    Find the best-matching 
or winning neuron )(xi at time n, using the 
minimum-distance Euclidean norm as the 
matching measure: 

 )n()n(  minarg)(i jj wxx −= , Nj ,...,2,1=   (1) 

where 

( ) 2
1

k

2
k,jkj )n(w)n(x()n()n( 







 −=− ∑wx  (2) 

Updating The Neighborhood Widths    Adjust 
the neighborhood width of the winning neuron 
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)(xi by the following equation: 
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where the function #(.) gives the cardinality of a 
set. The neighborhood widths of the other neurons 
do not change. 
 
Updating The Learning-Rate Parameters    Adjust 
the learning-rate parameters )n( jη  of all neurons 
in the network by: 
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Updating The Synaptic Weights   Adjust the 
synaptic weight vectors of all output neurons in the 
network using the following update rule: 

)]n(w)n(x[ )1n(h )1n( )n(w)1n(w j)x(i,jjjj −++η+=+  

                                                            for all j (5) 

where )1( +njη is the learning-rate parameter, and 
)1()(, +nh ij x  is the Gaussian neighborhood function 

centered on the wining neuron )(xi . 

Updating The Scaling Value   Adjust the 
scaling vector )1( +nsl with the following equations: 

∑ +=+
k

k nsnsl )1()1(  (6) 

where 

( )++−+=+ 2
kkk )1n(E)1n(2E)1n(s  (7) 

 

( ))(2)( )(2)1(2 2 nEnxnEnE kkkk −+=+ sα  (8) 

and 

( ))()( )()1( nEnxnEnE kkkk −+=+ sβ  (9) 

The function zz =+)( if 0>z ; otherwise it is zero. 

Continuation   Continue with step 2. For function 
(.)f we should have 0)0( =f , 1)(0 ≤≤ zf  and 

0)(
≥

dz
zdf  for positive values of z. Similarly, 0)0(g = , 

Nzg <≤ )(0  for one-dimensional lattices of N 
neurons and 2)(0 Mzg <≤  for two-dimensional 

lattices of M×M neurons, and 0)(
≥

dz
zdg  for positive 

values of z. Examples of functions (.)f  and (.)g  
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z
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     It should be noted that in this algorithm, the 
initialization step of the algorithm is used only 
once during the lifetime of the network.  
     There are some other self-organizing maps that 
may be used for non-stationary and changing 
environments [17-22]. These SOM algorithms add 
or delete neurons in response to their changing 
environments. This is different from our proposed 
TASOM in which no neuron deletion or addition is 
needed and the network adaptation is achieved 
through dynamic parameter adjustment. 

EXPECTED DISTORTION AND 
FEATURE MAP 

The weight vectors of a SOM network represent a 
non-linear mapping Φ , called the feature map, 
from the input space Χ  onto the discrete output 
space Α , as shown by neuron )(xi : 

Α→ΧΦ :  (10) 

Given an input vector x, the feature map Φ  maps 
it to the winning 

   minarg)(i jj wxx −=  for all j (11) 

The weight vector )(xw i  may be viewed as a 
pointer of the winning neuron )(xi  to the input 
space Χ . In fact, the weight vectors of an SOM 
network represent a one-to-many mapping from 
the output space Α to the input space Χ . This 
means that a large set of input vectors may be 
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represented by a smaller number of weight vectors 
of the network in order to provide a good 
approximation of the input space. An optimum 
solution may be found by minimizing the 
following expected distortion: 

∫
+∞

∞−
Χ= )( )( 

2
1

)( xwx,xx idfdD  (12) 

This integration is over the entire input space. The 
probability density function of the input space is 
represented by )(xΧf  from which the input 
samples are selected. A popular choice for the 
distortion measure )( )(xwx, id  is the square of the 
Euclidean distance between the input vector x and 
the wining weight vector )(xw i for that input vector.  
Consequently, the expected distortion D may be 
rewritten as 

∫
+∞

∞−
Χ=

2 

)(- )( 
2
1

xwxxx ifdD  (13) 

The SOM networks may be viewed as vector 
quantization algorithms trying to provide good 
approximations to their input spaces. 

EXPERIMENTAL RESULTS 
To test the performance of the proposed TASOM 
for the input distribution approximation, several 
experiments are developed in stationary and non-
stationary environments. For this purpose, five 
different two-dimensional input distributions 
including Uniform distribution, Gaussian 
distribution, Exponential distribution, Laplacian 
distribution, and Rayleigh distribution are 
simulated. Each random vector of any of these 
distributions is composed of two independent and 
identically distributed one-dimensional random 
values. Specifically, we may say that the 
probability density function (pdf) of each 
distribution is )()(),(, yfxfyxf XXYX =  for the 

Uniform distribution, we have 


 ≤≤

=
otherwi          0

1x0   if        1
)x(fX  
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2
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22
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σmx

X
exf

−−

=  

where ∞<<−∞ x , 0>σ , and m and σ are the 
mean and variance of random variable X, 

respectively. The pdf of Exponential distribution is 
x

X exf λλ −=  )(  where 0≥x  and 0>λ . For 

Laplacian distribution we have ||

2
)( x

X exf αα −=  

where ∞<<−∞ x  and 0>α . Finally, the pdf of 

Rayleigh distribution is 
22/

2
)( α

α
x

X exxf −=  where 

0≥x  and 0>α .    In this paper, 0=m  and 
1=σ are set for the Gaussian distribution.  For the 

Exponential distribution, we set 1=λ . For the 
Laplacian and Rayleigh distribuitons, we set 1=α . 
     The five distributions with 10000 points are 
shown in Figures 1(a)-(e) for the Uniform, 
Gaussian, Exponential, Laplacian, and Rayleigh 
distributions, respectively. The test is carried 
out with 50 neurons forming one-dimensional 
lattices of neurons for both the basic SOM and 
TASOM networks. The expected approximated 
distortion of Equation 13 is used to compare 
the approximation error of the networks.  
The variations of the quantization error of the 
basic SOM and TASOM networks for the five 
distributions versus the number of iterations are 
depicted for every 1000 samples in Figures 2(a)-
(e), where dashed lines represent the SOM’s 
behavior and solid lines represent the TASOM’s. It 
should be mentioned that different values for the 
basic SOM parameters were tested, and the results 
given here are for those giving the best 
quantization performance that could be achieved. 
In this paper, for the SOM network, the initial 
learning-rate and the initial width of neighborhood 
function parameters are 9.00 =η  and N=0σ , 
respectively. Moreover, the time constants are 

200021 ==ττ . For the TASOM network, we use 
1.0== βα  01.0== ss βα  15== gf ss  

Nj =)0(σ  1)0( =jη . 
     The initial weight vector )0(jw , the scaling 
value )0(sl , and the parameters )0(kE and 

)0(2 kE are small positive values which are randomly 
chosen. 
     The first point which is extracted from Figures 
2(a)-(e) is that the TASOM converges much faster 
than the basic SOM. In fact, fewer iterations are 
needed for the TASOM to approximate input space 
with enough accuracy. This is due to adaptive 



28 - Vol. 15, No. 1, February 2002 IJE Transactions A: Basics 

adjustment of learning rates and neighborhood 
functions of neurons in the TASOM in which 
parameters are adjusted according to the 
environmental conditions.  The second point is that 
the TASOM converges with less quantization error 

than the basic SOM. This property is partly due to 
using separate learning rates and neighborhood 
functions for neurons. With separate learning rates 
and neighborhood functions, the TASOM network 
is able to locate neurons in the environment with 

   
 

(a) (b) 
 

   
 

(c) (d) 
 

 
 

(e) 
 
 
Figure 1. The five distributions used in the experiments each one represented by 10000 points. (a) the Gaussian distribution, (b) the 

Uniform distribution, (c) the Laplacian distribution, (d) the Exponential distribution, and (e) the Rayleigh distribution. 
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more flexibility than the basic SOM, which has 
only one learning rate and neighborhood function. 
     Now consider the TASOM network of Figure 

2(b) trained by the Uniform distribution. This 
network undergoes some change in its input 
space distribution. The first change is to Gaussian 
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Figure 2. The quantization error of TASOM and the basic SOM as iteration goes on where dotted lines represents the basic SOM and 

solid lines represents the TASOM. (a) for Gaussian distribution, (b) for Uniform distribution, (c) for Laplacian distribution, (d) for 
Exponential distribution, and (e) for Rayleigh distribution. 
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distribution. Then it changes to Exponential, then 
Rayleigh, and finally Laplacian distributions. In 
fact, the TASOM network used in this experiment 
undergoes a very changing environment, which 
endure five complete changes in its input space 
while the TASOM is initialized only one time 
during its lifetime, irrespective of the changes in 
the environment. The quantization errors of the 
TASOM network in this case for the five 
distributions are shown in the third row of Table 1. 
For comparison, the quantization errors for the 
basic SOM and the TASOM networks are also 
presented and shown in the first and second rows 
of Table 1, respectively. The initial values of the 
parameters of the two networks are the same as 
those used in the previous experiments. 
     The TASOM is thus tested in two different 
cases. In one case, the initialization step of the 
TASOM algorithm is executed for each new 
environment. We call this case of using TASOM 
as “TASOM with initialization”. This case is 
surely stationary, since we have to initialize the 
weight vectors and other parameters of the 
TASOM network for learning its environment, and 
it is assumed that the statistical characteristics of 
the environment do not change with time. The 
basic SOM can be used only in this case. 
     The other case of using the TASOM network is 
a non-stationary case in which it is assumed the 
environment may be faced with some changes in 
its statistical characteristics as time goes on. In this 
case, the initialization step is used only the first 
time that the TASOM network is trained. When the 
distribution of the environment changes, the 
network has to learn the new environment with the 
values of the weights and parameters that have 
been learned with its former environment. The 
ability of TASOM in learning the new 
environment is solely dependent on the learning 
rate and neighborhood width updating proposed in 

the TASOM algorithm. We call this case “TASOM 
without initialization”. 
     According to Table 1, most of the time, the 
errors for the TASOM without initialization is 
slightly lower than the case where the TASOM 
with initialization is used. The basic SOM 
produces higher errors than the TASOM with 
initialization and TASOM without initialization. In 
other words, the TASOM network performs well in 
non-stationary as well as stationary environments. 
     The TASOM network uses separate learning 
rate and neighborhood width for each neuron of the 
network. So, the neurons of TASOM are more 
flexible than the basic SOM to represent the input 
vectors. This way, the TASOM networks obtain 
better performance than the basic SOM as shown 
in Table 1.  
     To assure that the TASOM has preserved 
topological ordering in the mentioned experiments, 
the converged weights of TASOM for the five 
distributions with initialization for each 
distribution, the weights of the SOM for the five 
distributions, and the converged weights of the 
TASOM for the four distributions without 
initialization are all presented in Figures 3(a)-(e), 
4(a)-(e), and 5(a)-(d), respectively. According to 
these Figures, the TASOM always preserves 
topological ordering. 
     It may be interesting to see the stages during 
which the input distribution changes while the 
TASOM moves its weights to gradually represent the 
most recent distribution. Assume that the TASOM 
network converged to represent the two-dimensional 
Uniform distribution in the region ]1,0[]1,0[ ×  faces a 
new Uniform input distribution in the region 

]5,4[]5,4[ × . Figure 3(b) shows the TASOM weights 
for the former Uniform distribution. Figure 6(a) 
demonstrates the intermediary stage of convergence 
of the TASOM weights toward the new Uniform 

TABLE1. The Quantization Error of the Basic SOM, the TASOM with Initialization, and the TASOM Without Initialization 
for the Five Input Distributions. 

SOM \ Distribution Unifor
m 

Gaussian Exponential Laplacian Rayleigh 

Basic SOM 0.0651 0.2866 0.2283 0.4108 0.1788 
TASOM with initialization 0.0592 0.2714 0.2182 0.4053 0.1662 
TASOM without 
initialization 

-------- 0.2745 0.2090 0.4038 0.1678 
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distribution. At the end, Figure 6(b) shows the 
converged weights for the new Uniform distribution, 
which not only preserves topological ordering, but 
also distributes uniformly in the new input space and 
completely covers it. 
     It seems that The TASOM moves its weights in 
topological order, no matter what happens in the 
environment.  Moreover, it adapts its weights to 
the new environment in an elegant fashion. This 
means that the weights gradually leave the old 
distribution and move gradually toward the clusters 
of the new distribution. This phenomenon reminds 
us of the memory of our brains. The past memory 

remains refresh as long as new sensory data 
emphasize that. If new sensory inputs different 
from those of the past ones are received, our 
memory tries to represent and memorize the recent 
data. However, forgetting the past memory and 
memorizing the new one is also gradual in our 
brain, we don’t forget past memory and we also 
don’t memorize the new one suddenly. 

CONCLUDING REMARKS 

The decreasing time-dependent learning 
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Figure 3. The topographic map of the proposed TASOM. (a) for Gaussian. (b) Uniform. (c) Laplacian. (d) Exponential. (e) Rayleigh. 
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parameters of the SOM lower the incremental 
learning capability of the algorithm in response to 
varied environments. In this paper, a modified 
SOM algorithm called “TASOM” with neighborhood 
function was proposed to automatically adjust the 
learning rate parameter and the neighborhood 
function of each output neuron. Each output 
neuron is assumed to have its own learning rate 
and neighborhood function, which are updated 
repeatedly in the proposed SOM algorithm in 
response to new input samples. 
     The proposed TASOM was tested in stationary 

environments, and was compared to the basic SOM 
for input approximation. According to these tests, 
the TASOM can be claimed to converge with 
fewer iterations than the basic SOM. Moreover, the 
quantization errors of the TASOM are lower than 
the errors of the basic SOM. The TASOM was also 
tested in non-stationary environments in which the 
input distribution completely changes to another 
distribution. There is no need to reinitialize the 
TASOM in response to changes in the input 
distribution. Experimental results confirm this 
claim. In the TASOM, learning of the new 
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Figure 4. The topographic map of the basic SOM. (a) for Gaussian. (b) Uniform. (c) Laplacian. (d) Exponential. (e) Rayleigh, 
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distribution is gradual, similar to the human 
memory, which constantly and gradually updates 
itself to the more recent data while forgets the old 
memory in the long run. 
     These experiments suggest that the TASOM is 
suitable for both stationary and non-stationary 
environments. In fact, the TASOM learns continuously 
from its environment, and only a one- time 
initialization is needed for it to work in its possibly 
changing environment. 
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